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We numerically study quantum magnetism of ultra-cold alkali and alkaline-earth fermion systems
with large hyperfine spin F = 3

2
, which are characterized by a generic Sp(N) symmetry with N = 4.

The methods of exact diagonalization (ED) and density-matrix-renormalization-group are employed
for the large size one-dimensional (1D) systems, and ED is applied to a two-dimensional (2D) square
lattice on small sizes. We focus on the magnetic exchange models in the Mott-insulating state at
quarter-filling. Both 1D and 2D systems exhibit rich phase diagrams depending on the ratio between
the spin exchanges J0 and J2 in the bond spin singlet and quintet channels, respectively. In 1D, the
ground states exhibit a long-range-ordered dimerization with a finite spin gap at J0/J2 > 1, and a
gapless spin liquid state at J0/J2 ≤ 1, respectively. In the former and latter cases, the correlation
functions exhibit the two-site and four-site periodicities, respectively. In 2D, various spin correlation
functions are calculated up to the size of 4 × 4. The Neel-type spin correlation dominates at large
values of J0/J2, while a 2×2 plaquette correlation is prominent at small values of this ratio. Between
them, a columnar spin-Peierls dimerization correlation peaks. We infer the competitions among the
plaquette ordering, the dimer ordering, and the Neel ordering in the 2D system.

PACS numbers: 71.10.Fd, 75.10.Jm, 71.10.Pm, 75.40.Mg

I. INTRODUCTION

The recent experimental progress on the ultracold
Fermi gases with large hyperfine spin provides an exciting
opportunity to investigate novel physical properties1–4.
In usual condensed matter systems, large spin is not
considered particularly interesting because large values
of spin suppress quantum fluctuations. For example, in
transition metal oxides, a large spin on each cation site
is usually referred as an effective spin S composed of 2S
electrons by Hund’s rule. The spin exchange between two
cation sites at the leading order of the perturbation the-
ory only involves swapping one pair of electrons regard-
less of how large S is. The variation of Sz is only ±1,
thus increasing S reduces quantum fluctuations known as
the 1/S-effect. In contrast, in ultracold fermion systems,
the situation is dramatically different, in which large hy-
perfine spin enhances quantum fluctuations. Each atom
moves as a whole object carrying a large hyperfine spin.
Exchanging cold fermions can completely flip the entire
hyperfine-spin configuration, and thus enhances quantum
fluctuations. In other words, large spin physics in solid
state systems is usually in the large S-limit, while in cold
atom systems it is in the large N limit where N is the
number of fermion components 2F + 13. We follow the
convention in atomic physics to use F to denote the hy-
perfine spin of the atom.

Ultracold fermion systems with large hyperfine spins
have aroused a great deal of theoretical interests. Early
work studied the rich structures of the Fermi liquid
theory5 and the Cooper pairing structures6. Consider-
able progress has been made in the simplest large hy-
perfine spin systems with F = 3

2 , whose possible can-

didate atoms are 132Cs, 9Be, 135Ba, 137Ba and 201Hg.
These include both alkaline-earth-like atoms with zero

electron spin due to the fully filled electron shells, and
non-alkaline-earth atoms with nonzero electron spins4,7,8.
In both cases, a generic Sp(4), or, isomorphically, SO(5)
symmetry is proved without fine tuning. Such a high
symmetry without fine-tuning is rare in both condensed
matter and cold atom systems. It brings hidden de-
generacy in the collective modes in the Fermi liquid
theory9, fruitful patterns of quantum magnetism4,7,8,10,11

and Cooper pairing with large internal spin degrees of
freedom8,12. Further investigations in the community
include the study of Mott insulating states13–18, Beth-
ansatz solution19,20, Kondo effect21, and the 4-fermion
quartetting superfluidity22–24. Recently, SU(N) models
have been proposed for the alkaline-earth fermion atoms
since their interactions are insensitive to their nuclear
spins. It is a special case of the Sp(N) model by fur-
ther tuning interaction parameters of spin singlet and
multiplet channels to be the same25–27. The possible fer-
romagnetic states have also been studied for the SU(6)
symmetric system of 173Yb28. A detailed summary is
presented in a review Ref. [4] and a non-technique intro-
duction is published at Ref. [3] by one of the authors. In
a different context of heavy fermion systems, the effects
of sympletic symmetry to quantum magnetism have also
been studied in Ref. [29,30].

One dimensional (1D) systems are important for the
study of strong correlation physics because of the dom-
inant interaction effects. Furthermore, controllable ana-
lytical and numeric methods are available. In Ref. [11],
one of the authors performed the bosonization method to
study competing phases in 1D systems with F = 3

2 , in-
cluding the gapless Luttinger liquid, spin gapped Luther-
Emery liquid with Cooper pairing instability, and 4-
fermion quartetting superfluid at incommensurate fill-
ings. At commensurate fillings with strong repulsive in-
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teractions, a charge gap opens and the systems become
Mott-insulating. The gapless Luttinger liquid phase
becomes a gapless spin liquid phase at quarter-filling
and dimerized at half-filling, respectively4. The Luther-
Emery phase becomes the gapped Sp(4) dimer phase at
quarter-filling and the on-site singlet phase at half-filling,
respectively4.

On the other hand, the two dimensional (2D) Sp(4)
Heisenberg model is still far away from clear understand-
ing. Such a system can bring fruitful intriguing features
of quantum magnetism which do not exhibit in usual
solid state systems. For example, in the special case
of the SU(4) symmetry, four particles are required to
form an SU(4) singlet, thus its quantum magnetism is
characterized by the 4-site correlation beyond two sites.
Such a state is the analogy to the three-quark color sin-
glet baryon state in quantum chromodynamics. It is
also the magnetism counterpart of the 4-fermion quartet-
ting instability with attractive interactions4. Recently a
magnetic phase diagram in a spatially anisotropic square
lattice of the Sp(4) quantum magnetism is provided by
means of large-N field-theoretical approach31. A phase
transition between the long-range Neel order state and
the disordered valence bond solid phase is discovered by
the perturbative renormalization group equations. How-
ever, the model on an isotropic square lattice is still un-
explored. In particular, quantum Monte Carlo methods
for this model suffer the notorious sign problem except
in the special case where only the singlet bond exchange
exists.

In this article, we present a systematic numerical study
for the Sp(4) Heisenberg model at quarter filling in both
1D systems with large sizes and 2D systems up to 4×4 by
means of exact diagonalization techniques and the den-
sity matrix renormalization group (DMRG)32,33. In 1D,
we numerically show that the system exhibits two com-
peting quantum phases: a long-range-ordered gapped
dimer phase when the exchange interaction in the bond
singlet channel (J0) dominates over that in the quin-
tet channel (J2), and a gapless spin liquid phase other-
wise. The Sp(4) spin correlation functions are calculated,
which shows that in the dimer phase the correlations have
the 2-site periodicity, whereas in the gapless spin liquid
phase they have the 4-sites periodicity. In 2D, our nu-
merical simulations for small sizes indicate three different
dominant correlations depending on the values of J0/J2.
We infer three competing phases: the Neel ordering, the
plaquette ordering, and another possible phase of colum-
nar dimer ordering, in the thermodynamic limit.

The rest of this article is organized as follows. In
Sec. II, we introduce the Hamiltonian of spin- 32 fermions
which possesses the rigorous Sp(4) symmetry, and a
magnetic exchange model in the Mott-insulating state
at quarter-filling. A self-contained introduction of the
Sp(4)/SO(5) algebra is given. Then we separate our
main discussion into two parts: Sec. III for 1D and
Sec. IV for 2D systems. In Sec. III A, we study the
low-energy spectra of a finite size Sp(4) chain with both

open and periodic boundary conditions. In Sec. III B, the
DMRG calculation on the spin correlation functions are
presented to identify the gapped Sp(4) dimer phase and
the gapless spin-liquid phase. In the second half part, we
first analyze the 2 × 2 cluster in Sec. IVA and perform
exact diagonalization on larger sizes to study the low-
energy spectrum behavior in Sec. IVB. Then we display
the calculations of the magnetic structure form factor in
Sec. IVC, the dimer correlation in Sec. IVD and the
plaquette-type correlation in Sec. IVE. We discuss the
possible existence of the corresponding orderings. Con-
clusions are made in the last section. At the end of this
paper, we present a brief and self-contained introduction
to the representation theory of Lie group in Appendix A
to C.

II. MODEL HAMILTONIAN AND THE

HIDDEN Sp(4) SYMMETRY

A. The spin- 3
2
Hubbard model

We start with the generic one-band Hubbard model
loaded with spin- 32 fermions. By neglecting long-range
Coulomb interactions, only onsite interactions are con-
sidered in the Hubbard model. Due to Pauli’s exclusion
principle, the spin wavefunctions of two onsite fermions
have to be antisymmetric. The total spin of two onsite
spin- 32 fermions can only be either singlet (ST = 0) or
quintet (ST = 2). We assign an independent interaction
parameter U0 (singlet) and U2 (quintet), respectively, to
each channel. The Hamiltonian reads

H = −t
∑

〈ij〉,σ

(ψ†
iσψjσ + h.c.)− µ

∑

iσ

ψ†
iσψiσ

+ U0

∑

i

P †
0 (i)P0(i) + U2

∑

i,m=−2,..,2

P †
2m(i)P2m(i),

(1)

where 〈ij〉 denotes the nearest neighboring hopping; σ

represents four spin flavors Fz = ± 3
2 , ± 1

2 ; P
†
0 and P †

2,m

are the singlet and quintet pairing operators defined
through Clebsch-Gordon coefficients as

P †
0 (i) =

∑

αβ

〈00|3
2

3

2
αβ〉ψ†

α(i)ψ
†
β(i),

P †
2m(i) =

∑

αβ

〈2m|3
2

3

2
αβ〉ψ†

α(i)ψ
†
β(i). (2)

The actual symmetry of Eq. 1 is much larger than
the SU(2) symmetry: it has a hidden and exact Sp(4),
or, isomorphically, SO(5) symmetry. The Sp(4) alge-
bra can be constructed as follows. For the 4-component
fermions, there exist 16 bases for the 4 × 4 Hermitian
matrices Mαβ(α, β = ± 3

2 ,± 1
2 ). They serve as matrix

kernels for the bi-linear operators, i.e., ψ†
αMαβψβ, in

the particle-hole channel. The density and 3-component
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spin Fx, Fy, Fz operators do not form a complete set.
The other 12 operators are built up as high rank spin
tensors, including 5-component spin-quadrupoles and 7-
component spin-octupoles. The matrix kernels of the
spin-quadrupole operators are defined as

Γ1 =
1√
3
(FxFy + FyFx), Γ2 =

1√
3
(FzFx + FxFz),

Γ3 =
1√
3
(FzFy + FyFz), Γ4 = (F 2

z − 5

4
),

Γ5 =
1√
3
(F 2

x − F 2
y ), (3)

which anti-commute with each other, and thus form a
basis of the Dirac-Γ matrices. The matrix kernels of 3
spin and 7 spin-octupole operators together are generated
from the commutation relations among the 5 Γ-matrices
as

Γab = − i

2
[Γa,Γb] (1 ≤ a, b ≤ 5). (4)

Consequently, these 16 bilinears can be classified as

n = ψ†
αψα, na =

1

2
ψ†
αΓ

a
αβψβ , Lab = −1

2
ψ†
αΓ

ab
αβψβ, (5)

where n is the density operator; na’s are 5-component
spin-quadrupole operators; Lab’s are 10-component spin
and spin-octupole operators4,10. Reversely the spin
SU(2) generators Fx,y,z can be written as F+ =√
3(−L34 + iL24) − (L12 + iL25) + i(L13 + iL35) and

Fz = L23 + 2L15.
The 15 operators of na and Lab together span the

SU(4) algebra. Among them, the 10 Lab operators are
spin tensors with odd ranks, and thus time-reversal (TR)
odd, while the 5-component na’s are TR even. The TR
odd operators of Lab form a closed sub-algebra of Sp(4).
The 4-component spin- 32 fermions form the fundamental
spinor representation of the Sp(4) group. In contrast,
the TR even operators of na do not form a closed alge-
bra, but transform as a 5-vector under the Sp(4) group.
In other words, Sp(4) is isomorphic to SO(5). But rig-
orously speaking, the fermion spinor representations of
Sp(4) are not representations of SO(5). Their relation
is the same as that between SU(2) and SO(3). Below
we will use the terms of Sp(4) and SO(5) interchange-
ably. The SO(5) symmetry of Eq. 1 can be intuitively
understood as follows. The 4-component fermions are
equivalent to each other in the kinetic energy term, which
has an obvious SU(4) symmetry. Interactions break the
SU(4) symmetry down to SO(5). The singlet and quin-
tet channels form the identity and 5-dimensional vector
representations for the SO(5) group, respectively, thus
Eq. 1 is SO(5) invariant without any fine-tuning.

B. Magnetic exchanges at quarter-filling

Mott-insulating states appear at commensurate fillings
with strong repulsive interactions. We focus on the mag-
netic exchange at quarter filling, i.e., one fermion per

site. The Heisenberg type exchange model has been con-
structed in Ref. [7] through the second-order perturba-
tion theory. For each bond, the exchange energies are

J0 = 4t2

U0
for the bond spin singlet channel, J2 = 4t2

U2

for the bond spin quintet channel, and J1 = J3 = 0 for
the bond spin triplet and septet channels, respectively.
This exchange model can be written in terms of bi-linear,
bi-quadratic and bi-cubic Heisenberg exchange and the
Hamiltonian reads as

Hex =
∑

〈i,j〉

a(~Fi · ~Fj) + b(~Fi · ~Fj)
2 + c(~Fi · ~Fj)

3, (6)

where a = − 1
96 (31J0 + 23J2), b = 1

72 (5J0 + 17J2) and

c = 1
18 (J0+J2) and Fx,y,z are usual 4× 4 spin operators.

Eq. 6 can be simplified into a more elegant form with
the explicitly SO(5) symmetry4 as

Hex =
∑

〈i,j〉

{

∑

1≤a<b≤5

J0 + J2
4

Lab(i)Lab(j)

+
3J2 − J0

4

5
∑

a=1

na(i)na(j)
}

. (7)

In the SO(5) language, there are two diagonal operators
commuting with each other and read as

L15 =
1

2
(n 3

2
+ n 1

2
− n− 1

2
− n− 3

2
),

L23 =
1

2
(n 3

2
− n 1

2
+ n− 1

2
− n− 3

2
). (8)

Corresponding to the spin language, each singlet-site ba-
sis state can be labeled in terms of these two quantum
numbers as |Fz〉 = |L15, L23〉: | ± 3

2 〉 = | ± 1
2 ,± 1

2 〉 and

| ± 1
2 〉 = | ± 1

2 ,∓ 1
2 〉. For an arbitrary many-body state,

Ltot
15 =

∑

i L15(i) and L
tot
23 =

∑

i L23(i) are good quantum
numbers (similar to that F tot

z =
∑

i Fz(i) is conserved in
SU(2) cases) and can be applied to reduce dimensions of
the Hilbert space in practical numerical calculations.
There exist two different SU(4) symmetries of Eq. 7

in two special cases. At J0 = J2 = J , i.e., U0 = U2, it
reduces to the SU(4) Heisenberg model with each site in
the fundamental representation

H =
∑

〈i,j〉

J

2

{

Lab(i)Lab(j) + na(i)na(j)
}

. (9)

Below we denote this symmetry as SU(4)A. In this case,
there is an additional good quantum number n4,

n4 =
1

2
(n 3

2
− n 1

2
− n− 1

2
+ n− 3

2
). (10)

This SU(4) model is equivalent to the Kugel-Khomskii
type model34,35 and is used to study the physics with in-
terplay between orbital and spin degree of freedom.36–38.
On the other hand, at J2 = 0, i.e., U2 → +∞, Eq. 7 has
another SU(4) symmetry in the bipartite lattice, which
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is denoted SU(4)B below. In this case, we perform the
particle-hole transformation to one sublattice but leave
the other sublattice unchanged. The particle-hole trans-

formation is defined as ψα → Rαβψ
†
β where R is the

charge conjugation matrix

R =

(

0 iσ2
iσ2 0

)

. (11)

Under this operation, the fundamental representation
transforms to anti-fundamental representation whose
Sp(4) generators and vectors become L′

ab = Lab and
n′
a = −na. Thus Eq. 7 can be recast to

H =
∑

〈i,j〉

J

2

(

L′
ab(i)Lab(j) + n′

a(i)na(j)
)

, (12)

which is SU(4) invariant again.

These two SU(4) symmetries have very different phys-
ical properties. In the case of SU(4)A, two sites
are not enough to form an SU(4) singlet. It at
least needs four sites to form an SU(4) singlet as

ǫαβγδψ
†
α(1)ψ

†
β(2)ψ

†
γ(3)ψ

†
δ(4), where ǫαβγδ is the rank-4

fully antisymmetric tensor. Thus quantum magnetism
of Eq. 7 at J0 = J2 is characterized by four-site cor-
relations. The ground state of such a system on a 2D
square lattice was conjectured to be a plaquette SU(4)
singlet state without magnetic long-ranged ordering.37,39

On the other hand, for the SU(4)B case, two sites can

form an SU(4) singlet as Rαβψ
†
α(1)ψ

†
β(2). In the 2D

square lattice, a long-ranged Neel order is identified by
quantum Monte Carlo simulations40 and large N limit.41

The square of the staggered magnetization is numerically
given as ms = 0.091, which is much smaller than that of
the SU(2) Neel order state.

III. QUANTUM MAGNETISM IN THE 1D

CHAINS

We start our discussion on the 1D chain. The phase
diagram of the 1D spin- 32 Hubbard model has been
studied by one of the author using the method of
bosonization4,11. At the commensurate quarter-filling
(one particle per site) with purely repulsive interactions
(U0 > 0, U2 > 0), the 4kf -Umklapp term opens a charge
gap as Kc <

1
2 . In this case, the physics is captured by

the exchange model of Eq. 7. It has been found that
in the regime of J0/J2 > 1 dimerization of spin Perierls
order is present, whereas it is a gapless spin liquid phase
at J0/J2 ≤ 1 (see Fig. 1)11. In the following, we use ex-
act diagonalization methods and DMRG not only iden-
tify these two competing phases but also demonstrate the
ground state profiles and 4-site periodicities in spin-spin
correlations.

SU(4)B

dimerization

gapless spin liquid

SU(4)A line

J2

J0

FIG. 1: Phase diagram of the 1D chain in terms of the singlet
and quintet channel interaction J0 and J2. In this context,
θ is the angle defined by θ = tan−1(J0/J2). The SU(4)A
type (θ = 45◦) denoted by the dot line belongs to the gapless
spin liquid state whereas SU(4)B along J2 = 0. The phase
boundary separating the dimerization phase and the gapless
liquid state is the SU(4)A line.

A. Exact diagonalization on low energy spectra

In this subsection, we apply the exact diagonalization
technique to study the 1D Sp(4) spin- 32 chains with near-
est neighbor exchange interactions described by Eq. 7.
We only consider the case of the site number N = 4m.
For convenience, we set J0 =

√
2 sin θ and J2 =

√
2 cos θ.

Regardless of θ and sizes N , the ground states (GS) only
exist in the (Ltot

15 , L
tot
23 ) = (0, 0) sector and are unique

with C = 0, where C denotes the Sp(4) Casimir of the
entire system and is expressed in terms of the Sp(4) gen-
erators as

C =
∑

1≤a<b≤5

{

∑

i

Lab(i)
}2

. (13)

In addition to Ltot
15 and Ltot

23 , the Casimir C is also a con-
served quantity in the Sp(4) system, analogous to the
total spin in SU(2) systems. Each energy eigenstate can
be labeled by C and further identified the dimension of
the representation (degeneracy). As shown in the table
II in the Appendix, while C = 0, the state is an Sp(4)
singlet and unique whereas while C > 0 the state is mul-
tiplet and has degeneracy which is equal to the dimension
of the associated representation.
In Fig. 2 (a) and (b), the ground state and low excited

states with 12 sites are presented using open and peri-
odic boundary conditions, respectively. The GS as vary-
ing θ angles is always an Sp(4) singlet, which becomes an
SU(4) singlet at θ = 45◦ (SU(4)A) and θ = 90◦ (SU(4)B)
for both boundary conditions. For the low energy excited
states, we first look at the regime of 45◦ < θ < 90◦, i.e.,
J0 > J2. With open boundary conditions (OBC), the
lowest excited states (LES) are the Sp(4) 5-vector states
with the quadratic Casimir C = 4. The next lowest ex-
cited states (NLES) are 10-fold degenerate and belong
to the 10-dimensional (10d) Sp(4) adjoint representation
with C = 6. The LES and NLES merge at both of the
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FIG. 2: The exact diagonalization on 1D chain with 12 sites
for (a) open and (b) periodic boundary conditions. The dis-
persion of the ground state and low excited states, and the
dimensions d of their corresponding representations of the
Sp(4) group are shown.

SU(4)A (θ = 45◦) and SU(4)B (θ = 90◦) points, and
become 15-fold degenerate. This is the SU(4) adjoint
representation with C = 8. With periodic boundary
conditions (PBC), the 5-vector and the 10-fold states be-
have similarly as before. However, a marked difference
is that a new Sp(4) singlet state appears as the LES at
50◦ < θ < 90◦, which becomes higher than the 5-vector
states only very close to 45◦. In particular, it is nearly de-
generate with the ground state (which is the lowest Sp(4)
singlet) at θ = 50◦ ∼ 60◦. In the regime of 0◦ < θ < 45◦,
i.e., J2 > J0 the excited states are many Sp(4) multiplets
with energies close to each other. With OBC, the LESs
form the 10d Sp(4) adjoint representation. For the PBC
case, the 14-dimensional symmetric tensor representation
of Sp(4) competes with the 10d adjoint one.

The appearance of two nearly degenerate Sp(4) sin-
glets at 50◦ < θ < 90◦ with PBC and their disap-
pearance with OBC can be understood by the dimeriza-
tion instability. The dimerization and the spin gapped
ground state was shown in the bosonization analysis at
45◦ < θ < 90◦11. In the thermodynamic limit, the
ground state has double degeneracy corresponding to two
different dimer configurations, both spontaneously break-
ing translational symmetry. The OBC favors only one
of the dimer configurations, but disfavors the other due
to one bond breaking. In the finite system with PBC,
the two dimer configurations tunnel between each other,
which gives rise to two nearly degenerate Sp(4) singlet
states. We further calculate the gap between them, de-
noted by ∆ss, at θ > 45◦ by using exact diagonalization
under PBC up to 16 sites.

As presented in Fig. 3, ∆ss disappears in the finite
size scaling due to the twofold degeneracy. On the other
hand, the existence of the spin gap in this parameter
regime is presented in Fig. 4 by DMRG simulation in Sec.
III B below. The original Lieb-Schultz-Mattis theorem42

was proved that for the SU(2) case, the GS of half-integer
spin chains with translational and rotational symmetries
is gapless, or gapped with breaking translational symme-

0.00 0.08 0.16 0.24
0.0

0.1

0.2

0.3

 60o

 75o

 

 

ss

1/N

FIG. 3: Exact diagonalization results on the Sp(4) singlet-
singlet gap with J0 > J2 and periodic boundary conditions (
θ = 60◦ and 75◦ with N = 8, 12 and 16). Finite size scaling
shows the vanishing of the singlet-singlet gap ∆ss.

try. It is interesting to observe that our results of the
Sp(4) spin chain also agree with this theorem. The na-
ture of the GS in the parameter regime 0◦ < θ < 45◦ will
be discussed in Sec. III B.

B. DMRG simulations on Sp(4) spin chain

0.000 0.025 0.050 0.075 0.100
0.0

0.1

0.2

0.3

0.4

 

 

sp

1/N

 0o   
 15o

 30o

 45o

 60o

 75o

 90o

FIG. 4: The finite size scaling of the spin gap ∆sp of the
Sp(4) spin chain vs 1/N at various values of θ. θ is defined
as θ = tan−1(J0/J2) and N is the system size.

In this subsection, we present the DMRG calculations
on the ground state properties of the Sp(4) chain up to
80 sites with OBC. We first present the spin gap ∆sp in
Fig. 4, which is defined as the energy difference between
the ground state and the lowest Sp(4) multiplet.
For chains with even number of sites, the GS is ob-

tained with quantum number Ltot
15 = Ltot

23 = 0, and any
Sp(4) multiplet contains the states with quantum num-
bers (Ltot

15 = ±1, Ltot
23 = 0) and (Ltot

15 = 0, Ltot
23 = ±1).

States with the same values of (Ltot
15 , L

tot
23 ) may belong

to different Sp(4) representations, which can be distin-
guished by their Sp(4) Casimir. Practically, we only
need to calculate these sectors with low integer values
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of (Ltot
15 , L

tot
23 ) to determine the spin gaps. For the cases

of θ > 45◦, i.e., (J2/J0 < 1), ∆sps saturate to nonzero
values as 1/N → 0, indicating the opening of spin gaps.
On the other hand, ∆sp’s vanish at θ ≤ 45◦, which shows
that the ground state is gapless. These results agree
with the bosonization analysis11, which shows that the
phase boundary is at θ = 45◦ with the SU(4)A symme-
try, which is also gapless. This gapless SU(4)A line was
also studied before in Ref. [43,44].
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FIG. 5: The NN correlation of 〈L15(i)L15(i + 1)〉 with open
boundary conditions for (a) θ = 60◦ and (b) θ = 30◦, respec-
tively. The dimer ordering is long-ranged in (a). Note the
2-site periodicity in (a) and the 4-site periodicity in (b).

To further explore the ground state profile, we calcu-
late the nearest neighbor (NN) correlation functions of
the Sp(4) generators for a chain of 80 sites. This cor-
relation function is similar to the bonding strength and
defined as 〈X(i)X(i+1)〉, where X are Sp(4) generators.
We present the result of 〈L15(i)L15(i+1)〉 in Fig. 5, and
the correlation functions of other generators should be
the same due to the Sp(4) symmetry. The open bound-
ary induces characteristic oscillations. At θ = 60◦, i.e.,
J0/J2 =

√
3, 〈L15(i)L15(i + 1)〉 exhibits the dominant

dimer pattern, which does not show noticeable decay
from the edge to the middle of the chain. This means that
the dimerization is long-range-ordered in agreement with
the bosonization analysis4. In contrast, at θ◦ = 30◦, i.e.,
J2/J0 =

√
3, 〈L15(i)L15(i + 1)〉 exhibits a characteristic

power-law decay with 4-site periodicity oscillations. The
4-site periodicity is also observed at other θ’s for θ ≤ 45◦,
same as ones presented in the bosonization analysis.

We follow the definition for the dimer order parameter
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FIG. 6: The finite size scaling for the dimer order parameters
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vs 1/N at various θ’s.

in Ref. [45,46] as

DX = |〈X(
N

2
− 1)X(

N

2
)〉 − 〈X(

N

2
)X(

N

2
+ 1)〉|.

(14)

As shown previously,Xs are Sp(4) generators and vectors
in the Sp(4) spin chain. Without loss of generality, we
choose two non-equivalent operators as X = L15 and
n4 for Sp(4) generators and vectors, respectively. The
open boundary conditions provide an external field to
pin down the dimer orders. The finite size scaling of
the dimer orders of the two middle bonds is presented in
Fig. 6 (a) and (b) at various values of θ, respectively. It
is evident that in the regime of θ > 45◦ both of DL15

and
Dn4

remain finite as 1/N → 0 whereas for θ ≤ 45◦ the
dimer order parameters vanish. We conclude that the
ground state is the dimer phase for J0/J2 > 1.

Next we present the two point correlation functions of
〈X(i)X(j)〉, whereX is L15 and n4, in Fig. 7 (a) and (b),
respectively. At θ > 45◦, say, θ = 60◦, both correlation
functions show exponential decay due to the dimeriza-
tion. In the spin liquid regime of θ ≤ 45◦, i.e. J2 ≥ J0,
however, all the correlation functions exhibit the power-
law behavior and the same 2kf oscillations with the 4-site
period. Their asymptotic behavior can be written as

〈X(i0)X(i)〉 ∝ cos π
2 |i− i0|

|i− i0|κ
. (15)

Along the SU(4)A line (θ = 45◦), the correlations of
L15 and n4 are degenerate. The power can be fit-
ted as κ ≈ 1.52, which is in good agreement with the
value of 1.5 from bosonization analysis and numerical
studies11,43,44,47. As θ is away from 45◦, the SU(4) sym-
metry is broken. For the correlations of L15, the val-
ues of κ decrease as decreasing θ, which can be fitted as
κ = 1.41, 1.34, 1.30 for θ = 30◦, 15◦, 0◦, respectively. On
the other hand, for the correlations of n4, the values of κ
can be fitted as κ = 1.55, 1.65, 1.60 for θ = 30◦, 15◦, 0◦,
respectively. We also perform the Fourier transforms of
the correlations of 〈L15(i0)L15(i)〉, S(q), and present the
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FIG. 7: (a) The two point correlations 〈L15(i0)L15(i)〉 at θ =
0◦,15◦, 30◦, 45◦ and 60◦. The dot line is plotted by the fitting
result using cos(xπ/2)/x1.52. The reference point i0(= 40)
is the most middle site of the chain (N = 80). The inset
indicates that all S(q) for θ ≤ 45◦ have peaks located at
q = 41π/81 ∼ π/2 whereas π for θ = 60◦. (b) 〈n4(i0)n4(i)〉
at θ = 0◦,15◦, 30◦ and 60◦ and the fitting uses κ = 1.55.

results in the inset of Fig. 7 (a). S(q) is defined as

S(q) =
∑

i,j

eiq(ri−rj)〈L15(ri)L15(rj)〉 (16)

and q = mπ/(N + 1), where m = 1, 2 · · · , N are inte-
gers for OBC. Clearly, in the regime of θ ≤ 45◦ all the
peaks are located at q = 41π/81 ∼ π/2, indicating a 2kf
charge density wave. On the other hand, S(q) at θ = 60◦

appears a peak at π, which denotes a 4kf charge density
wave and is characteristic of the dimerization phase.

IV. THE Sp(4) MAGNETISM IN 2D SQUARE

LATTICE WITH SMALL SIZES

The quantum magnetism of Eq. 7 in 2D is a very
challenging problem. Up to now, a systematic study is
still void. In the special case of the SU(4)B line, i.e.
J2 = 0, in the square lattice, quantumMonte-Carlo simu-
lations are free of the sign problem, which shows the long-
range-Neel ordering but with very small Neel moments
n4 = (−)iL15 = (−)iL23 ≈ 0.0540. This result agrees

SU(4)B

C B A

SU(4)A line

J2

J0

FIG. 8: Speculated phase diagram of the 2D Sp(4) spin-3/2
systems at quarter filling from Ref. [4]. θ = tan−1(J0/J2).
The SU(4)A type drawn by the dot line is at J0 = J2 (θ = 45◦)
whereas SU(4)B at J2 = 0 (θ = 90◦). Bold letters A, B, and
C represent the plaquette, columnar dimerized and Neel order
states, respectively.

with the previous large-N analysis48. The Goldstone
manifold is CP (3) = U(4)/[U(1)⊗U(3)] with 6 branches
of spin-waves. On the other hand, on the SU(4)A line
with J0 = J2, an exact diagonalization study on the 4×4
sites shows the evidence of the four-site SU(4) singlet pla-
quette ordering37. Large size simulations are too difficult
to confirm this result. On the other hand, a variational
wavefunction method based on the Majorana represen-
tation of spin operators suggests a spin-liquid state at
the SU(4)A line49. Recently, Chen et al.7 constructed
an SU(4) Majumdar-Ghosh model in a two-leg spin-3/2
ladder whose ground state is solvable exhibiting this pla-
quette state. An SU(4) resonant plaquette model in 3D
have also been constructed8,50.

Based on these available knowledge, a speculated phase
diagram was provided in Ref. [4] as shown in Fig. 8. The
Neel order state C is expected to extend to a region with
finite J2 instead of only along the J2 = 0 line. Fur-
thermore, the plaquette order phase A exists not only
along the SU(4)A line but also covers a finite range in-
cluding θ = 45◦. Between A and C, there exists an in-
termediate phase B which renders ordered dimerizations
which are two-sites spin singlets. However, these features
have not been tested due to the lack of controllable an-
alytic and numeric methods for 2D strongly correlation
systems. For example, quantum Monte Carlo methods
suffer notorious sign problems at J2 6= 0.

In this section, we begin with the cluster of 2×2 whose
ground states can be solved analytically. Then we per-
form exact diagonalization (ED) methods for the case
of 4 × 4 sites and analyze the associated GS profiles for
different values of θ. Even though the size that we are
studying is still small to draw any conclusion for the ther-
modynamic limit, it provides valuable information on the
ground state properties.
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A. The 2× 2 cluster

4
32

(b)(a)

=54
o

J2

a(|H  |V
b|C

|H  |V

|C

|V

|HJ0 1

P2341

4 3
21

FIG. 9: (a) The GS wavefunctions of the 2 × 2 cluster at
various θ. a and b are coefficients depending on θ and the
thick bonds denote the two-site Sp(4) spin singlet states. (b)
The position indices before and after the permutation P2341.

We begin with the 2 × 2 cluster, whose ground states
can be solved analytically for all the values of θ. Such
a system contains three Sp(4) singlets, and the ground
states can be expanded in this singlet subspace. These
Sp(4) singlets can be conveniently represented in terms
of the dimer states with the horizontal, vertical, and cross
diagonal configurations depicted in Fig. 9 (a) as

|H〉 =
1

4
Rαβψ

†
α(4)ψ

†
β(1)Rγδψ

†
γ(2)ψ

†
δ(3)|Ω〉,

|V 〉 =
1

4
Rαβψ

†
α(1)ψ

†
β(2)Rγδψ

†
γ(3)ψ

†
δ(4)|Ω〉,

|C〉 =
1

4
Rαβψ

†
α(1)ψ

†
β(3)Rγδψ

†
γ(2)ψ

†
δ(4)|Ω〉, (17)

where R is the charge conjugation matrix define in Eq.
11. These states are linearly independent but are not
orthogonal to each other, satisfying 〈H |V 〉 = 〈V |C〉 =
〈C|H〉 = − 1

4 . Under the permutation of the four sites
P(2341), or a rotation at 90◦ as shown in Fig. 9 (b), they
transform as

P2341|H〉 = |V 〉, P2341|V 〉 = |H〉, P2341|C〉 = |C〉. (18)

At θ = 45◦, i.e., the SU(4)A case, the ground state
(GS) is exactly an SU(4) singlet over the sites 1 to 4:7,36

|Ψs
SU(4)〉 =

1√
4!

∑

µντξ

εµντξψ
†
µ,1ψ

†
ν,2ψ

†
τ,3ψ

†
ξ,4|Ω〉, (19)

where the indices µ,ν,τ ,ξ run over ± 3
2 ,± 1

2 ; |Ω〉 represents
the vacuum state; εµντξ is a rank-four fully antisymmet-
ric tensor. It can also be represented as the linear com-
bination of the dimer states as

|Ψs
SU(4)〉 =

√

2

3

(

|H〉+ |V 〉+ |C〉
)

, (20)

which is even under the rotation operation P2341. We
find that in the entire range of 0 ≤ θ < 54◦, the GS

wavefunctions remain even under such a rotation P2341,
whose wavefunctions can be represented as

|Ψ〉 = a
(

|H〉+ |V 〉
)

+ b|C〉, (21)

where a and b are coefficients depending on the values of
θ. In fact, the overlaps between GS wavefunctions Eq.
21 and the SU(4) singlet state |ΨSU(4)〉 are larger than
0.98 at θ < 54◦. At θ > 54◦, a level crossing occurs and
the GS wavefunction changes to

|Ψs
SU(4)〉 =

√

2

3

(

|H〉 − |V 〉
)

, (22)

which is independent of θ and odd odd under the rotation
P2341.
Combining the above observations, we identify that

there are two competing states in the system. The
boundary is located at θ = 54◦. Next we turn to an-
alyze large size systems.

B. The Low energy spectra for the 4× 4 cluster

In this subsection we study a larger system size of
N = 4× 4. Both Ltot

15 =
∑

i L15(i) and L
tot
23 =

∑

i L23(i)
are good quantum numbers, which can used to reduce the
Hilbert space. The dimension of the Hilbert space in the
(Ltot

15 , L
tot
23 ) = (0, 0) sector goes up to 165 million. On the

other hand, the lowest multiplet states are located in the
sector of (Ltot

15 , L
tot
23 ) = (0,±1) or (±1, 0) and the corre-

sponding dimension is about 147 million. The dimensions
of the subspace are too large to perform diagonalization.
Nevertheless, by using translational symmetry, the di-
mension of the Hilbert space reduces to 10 million such
that ED calculations become doable. The ground states

are always in the sector of total momentum ~K = (0, 0),
and are Sp(4) singlets. In the following, except for the
specific mention in Sec. IVE, the systems are considered
under periodic boundary conditions.
The low-lying energy spectra for the N = 4 × 4 clus-

ters for 0 < θ < 90◦ are displayed in Fig. 10. The
ground states for all the values of θ are Sp(4) singlets
with Casimir C = 0, and that at θ = 45◦ is an SU(4)
singlet. The lowest excited states are also Sp(4) singlet
states at θ < 63◦. The lowest spin multiplets appear
as the 14-fold degenerate Sp(4) symmetric tensor states
with C = 10. A level crossing of the lowest excited states
appears around θ = 63◦ implying that there exists com-
peting phases nearby. At θ > 63◦, the lowest excited
states become 5-fold degenerate Sp(4) vector states with
the Casimir C = 4. Another 10-fold degenerate states,
which form the Sp(4) adjoint representation with C = 10,
appear as the next lowest excited states. At the SU(4)B
line, i.e., θ = 90◦, these two sectors merge into the 15-
fold degenerate states forming the adjoint representation
of the SU(4) group whose SU(4) Casimir is C = 8.
In Sec. III A, the appearance of the Sp(4) singlet as

the lowest excited states in the small size systems im-
plies the dimerization in the thermodynamic limit. This
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FIG. 10: (a) The low-lying states for the 4× 4 cluster at var-
ious values of θ. The dimensions of the corresponding Sp(4)
representations d are marked. The GS wavefunctions are al-
ways Sp(4) singlets. (b) The zooming-in around θ ≈ 63◦

exhibiting various energy level crossings.

is confirmed in the large size DMRG results in Sec. III B.
Similarly, in the case of the 4 × 4 cluster, the lowest
excited states are also Sp(4) singlet at θ < 63◦. This
also suggests the spin disordered ground state with bro-
ken translational symmetry in the thermodynamic limit.
Moreover, the gap between the GS and lowest singlet
excited state is very small in a narrow regime (roughly
50◦ ∼ 60◦), which implies that an intermediate phase
may exist exhibiting a different translational symmetry
breaking pattern from that with small values of θ. How-
ever, unlike the 1D case where we can justify the dimer-
ization through finite-size scaling of the vanishing of the
Sp(4) singlet-singlet gap, it is impossible in 2D to detect
the presence of the dimer states or plaquette states from
the exact diagonalization results. Thus we will resort
to other approaches to investigate the GS profile in the
following sections.
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FIG. 11: The energy dispersion E( ~K)−E0 v.s. θ for the 4×4
cluster. Γ, M, X are the high symmetry points for the many-
body ground state momenta, corresponding to ~K = (0, 0),
(π, π) and (π, 0) respectively, in the first Brillouin zone.

To further clarify, in Fig. 11 we present the spec-
tra of lowest energy states at each crystal momentum of

Γ = (0, 0), X = (π, 0), and M = (π, π), respectively. At
θ ≤ 63◦, the states at the X-point are lower than those
at M -point, which are Sp(4) singlets with the Casimir
C = 0. These lowest singlet excitations along (π, 0) or
(0, π) would allow the GS to shift a lattice constant along
x or y-direction, if the gap between these singlets vanishes
in the thermodynamic limit. It would implies a four-fold
degeneracy in the thermodynamic limit breaking trans-
lational symmetry.
In comparison, as θ ≥ 72◦, the energy of states at

the M -point are lower than those at the X-point, which
are spin multiplet with 10-fold degeneracy and the Sp(4)
Casimir C = 6. Actually, these states are not the low-
est excited states which are 5-fold degenerate located at
the Γ-point. Nevertheless, their energy splitting from
the 10-fold states is very small as shown in Fig. 10. In
the thermodynamic limit, inspired by the QMC result of
the occurrence of the long-range ordering in the SUB(4)
case, we infer the long-range staggered Neel ordering of
the Sp(4) spin operators Lab and a long-range uniform
ordering of Sp(4) vector operators na. Thus we infer a
phase transition from spin disordered ground state to the
Neel-like state breaking Sp(4) symmetry.
Let us make an analogy with the 2D spin- 12 J1-J2

model51,52. In that case, the behavior of the low-lying
energy levels indicates that the lowest excited states
with nonzero momentum are triplet while the system
is a magnetic Neel (J2/J1 . 0.4) and collinear state
(J2/J1 & 0.6), corresponding to K = (π, π) and (π, 0),
respectively. However, there exists an intermediate phase
in 0.4 < J2/J1 < 0.6, where the GS is a magnetic dis-
ordered state and the lowest excited state with nonzero
momentum, ~K = (π, 0), is singlet. In this region it has
been conjectured that the GS is a dimerization state or
a spin-liquid (resonated-valence-bond state). Similarly,
the low-lying energy behavior in our model implies that
the GS is non-magnetic at θ < 63◦. On the other hand,
at θ ≥ 63◦, the GS has spinful excitations and is relevant
to the Neel state.

C. The magnetic structure form factor

In this subsection, we present the results of the mag-
netic structure form factors for the N = 4 × 4 cluster.
Two different structure form factors SL(~q) and Sn(~q) are
defined for the Sp(4) generator and vector channels, re-
spectively, as

SL(~q) =
1

gLN2

∑

i,j,1≤a<b≤5

ei~q·(~ri−~rj)〈G|Lab(i)Lab(j)|G〉,

Sn(~q) =
1

gnN2

∑

i,j,a=1∼5

ei~q·(~ri−~rj)〈G|na(i)na(j)|G〉, (23)

where the normalization constants gL = 10 and gn = 5.
SL(~q) and Sn(~q) are the analogy of the Fourier transfor-

mation of 〈G|~Si · ~Sj |G〉 in SU(2) systems. If the long-
range magnetic order appears, the magnetic structure
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FIG. 12: The magnetic structure factors for the 4× 4 cluster.
(a) The structure factors SL(~q) for the Sp(4) generator sector
The inset is the comparison between SL(π, 0) and SL(π, π)
versus θ. (b) The Sp(4) vector structure factor Sn(~q).

factor converges to a finite value in the thermodynamic
limit40,53.

The ED results of SL(~q) for the 4 × 4 cluster are pre-
sented in Fig. 12 (a). As θ . 60◦, SL(~q) distributes
smoothly over all the momenta, and its maximum is lo-
cated at ~q = (π, π2 ), which is slightly larger than other
values of ~q. In contrast, when 60◦ . θ ≤ 90◦, SL(~q) peaks

at ~KM = (π, π). The Sp(4) vector channel structure fac-
tor Sn(~q) is depicted in Fig. 12 (b). At small values of θ,
it peaks at the M-point exhibiting a dominate correlation
at the momentum (π, π). As θ & 60◦, the peak changes
to the Γ point and the M -point becomes a minimum.

Along the SU(4)B line with θ = 90◦, Sn(~q) = SL(~q +
~KM ) due to the staggered definition of Sp(4) vectors na

in Eq. 12. This relation between Sn(~q) and SL(~q+ ~KM )
is consistent with the previous observation on the low-
energy spectra in Fig. 10. As θ ≥ 60◦ there are two
nearly degenerate excited states beyond the GS, having
the total momentum of (0, 0) and (π, π). They corre-
spond to the 5d vector representation with C = 4 and the

10d tensor representation with C = 6 in the Sp(4) sym-

metry, respectively. The contributions to Sn( ~KΓ) and

SL( ~KM ) mainly come from the matrix elements between
the ground state and the 5d vector states, and 10d anti-
symmetric tensor states, respectively. On the other hand,
in the case of SU(4)A with θ = 45◦, Sn(~q) = SL(~q) for
each ~q.
These features highlight that the dominant Neel cor-

relation of the Sp(4) generators Lab’s not only exhibits
along the SU(4)B line but also extends to a finite regime
with non-zero values of J2. In the same parameter
regime, the Sp(4) vectors na’s exhibit dominant uniform
correlations. The critical value of θ of the onset of the
outstanding SL(π, π) is in good agreement with the lo-
cation of the level crossing shown in Fig. 10, implying a
transition of the GS from a non-Neel state to a Neel type.
The inset in Fig. 12 (a) compares the SL(~q) behavior at
~q = (π, 0) and (π, π) versus θ. SL(π, 0) changes little
as varying θ. Therefore, it is inferred that only the Neel-
type order exists at θ close to 90◦. The magnetic ordering
at (π, 0) should not appear in the 2D Sp(4) system.
Next one may raise a natural question: what is the

spin pattern for the Neel-order state as θ → 90◦? Ac-
cording to Eq. 12, its classic energy can be minimized by
choosing a staggered configuration for 〈G|L15(i)|G〉 =
〈G|L23(i)|G〉 = (−)i 12 and a uniform configuration of

〈G|n4(i)|G〉 = ± 1
2 . These correspond to the staggered

arrangement in the 2D lattice by using the two compo-
nents of Fz = ± 3

2 , or by using the other two components

of Fz = ± 1
2 . These different classic Neel states can be

connected by an Sp(4) rotation.

D. The columnar dimer correlations
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FIG. 13: The susceptibilities defined in Eq. 24 with respect
to the perturbations Odim and Orot for the N = 4×4 cluster.
(a) χdim( ~Q) versus θ at ~Q = (π, 0); (b) χrot versus θ; (c)

χdim( ~Q) versus θ at ~Q = (π, π). In both cases, a small value
of δ = 0.01 is taken to evaluate the susceptibilities. Both
susceptibilities exhibit peaks around θ ≈ 60◦ ∼ 70◦.

In this subsection, we discuss the possibility of the
dimer-ordered state at intermediate values of θ. We de-
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fine the susceptibility to a symmetry breaking perturba-
tion as

χ(δ) = −2[e(δ)− e(0)]

δ2
, (24)

where e(0) is the GS energy per site given by the Hamil-
tonian Eq. (7) and e(δ) is Eq. 7 plus the corre-

sponding perturbation term −δÔ54,55. In the presence
of long-range ordering, the corresponding susceptibility
χ = limδ→0 χ(δ) will diverge in the thermodynamic limit.
It has been demonstrated that this approach can effi-
ciently distinguish dimerized and non-dimerized phases
in the 1D J1-J2 spin-

1
2 chain55, in which the phase bound-

ary J2/J1 ≈ 0.24 between these two phases.
Here we employ the same method to study the dimer-

ization correlations. Although with small size calcula-
tions, we are unable to determine the existence of long
range order, it is still instructive to observe the feature
of χ. We have used it to test the 1D Sp(4) system with

the perturbation term of Ô =
∑

i(−1)iHex(i, i + 1). At
θ = 60◦, we found the dramatic growing behavior of χ(δ)
upon decreasing δ and increasing the system size, which
leads to a divergent χ in the thermodynamic limit. On
the other hand, χ(δ) at θ = 30◦ has no tendency of di-
vergence over decreasing δ. This observation is consistent
with our previous analytical and numerical studies: the
1D Sp(4) system is either a gapless uniform liquid as
θ ≤ 45◦ or a gapped dimerized state with the breaking
of translation symmetry at θ > 45◦.
Next we apply this method to the 2D system with the

size of 4× 4, and define two susceptibilities χdim( ~Q) and

χrot for two perturbations of Ôdim( ~Q) and Ôrot as

Ôdim( ~Q) =
∑

i

cos( ~Q · ~ri)Hex(i, i+ x̂), (25)

Ôrot =
∑

i

[Hex(i, i+ x̂)−Hex(i, i+ ŷ)], (26)

where Hex(i, j) is defined as one bond of the Hamilto-
nian Eq. 7 without summation over i and j. Let us

set ~Q = (π, 0), thus χdim(π, 0) corresponds to the in-
stability to the columnar dimer configuration. Eq. 25
and Eq. 26 break the translational symmetry along the
x-direction and rotational symmetry, respectively. The
plaquette ordering maintains the 4-fold rotational sym-
metry, thus will lead to the divergence of χdim(π, 0) but
not χrot. The ED results for the susceptibilities with
respect to the two perturbations versus θ in Fig. 13
(a) and (b), respectively. A small value of δ = 0.01 is
taken. Both susceptibilities exhibit a peak at θ from 60◦

to 70◦, which implies a tendency to breaking both trans-
lational and rotational symmetries. This shows that the
columnar dimerization instead of the plaquette ordering
is a promising instability in this regime in the thermody-
namic limit. We have also calculated the susceptibility

of χdim( ~Q) for ~Q = (π, π) which corresponds to the in-
stability to the staggered dimer configuration in Fig. 13

(c). Although the magnitudes of χdim(π, π) are smaller
than χdim(π, 0) and χrot, it suddenly raises up around
θ = 60◦.

E. The plaquette form factor

0

3

6

9

C B

A

 

 

0o 90o60o30o

C
(r

)  A
 B
 C

FIG. 14: C(~r) defined in Eq. 27 versus θ. The positions of
plaquette A, B and C are defined on the right schematics. A
(blue) is located at the corner whereas C (black) in the most
middle one.

In this subsection, we consider the plaquette type cor-
relation. The ground states of the 4×4 cluster at θ . 60◦

signal a different class from that in θ ≥ 63◦ in which the

lowest excited states are spin multiplet with ~K = (π, π).
Here, the lowest excited states remain Sp(4) singlets with
~K = (π, 0) or (0, π). To further elucidate the ground
state profile, we define the local Casimir for the plaque-
tte centered at ~r,

C(~r) = 〈G|
∑

1≤a<b≤5

{

∑

i

Lab(i)
}2|G〉, (27)

where i runs over the four sites of this plaquette. The
SU(2) version of Eq. 27 has been used to classify com-
peting dimer and plaquette orders56. If the GS exhibits a
strong plaquette pattern, for instance, indicated as phase
A in Fig. 8, the magnitudes of C(~r) will have obvious
spatial variations between nearest-neighboring plaquette.
This is analogous to the 1D dimerization picture in Fig. 5
(a), where the nearest-neighboring spin-spin correlations
exhibit strong and weak alternately in magnitude. When
the spins around a plaquette are strongly bound to form
an SU(4) singlet, C(~r) should be close to zero.
Fig. 14 depicts the behavior of C(~r) at various values

of θ for the 4×4 cluster. In order to explicitly reflect the
plaquette formation, we use open boundary conditions
rather than periodic boundary conditions. In this case
only C4v point group symmetry is applicable in the ED.
The C(~r) for the corner plaquette A is much smaller than
1
5 of those at the center C and the middle of the edge B
for small values of θ. This is in sharp contrast to the
2D spin-1/2 model which renders C(A) = 0.545, C(B) =
1.015 and C(C) = 1.282, which only show the difference
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at order of 1. The comparison suggests the pinning-down
plaquette state in the 2D Sp(4) system under the open
boundary. We observe that C(A) and C(B) decrease
while θ goes beyond 60◦. It accounts for the formation
of the plaquette-type pattern weakens or even vanishes.

Combined the above observations, it is likely that for
θ < 60◦ the GS has a strong plaquette-like correlation,
that could be the resonate plaquette state proposed by
Bossche et al.37 or a certain spin-liquid. It does survive
not only along the SU(4)A line but also in a finite regime.
Nevertheless, we have to emphasize that this picture can-
not be conclusively determined due to finite size effects
and further larger size calculations are needed to confirm.

V. CONCLUSION

In conclusion, we study an Sp(4)/SO(5) spin Heisen-
berg model which can be realized by the large spin ultra-
cold fermions with F = 3

2 . The Sp(4) Heisenberg model
describing the magnetic exchange at the insulating state
of quarter-filling is simulated by exact diagonalization
and DMRG. In 1D, our numerical results are in agree-
ment with previous analytic studies. There are two com-
peting phases: a gapped dimer phase with spin gap at
θ > 45◦ and a gapless spin liquid at θ ≤ 45◦. The
phase boundary is identified as θ = 45◦ which belongs to
SU(4)A-type symmetry. In the gapless spin liquid phase,
the static correlation functions decay algebraically with
four-site periodicity oscillations.

We also investigate the Sp(4) spin model on a 2D
square lattice up to 16 sites by means of exact diago-
nalization methods. Our numerical results show three
competing correlations: Neel-type, plaquette formation
and columnar spin-Peierls dimerization, depending on
θ’s. Such observation can have phase behavior analogy in
comparison with the speculated phase diagram depicted
in Fig. 8. Due to the finite size effects, however, we
are unable to conclusively identify the existence of these
phases and the phase boundaries based on the small clus-
ter. More numerical studies are necessary to further ex-
plore the phase diagram in the thermodynamic limit.

Acknowledgments

H. H. H. is grateful to helpful discussions with Stephan
Rachel and computational facilities from Tunghai Uni-
versity. H. H. H. also appreciates Zi Cai and Cheng-
Chien Chen for fruitful discussions and suggestions on
exact diagonalization techniques. H. H. H. and C. W.
are supported by NSF under No. DMR-0804775. Y.
P. W. is supported by NSFC and 973-project of MOST
China.

Appendix A: Representation theory of the simple

Lie groups and algebras

The representation theory of Lie groups and algebras
can be found in standard group theory textbooks57. Here
we give a brief pedagogical introduction. Among the
group generators, we choose the maximal set of gener-
ators that commute with each other as the Cartan sub-

algebra {Hi, (i = 1, ...k)}, where k is called the rank of the
Lie algebra. For example, the SU(2) algebra is rank one,
whose Cartan sub-algebra only contains Sz. All other
generators can be organized as eigen-operators of each
generator in the Cartan sub-algebra, which are called
roots. Roots always appear in terms of Hermitian con-

jugate pairs as Ej± with the relation Ej− = E†
j+. They

satisfy the commutation relations of

[Hi, E±j ] = α±j(i) E±j , (A1)

with ~αj = −~α−j , where the i-th elements of the vectors
~α±j are the eigenvalue of E±j with respect to Hi. For
example, for the simplest SU(2) case, the roots are S± =
Sx ± iSy and [Sz, S±] = ±S±, where α± only have one
component with α± = ±1.
Among all the roots, we fix the convention to use E+j

for positive roots, which means the first non-zero com-
ponents of their ~α+j are positive. Positive roots can be
decomposed into the linear combinations of simple roots

with non-negative integer coefficients. The number of
simple roots of a simple Lie algebra equals to its rank.
The Cartan matrix A of a simple Lie algebra is defined
as

Aij = 2
(~αi, ~αj)

(~αi, ~αi)
, (i, j = 1, ..., k), (A2)

where ~αi is the vector of eigenvalues of the simple root
Ei; the inner products of α-vectors is defined as

(~αi, ~αj) =
k
∑

l=1

αi(l)αj(l). (A3)

The dimension of the Cartan matrix is the same as the
Cartan sub-algebra. For the SU(2) group, the only pos-
itive and simple root is S+, and the 1× 1 Cartan matrix
A = 2.
An important concept of the representations of the

simple Lie algebra is weight. For a rank-k simple Lie
algebra, its fundamental weights can be solved through
its k × k Cartan matrix

~Mi =
∑

j

~αj(A
−1)ji, (i = 1, ..., k). (A4)

Any irreducible representation of a simple Lie algebra is

uniquely determined by its highest weight ~M∗, which can
be written as a linear combination of the fundamental
weights ~Mi

~M∗ =
∑

i

µi
~Mi, (i = 1, ..., k), (A5)
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where µ’s are non-negative integers. The dimension of
the representation M∗ is

d(M∗) =
∏

positive roots

[

1 +
( ~M∗, ~αi)

(~R, ~αi)

]

, (A6)

with

~R =
1

2

∑

positive roots

~αi. (A7)

Please notice that the product in Eq. A6 and summation
in Eq. A7 take over all the positive roots. The value of
the Casimir operator for the representation denoted by
M∗ is

C( ~M∗) = ( ~M∗, ~M∗ + 2 ~R). (A8)

For the simplest example of SU(2), the only fundamen-
tal weight M = 1

2 . The highest weights is just M∗ = S,
where S takes half-integer and integer numbers. Obvi-
ously, d(S) = 2S + 1 and C(S) = S(S + 1) as expected.

Appendix B: The Sp(4)(SO(5)) algebra

For convenience, we use the following symbols to rep-
resent the Sp(4)(SO(5)) generators Lab(1 ≤ a < b ≤ 5)
defined in Eq. 5 as

Lab =











0 Reπx Reπy Reπz Q
0 −Sz Sy Imπx

0 −Sx Imπy
0 Imπz

0











, (B1)

where

π†
x = Reπx + iImπx = ψ†

3
2

ψ− 3
2
+ ψ†

1
2

ψ− 1
2
,

πx = Reπx − iImπx = ψ†
−3

2

ψ 3
2
+ ψ†

− 1
2

ψ 1
2
,

π†
y = Reπy + iImπy = −i(ψ†

3
2

ψ− 3
2
− ψ†

1
2

ψ− 1
2
),

πy = Reπy − iImπy = i(ψ†
−3

2

ψ 3
2
− ψ†

− 1
2

ψ 1
2
),

π†
z = Reπz + iImπz = ψ†

3
2

ψ− 1
2
− ψ†

1
2

ψ− 3
2
,

πz = Reπz − iImπz = ψ†

− 1
2

ψ 3
2
− ψ†

− 3
2

ψ 1
2
,

S+ = Sx + iSy = ψ†
3
2

ψ 1
2
− ψ†

− 1
2

ψ− 3
2
,

S− = Sx − iSy = ψ†
1
2

ψ 3
2
− ψ†

− 3
2

ψ− 1
2
,

Sz =
1

2
(ψ†

3
2

ψ 3
2
− ψ†

1
2

ψ 1
2
+ ψ†

− 1
2

ψ− 1
2
− ψ†

− 3
2

ψ− 3
2
),

Q =
1

2
(ψ†

3
2

ψ 3
2
+ ψ†

1
2

ψ 1
2
− ψ†

− 1
2

ψ− 1
2
− ψ†

− 3
2

ψ− 3
2
).

(B2)

(Q,Sz) Roots

α±1 = ±(1,−1) E1 = 1√
24
(π†

x − iπ†
y);E−1 = 1√

24
(πx + iπy)

α±2 = ±(0, 1) E2 = 1√
12
(Sx + iSy);E−2 = 1√

12
(Sx − iSy)

α±3 = ±(1, 1) E3 = 1√
24
(π†

x + iπ†
y);E−3 = 1√

24
(πx − iπy)

α±4 = ±(1, 0) E4 = 1√
12
π†
z;E−4 = 1√

12
πz

TABLE I: Cartan sub-algebra and its roots. [E1, E−1] =
1
6
(Q − Sz), [E2, E−2] = 1

6
Sz, [E3, E−3] = 1

6
(Q + Sz),

[E4, E−4] =
1
6
Q.

(µ1, µ2) M∗ d(M∗) C( ~M∗)

1 (0,0) (0,0) 1 0

2 (0,1) ( 1
2
, 1
2
) 4 5

2

3 (1,0) (1,0) 5 4

4 (0,2) (1,1) 10 6

5 (2,0) (2,0) 14 10

6 (1,1) ( 3
2
, 1
2
) 16 15

2

7 (1,2) (2,1) 35 12

8 (0,3) ( 3
2
, 3
2
) 20 21

2

TABLE II: Some irreducible representations of the
Sp(4)/SO(5) group: the highest weights, dimensions
and Casimirs.

The ten operators of Sp(4) satisfy the commutation
relations

[Lab, Lcd] = −i(δbcLad + δadLbc − δacLbd − δbdLac), (B3)

which is rank-2 Lie algebra. Its Cartan sub-algebra only
contains two commutable generators Hi(i = 1, 2), which
can be chosen as (H1 = Sz, H2 = Q). We group the other
8 generators as their eigen-operators, i.e., roots as repre-
sented E±1, E±2, E±3, E±4, whose eigenvalue vectors ~α±j

are presented in Tab. I. The simple roots are E1 with
~α1 = (1,−1) and and E2 with ~α2 = (0, 1). The other
roots can be represented as E3 = E1+2E2, E4 = E1+E2.
The Sp(4)/SO(5) Cartan matrix reads

A =

(

2 −1

−2 2

)

. (B4)

We solve the fundamental weights as ~M1 =

(1, 0), ~M2 = (12 ,
1
2 ) from Eq. A4. The highest weight

~M∗ can be written as

~M∗ = (m1,m2) = (µ1 +
µ2

2
,
µ2

2
), (B5)

where µ1,2 are non-negative integers. The dimension of
the corresponding representation is

d(µ1, µ2) = (1 + µ1)(1 + µ2)(1 +
2µ1 + µ2

3
)

× (1 +
µ1 + µ2

2
). (B6)
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The representation (µ1, µ2) belongs to the category of
tensor or spinor representations of Sp(4) when µ2 is even
or odd, respectively. The Casimir operator reads

C( ~M∗) =
∑

a<b

L2
ab = Q2 + S2

z + 6
∑

α

{Eα, E−α}

= m1(m1 + 3) +m2(m2 + 1). (B7)

We summarize some frequently used representations of
Sp(4)(SO(5)) in Table II. The representations with in-
dices 1 to 5 are particularly useful. They are the identity
(1d), the fundamental spinor (4d), vector (5d), adjoint
(10d), symmetric traceless tensor (14d) representations
of the SO(5) group, respectively.

Appendix C: SU(4)(SO(6)) algebra

The SU(4) group is isomorphic to SO(6). Their re-
lation is similar to that between SU(2) and SO(3), or
Sp(4) and SO(5). As represented in Eq. 5, Lab and the
five spin-quadrapole operators na = ψ†

αΓ
a
αβψβ together

form the 15 generators of the SU(4) group. Explicitly,
the generators of nas are written as

n1 =
i

2
(ψ†

3
2

ψ− 1
2
+ ψ†

1
2

ψ− 3
2
− ψ†

− 1
2

ψ 3
2
− ψ†

− 3
2

ψ 1
2
),

n2 =
1

2
(ψ†

3
2

ψ 1
2
+ ψ†

1
2

ψ 3
2
− ψ†

− 1
2

ψ− 3
2
− ψ†

− 3
2

ψ− 1
2
)

n3 = − i

2
(ψ†

3
2

ψ 1
2
− ψ†

1
2

ψ 3
2
− ψ†

− 1
2

ψ− 3
2
+ ψ†

− 3
2

ψ− 1
2
)

n4 =
1

2
(ψ†

3
2

ψ 3
2
− ψ†

1
2

ψ 1
2
− ψ†

− 1
2

ψ− 1
2
+ ψ†

− 3
2

ψ− 3
2
)

n5 = −1

2
(ψ†

3
2

ψ− 1
2
+ ψ†

1
2

ψ− 3
2
+ ψ†

− 1
2

ψ 3
2
+ ψ†

− 3
2

ψ 1
2
).

(C1)

The rank of the SU(4) group is three. We choose
(Q,Sz, n4) as Cartan sub-algebra and group the other
12 generators as roots as shown in Tab. III.

(Q,Sz, n4) roots

α±1 = ±(1,−1, 0) F1 = 1√
32
(π†

x − iπ†
y) =

1√
8
ψ†

1
2

ψ− 1
2

α±2 = ±(0, 1,−1) F2 =
(Sx+iSy)−(n2+in3)√

32
= 1√

8
ψ†

− 1
2

ψ− 3
2

α±3 = ±(0, 1, 1) F3 = 1√
32
(Sx + iSy + n2 + in3) =

1√
8
ψ†

3
2

ψ 1
2

α±4 = ±(1, 1, 0) F4 = 1√
32
(π†

x + iπ†
y) =

1√
8
ψ†

3
2

ψ− 3
2

α±5 = ±(1, 0, 1) F5 = 1√
32
(π†

z − i(n1 − in5)) =
1√
8
ψ†

3
2

ψ− 1
2

α±6 = ±(1, 0,−1) F6 = 1√
32
(π†

z + i(n1 − in5)) =
−1√
8
ψ†

1
2

ψ− 3
2

TABLE III: Cartan sub-algebra and its roots. [F1, F−1] =
1
8
(Q − Sz), [F2, F−2] = 1

8
(Sz − n4), [F3, F−3] = 1

8
(Sz +

n4), [F4, F−4] =
1
8
(Q+Sz), [F5, F−5] =

1
8
(Q+n4), [F6, F−6] =

1
8
(Q− n4).

The simple roots are F1, F2 and F3 with the eigenvalue
vectors ~α1 = (1,−1, 0), ~α2 = (0, 1,−1), ~α3 = (0, 1, 1),

respectively. The other positive roots are represented as
F4 = F1 +F2 +F3, F5 = F1 +F3 and F6 = F1 +F2. The
SU(4)/SO(6) Cartan matrix reads

A =







2 −1 −1

−1 2 0

−1 0 2






. (C2)

The fundamental weights can be solved by using Eq. A4
as

~M1 = (1, 0, 0), ~M2 = (
1

2
,
1

2
,−1

2
), ~M3 = (

1

2
,
1

2
,
1

2
). (C3)

The highest weight ~M∗ of each representation can be
chosen as

~M∗ = (m1,m2,m3) = µ1
~M1 + µ2

~M2 + µ3
~M3

= (µ1 +
µ2

2
+
µ3

2
,
µ2

2
+
µ3

2
,−µ2

2
+
µ3

2
). (C4)

The dimension and Casimir of the representation ~M∗ are
represented as

d( ~M∗) = (1 + µ1)(1 + µ1)(1 + µ1)(1 +
µ1 + µ2

2
)

× (1 +
µ1 + µ3

2
)(1 +

µ1 + µ2 + µ3

3
), (C5)

C( ~M∗) = H2
1 +H2

2 +H2
3 + 8

∑

∆+

{

Fα, F−α

}

= m1(m1 + 4) +m2(m2 + 2) +m2
3. (C6)

Rep (µ1, µ2, µ3) M
∗(m1, m2,m3) d(M

∗) Casimir

1 (0,0,0) (0,0,0) 1 0

2 (0,0,1) ( 1
2
, 1
2
, 1
2
) 4 15

4

3 (0,1,0) ( 1
2
, 1
2
, −1

2
) 4 15

4

4 (1,0,0) (1,0,0) 6 5

5 (0,0,2) (1,1,1) 10 9

6 (0,2,0) (1,1,-1) 10 9

7 (0,1,1) (1,1,0) 15 8

8 (2,0,0) (2,0,0) 20 12

TABLE IV: Some frequently used irreducible representations
of the SO(6) or SU(4) group: the highest weight, dimension
and Casimir.

We summarize some frequently used representations
of SU(4)(SO(6)) in Tab. IV. Representations with in-
dices from 1 to 6 are the identity (1d), the fundamental
spinor (4d) and its complex conjugation (4d), the rank-2
anti-symmetric tensor (6d), the rank-2 symmetric ten-
sor (10d) and its complex conjugation (10d), the adjoint
(15d) representations, respectively. On the other hand,
the Young pattern is often convenient for the representa-
tions of SU(N) group. The Young patterns of the rep-
resentations from 1 to 8 in Tab. IV are shown in Fig.
15.
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6:10d

7:15d 8:20d

5:10d4:6d

*
3:4d1:1d 2:4d

=

FIG. 15: The Young patterns of the SU(4) representations 1
to 8 presented in Tab. IV.
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