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Phonon lifetimes in Cu, Ag and Au at low and high temperatures were calculated along high sym-
metry directions using density functional theory combined with second-order perturbation theory.
Both harmonic and third-order anharmonic force constants were computed using a supercell small
displacement method, and the two-phonon densities of states were calculated for all three-phonon
processes consistent with the kinematics of energy and momentum conservation. A non-rigorous
Grüneisen model with no q-dependence of the anharmonic coupling constants offers a simple sepa-
ration of the potential and the kinematics, and proved semi-quantitative for Cu, Ag and Au. A rule
is reported for finding the most anharmonic phonon mode in fcc metals.
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I. INTRODUCTION

At elevated temperatures, phonon thermodynamics exhibits phenomena beyond the harmonic model of lattice vi-
brations. Heat capacities inconsistent with the Dulong-Petit limit, thermal expansion, and finite thermal conductivity
are well known non-harmonic effects. Sometimes the harmonic model can be adapted through the “quasiharmonic
model” to explain these effects. A quasiharmonic model assumes harmonic phonons with infinite lifetimes, but with
frequencies lowered (softened) owing to thermal expansion. To account for finite phonon lifetimes, other effects such
as phonon-phonon interactions or electron-phonon interactions must be considered.
In our previous study of aluminum1, a simple fcc nearly free electron metal, we found that phonon-phonon in-

teractions dominate the phonon energy linewidth at elevated temperatures. The phonon linewidth distribution over
the whole Brillouin zone shows clear locations of the most anharmonic phonon modes. This trend is mirrored in
the two-phonon density of states that characterizes the total density of available states for the decay or excitation of
phonons in three-phonon processes. Since the two-phonon density of states is determined by the phonon dispersions,
a systematic study of similar fcc metals with different phonon dispersions is helpful for identifying the interesting
physics. We selected three noble metals, Cu, Ag and Au, that have very low densities of states near the Fermi level
so electron-phonon interactions are small2.
Phonon-phonon interactions are responsible for the phonon scattering processes that underly thermal resistivity, a

topic of current interest for thermoelectric materials and thermal barrier coatings, for example. Phonon lifetimes are
a measure of these scattering processes, but there have been few systematic studies of phonon lifetimes besides optical
measurements. For noble metals, work on phonon damping includes only one experimental study on copper3 and
one theoretical calculation using an empirical method that relates the anharmonic force constants to experimental
third-order elastic moduli4. The mathematical form of the interatomic potential in the latter study contains numerous
fitting parameters, and its final form is somewhat uncertain. Furthermore, anharmonic elastic moduli are not always
available experimentally. A parameter-free first-principles approach is therefore valuable for exploring the microscopic
physics of phonon-phonon scattering.
There are two general approaches for calculating phonon linewidth or lifetime from first principles. The first is based

on anharmonic perturbation theory5,6, where the anharmonic energy is treated as a perturbation to the harmonic
energy. The coupling constants between the harmonic phonons are obtained through lattice dynamics calculations.
The other approach is to analyze the normal mode correlation functions obtained by molecular dynamics (MD)
simulations (e.g.7). The MD approach has the advantage that it includes all the anharmonicity, but it is usually
restricted to high temperatures where the atomic motion is treated classically. In the perturbation theory approach,
the main challenge is to calculate the phonon coupling constants. Usually only the dominant third-order anharmonicity
and three-phonon scattering processes are considered for phonon linewidths, but this has proved successful1. The
anharmonic force constants can be obtained either by the direct supercell method or by the reciprocal response
method. The latter applies the “2n+1”theorem to determine the cubic coupling coefficients in the framework of
density-functional perturbation theory8,9. Although only unit cell is necessary in the response method, it must be
hard-coded at the level of the wave-function. On the other hand, calculating directly the anharmonic force constants
with a supercell technique can be done with any computational package that calculates forces from either ab-initio or
empirical potentials.
Here we report results from a systematic study on phonon energy broadening from phonon-phonon interactions in

the noble metals Cu, Ag, and Au using the direct supercell method combined with density functional theory (DFT)
for lattice dynamics calculations. We first overview the theory and computational methodology, then show calculated
phonon linewidths of the three metals and their temperature dependence. We also present the leading anharmonic
force constants, the kinematic scattering mechanisms, and compare these three metal systems. Finally, the results of
a simplified model of phonon linewidths are discussed.

II. COMPUTATIONAL METHODOLOGY

The essential inputs for phonon linewidth calculations with the direct supercell method are the harmonic and third-
order anharmonic force constants that appear in the Taylor expansion of the total energy E with respect to atomic
displacements u:

E = E0 +
∑
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Here E0 is the total energy of the crystal when all the atoms are fixed at their equilibrium positions. The second
term is zero when the system is in equilibrium. The third term is the harmonic contribution to the total energy and
the fourth terms and beyond are the anharmonic contributions to the total energy. The coefficients in the expansion
(from left to right) are forces Fi, harmonic force constants φij , and cubic and quartic anharmonic force constants
φijm and φijmn. The index i denotes a set (l, k, α), where l is the unit cell index, k is the atom index in the unit cell,
and α is the index for cartesian coordinates.
Within the harmonic approximation, which considers up to the quadratic terms in the total energy expansion of

Eqn. 1, phonons are independent, non-interacting quasi-particles with infinite lifetimes. To account for finite lifetimes,
higher-order terms are needed. To the lowest order of perturbation, the cubic term dominates. Considering the cubic
anharmonic energy as a perturbation to the harmonic system, the inverse of phonon lifetime, 2Γ, derived from second
order perturbation theory5,6 within the single-mode relaxation approximation is:

2Γ(q, j) =
πℏ

8N

∑

q1,q2,j1,j2

∆(q1 + q2 − q)
|Φ(−qj; q1j1; q2j2)|2
ω(qj)ω(q1j1)ω(q2j2)

×
[

(n1 + n2 + 1) δ(ω − ω1 − ω2)

+ 2(n1 − n2) δ(ω + ω1 − ω2)
]

, (2)

where N is the number of unit cells, ℏ is the Planck constant, and n is the Planck distribution function. Φ is the
Fourier transform of the third-order lattice anharmonic tensor:

Φ(−qj;q1j1;q2j2) =
∑

kk′k′′,αβγ

eα(k|−qj)eβ(k
′|q1j1)eγ(k

′′|q2j2)

× 1√
mkmk′mk′′

∑

ll′

[φαβγ(0k, lk
′, l′k′′)

× ei(−q·R(0k)+q1·R(lk′)+q2·R(l′k′′))] , (3)

and ω(q, j) is the phonon energy with wavevector q and branch index j, obtained by diagonalizing the dynamical
matrix D:

ω2(q, j)e(q, j) = D(q)e(q, j) , (4)

where

D(q) =
1

mkmk′

∑

l

φαβ(0k, lk
′)eiq·(R(l′k′)−R(lk)) , (5)

and e(q, i) is the eigenvector of mode (q, i), and mk is the mass the kth atom in the unit cell. R(l, k) is the position
of the kth atom in the lth unit cell.
With Eqns. 1-5, calculations of phonon linewidths require second-order harmonic and third-order anharmonic force

constants, which can be obtained ab initio. In the supercell method, the force constants are obtained from small
displacements of atoms ∆, and the Hellmann-Feynman theorem. Accurate calculations of forces, however, require
the computational cells to be large enough so the interaction between the displaced atom and its image outside the
supercell is negligible. In addition, the strategy of both positive and negative displacement is often used, which not
only reduces numerical risks from small displacements, but also eliminates the effect from higher-order anharmonicity.
This construction allows the calculation of harmonic force constants:

φij =
1

12∆
[−8Fi(uj = ∆) + 8Fi(uj = −∆)

+ Fi(uj = 2∆)− Fi(uj = −2∆)] , (6)

the semidiagonal cubic force constants:

φijj =
1

3∆2
[Fi(uj = ∆) + Fi(uj = −∆)

− Fi(uj = 2∆)− Fi(uj = −2∆)] , (7)

and nondiagonal cubic force constants:

φijk =
1

4∆2
[−Fi(uj = ∆, uk = ∆) + Fi(uj = ∆, uk = −∆)

+ Fi(uj = −∆, uk = ∆)− Fi(uj = −∆, uk = −∆)] . (8)



4

The practical implementation starts with determining the independent harmonic and anharmonic force constants
for the supercell, followed by ab-initio calculations of atomic forces from the displacements of a single atom or a pair of
atoms in the supercell. The force constants are then constructed using Eqns. 6-8. Equations 3-5 are used to compute
the harmonic phonon characteristics and anharmonic phonon coupling constants, from which the phonon linewidths
are evaluated using Eqn. 2. Numerical issues include the choice of small displacements and the enforcement of sum
rules for the force constant matrix. The symmetry of force constant elements has been taken care of automatically in
the symmetry analysis for the independent tensor elements.

The present study of phonon linewidths of noble metals used the VASP package10–12 and Blöchl’s projector aug-
mented wave (PAW) potentials13,14 for all energy and force calculations with DFT. Both the local density approxi-
mation (LDA) and the generalized gradient approximation (GGA) for the exchange-correlation functional were used.
The functional that gave better phonon dispersions was used for the linewidth calculations. The electronic struc-
ture was calculated self-consistently using a 24 × 24 × 24 k-grid for 1-atom unit cells. The choice of 0.1 eV for the
Methfessel-Paxton smearing and the default plane wave energy cutoff in the pseudopotentials consistently gave con-
verged energies for all three metals. The ground state structure found by fitting the energy-volume relationship to the
third-order Birch-Murnaghan equation of state was used in the subsequent calculations. Convergence with respect
to the supercell size and k-point sampling was tested thoroughly in the previous study of lattice dynamics of fcc
metals by Grabowski et al.15. To calculate forces accurately, we used the same large 256-atom supercells (4 × 4 × 4
conventional fcc unit cell) and a k-point sampling grid of 3 × 3 × 3. The augmentation grid was exactly twice as
large as the coarse grid for representation of the pseudo wavefunctions. An additional grid was switched on to help
reduce the noise in the forces. By symmetry, there are in total 55 independent harmonic force constants and 6205
independent third-order anharmonic force constants in a 256-atom fcc Bravias supercell lattice, leading to 1 or 272
irreducible distorted supercells with one atom or a pair of atoms displaced from their equilibrium positions. Both
positive and negative displacements of 0.02 Å were used to cancel effects from higher-order anharmonicities. Phonon
linewidths were calculated with Eqn. 2 using a 24× 24× 24 q-point grid with an additional 32× 32× 32 interpolation
within the prism around each q-point, giving well-converged results.

Anharmonicity is affected by the longer-range parts of the potential. Although large supercells and fine k-grids were
needed to obtain accurate forces, anharmonic force constants were found to decay rapidly with interatomic distance.
The leading contributions to the phonon linewidths were from the nearest neighbor coupling constants. Phonon
linewidths from calculations that include anharmonic constants from more distant neighbor shells were compared, but
the differences were small. So the leading contribution of linewidths from the nearest neighbor anharmonic interactions
are presented in this study.

III. RESULTS

Table I presents the equilibrium lattice constants predicted from ab-initio DFT calculations using the LDA and
GGA density functionals with comparison to experimental results. It is known that LDA underestimate the lattice
constant while GGA overestimates it. Our results are consistent with this general trend, but GGA gives lattice
constants for copper in better agreement with experiment, whereas LDA does better for gold. Both GGA and LDA
give lattice constants for silver of similar difference from the experimental value.

TABLE I. Lattice constants (Å) of noble metals from both LDA and GGA PAW-potentials and experimental room temperature
values. Deviations from experimental lattice constants are in parenthesis.

Metal System LDA-PAW GGA-PAW Experiment

Cu 3.5246(-2.36%) 3.6452(+0.97%) 3.61
Ag 4.0158(-1.81%) 4.1623(+1.77%) 4.09
Au 4.0613(-0.46%) 4.1748(+2.32%) 4.08

Figure 1 shows the calculated phonon dispersions of three noble metals at calculated equilibrium volumes at 0K. As
for the prediction of lattice constant, GGA gives Cu phonon dispersions in much better agreement with experiment
than LDA, while LDA does better for Au. While excellent agreement between experiment and calculations are seen
for both Cu and Au, there is a notable difference for Ag using either functional, although LDA is slightly better. This
discrepancy was reported previously15. Further tests were made with a larger supercell (500 atoms) and finer k-grid
(4 × 4 × 4), the improvement was minimal. Hence we attribute the discrepancy for Ag to the exchange-correlation
functional rather than computational issues. Since the phonon dispersions serve as the basis set for the phonon
linewidth calculations, the potential that gave phonon dispersions with better agreement with experiment was used
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FIG. 1. Phonon dispersions of (a) copper, (b) silver, and (c) gold along high-symmetry directions calculated using both LDA
(green) and GGA (red) exchange-correlation functionals. The experimental points are from Ref.16.

for phonon linewidth calculations, i.e., the GGA PAW-potential was used for Cu, and the LDA PAW-potential was
used for Ag and Au.
As shown in Eqn. 2, the phonon linewidth is determined by both phonon scattering kinematics and phonon coupling

constants. The kinematics originates with the phonon dispersions, i.e., the energy-momentum relationships of all the
phonons, whereas the coupling constants are closely related to the anharmonicity of the interatomic potentials. Table
II lists the dominant third-order anharmonic force constants for different atom pairs in the first-, second- and third-
neighbor shells calculated from a 256-atom supercell model. Harmonic force constants are listed for comparison. While
the onsite force constants are the largest harmonic terms for these fcc metals, the corresponding third-order onsite
force constants vanish by symmetry. The dominant third-order force constants are the bond-stretching forces between
the reference atom and its nearest neighbor. The corresponding bond-bending force constants for nearest-neighbor
pairs (not listed) are smaller by one order of magnitude. For the reference atom and its second- or higher-nearest
neighbors, both bond-stretching and bond-bending anharmonic force constants are one order of magnitude smaller
than those from the nearest-neighbor interactions. The differences in the anharmonic forces between second-, third-
and fourth-neighbor interactions are much less. The leading anharmonic force constants increase from Cu to Ag to
Au, indicating an increase of anharmonicity.

TABLE II. Leading harmonic and anharmonic bond-stretching force constants of neighboring pairs from different shells. The
bond direction is rotated to be along z-axis by covariant transformation. 1 and 2 denote first and second atom, 1st, 2nd, 3rd

denote the neighboring shell of the second atom. Harmonic and third-order anharmonic force constants have units of eV/Å2

and eV/Å3 respectively.

φ111

zzz φ11

zz φ112

zzz φ12

zz

onsite 1st 2nd 3rd 1st 2nd 3rd

Cu 0 6.569 -9.312 0.061 0.028 -1.678 -0.067 -0.048
Ag 0 6.213 -9.40 -0.042 0.018 -1.802 -0.082 -0.037
Au 0 7.127 -12.50 -0.297 -0.006 -2.397 -0.267 -0.032

While the third-order phonon coupling constants affect the coupling strength between phonons in three-phonon
scattering processes, a prerequisite is that these three phonons satisfy the kinematic condition of momentum and
energy conservation. As defined previously1, the kinematics can be categorized into down-conversion processes D↓

and up-conversion processes D↑:

D↓(i,q) =
1
N

∑

q1,q2,j1,j2

∆(q− q1 − q2) δ(ω − ω1 − ω2) , (9)

D↑(i,q) = 1
N

∑

q1,q2,j1,j2

∆(q+ q1 − q2) δ(ω + ω1 − ω2) . (10)

Owing to energy and momentum conservation, down-conversion processes are kinematically forbidden for the lower-
energy transverse phonons TA1. A generalization of this rule has been proved – a phonon cannot decay by any
anharmonic process into a set of phonons of higher phase velocity17. As we reported for aluminum1, TA phonons are
scattered mostly by up-conversion processes; LA phonons, especially short-wavelength ones, are scattered mostly by
down-conversion processes (Fig. 2). Table III lists the relative contributions from different scattering processes for
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TABLE III. Percentage of different scattering processes for LA and TA modes near X-point of zone boundary and near zone
center Γ.

q → X
LA TA+TA LA+LA LA+TA TA TA-TA LA-LA LA-TA

Cu 98.2% 0.0% 1.8% Cu 0.0% 7.9% 92.1%
Ag 95.8% 0.0% 4.2% Ag 0.0% 6.1% 93.9%
Au 91.0% 0.0% 9.0% Au 0.0% 2.2% 97.8%

q → Γ
LA TA-TA LA-LA LA-TA TA TA-TA LA-LA LA-TA

Cu 90.4% 0.0% 9.6% Cu 79.4% 14.0% 6.6%
Ag 91.4% 0.5% 8.1% Ag 73.0% 24.7% 2.3%
Au 94.2% 0.2% 5.6% Au 79.2% 20.3% 0.5%
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FIG. 2. Two-phonon density of states of copper (a), silver (b), and gold (c) along high-symmetry directions. D↓ in red shows
the down-conversion processes and D↑ in blue shows the up-conversion processes.

both LA and TA modes near zone boundaries and the zone center. The dominant decay channels for short-wavelength
LA phonons are LA↔TA+TA and LA↔LA+TA. Towards the zone center, fewer down-conversion channels become
available, and up-conversion channels start to open for LA phonons at q-vectors where their energies are lower than
some TA phonons. Scattering channels change from LA↔LA-TA dominance to LA↔TA-TA dominance as the q-
vector approaches the zone center. From the symmetry of the scattering channels, the dominant scattering channels
for TA phonons near the zone boundary are TA↔LA-TA. Near the zone center, processes like TA↔TA-TA and
TA↔LA-LA start to dominate for the TA phonons.
Across Fig. 2, one sees notable differences in the D↓ and D↑ processes for Cu, Ag and Au, indicating differences

in the number of scattering channels for each mode. Figure 3 shows the linewidths of phonon modes at three
representative temperatures along the same high symmetry directions, where the GGA PAW-potential for Cu and the
LDA PAW-potential for Ag and Au were used in the linewidth calculations. The room temperature phonon linewidths
from the prior neutron scattering measurements3 are about twice as large as our calculated linewidths. (Curiously,
the temperature dependences of the measured linewidths are much smaller, and sometimes almost negligible.) Despite
the large differences between Cu, Ag and Au, their phonon linewidths are comparable, and have similar trends along
crystallographic directions. Nevertheless, the phonon linewidth does not change monotonically with q vector as does
the phonon energy. These three metals have different locations for their most anharmonic phonons. Along the Γ-X
direction, the phonon of broadest linewidth in Cu is at the X-point (1,0,0), but is at about (5/6,0,0) in Ag and
(2/3,0,0) in Au. These features are also seen in Fig. 2. Comparing to previous results from an empirical model by
Zoli, et al.

4, we find peaks in linewidth at similar locations on the LA and TA branches, and we find the phonon
linewidths at room temperature are comparable. (The peak in the broadening on the LA branch of Ag was missed in
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the previous study, however, since it lies between the five calculated data points.)
Figure 3 also shows the effect of temperature on phonon broadening. Since the scattering rate of a phonon is

proportional to the occupation number of the other two phonons, phonon linewidths increase with temperature.
At 0K, the linewidths of the lowest energy TA modes are zero because the up-conversion contribution vanishes as
T → 0, whereas LA modes have small linewidths (less than 0.2 meV) because down conversion processes have a finite
value due to the spontaneous decay of a phonon into two lower-energy phonons. At high temperatures, the phonon
occupation number increases linearly with temperature, and so does the phonon linewidth. These noble metals all
have Debye temperatures below room temperature, so linewidths calculated at 300K and 600K are approximately in
the linear region. The proportionality can be estimated from the increase of phonon linewidth from 300K to 600K.
For example, the LA mode of Cu at the X-point has a linewidth about 2 meV at 300K (6.7% of its energy), and
increases to 3.9 meV at 600K (13% of its energy if neglecting thermal expansion). This gives a rate of increase of
linewidth of 0.006 meV K-1, or a rate of decrease of quality factor ( ω

2Γ ) of 0.021% K-1.
Three-phonon processes are categorized as normal processes or umklapp processes, depending on whether or not a

reciprocal lattice vector is needed for momentum conservation. For fcc noble metals, umklapp processes contribute
nearly 90% of the phonon linewidth. If we decompose the contribution to the linewidth to down-conversion and
up-conversion processes, we find down-conversion processes contribute about 99% of the phonon linewidth of LA
modes, while the linewidths of TA modes are mostly from the up-conversion processes.
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FIG. 3. Phonon linewiths of (a) copper, (b) silver, and (c) gold along high-symmetry directions at 0K (dotted-line), 300K
(solid line) and 600K (dashed line).

IV. DISCUSSION

Both the anharmonicity of the potential and the kinematics of phonon scattering contribute to the overall linewidth,
but the decoupling of these two effects is not straightforward. On the other hand, we do see common features in the
two-phonon densities of states D↓ and D↑ and the phonon linewidth 2Γ, especially in the outer parts of the Brillouin
zone. This correspondence suggests an approximation of ignoring the q-dependence of Φ in Eqn. 2, and separating
an anharmonic potential factor from a kinematic factor when calculating phonon linewidths. Although this is not
rigorous, we explore this approximation in what follows, and we find that it has at least semi-quantitative success for
fcc Cu, Ag, and Au.
A comparison of Figs. 2 and 3 shows that the broadening contribution from the dominant up-conversion processes

is suppressed in the inner part of Brillouin zone near Γ. An explanation can be found in a simplified Grüneisen model
for the phonon coupling constants proposed by Klemens18:

Φ(qj;q1j1;q2j2) =
2iγ

√

(3m)v
ω(qj)ω(q1j1)ω(q2j2) , (11)
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where γ is the Grüneisen parameter, v is the sound velocity, and m is the mass of the atom. Using Eqn. 11 in Eqn.
2, and considering the high temperature limit so ℏω ≪ kBT and n = kBT

ℏω
≫ 1,

(n1 + n2 + 1)δ(ω − ω1 − ω2) ≃
kBT

ℏ

ω(qj)

ω(q1j1)ω(q2j2)
, (12)

and

(n1 − n2)δ(ω + ω1 − ω2) ≃
kBT

ℏ

ω(qj)

ω(q1j1)ω(q2j2)
, (13)

so Eqn. 2 is reduced to

2Γ(q, j) =
πkBT

6

γ2ω(q, j)2

mv2
(D↓(q, j) + 2D↑(q, j)) . (14)

In the low temperature limit as T → 0, the phonon occupation number n → 0, and only down-conversion processes
D↓ contribute to the phonon broadening. Since the final state energy spectra are symmetric with half of the energy

of the decay phonon, Okubo and Tamura20 made a further approximation that ω(q1j1) = ω(q2j2) =
ω(qj)

2 , reducing
Eqn. 2 to

2Γ(q, j) =
πℏ

24

γ2ω(q, j)3

mv2
D↓(q, j) . (15)

4

3

2

1

0

 (a) Cu

 2
Γ 

(m
e
V

)

Γ ΓX K L

6

4

2

0

 (b) Ag

 2
Γ 

(m
e
V

)

Γ ΓX K L

8

6

4

2

0

 (c) Au

 2
Γ 

(m
e
V

)

Γ ΓX K L

FIG. 4. Comparison of phonon linewidth for (a) copper, (b) silver, and (c) gold along high-symmetry directions at 600K
between model predictions (solid-line) based on Eqn. 14 and direct calculations (dashed-line) from Fig. 3. LA branch is shown
in red, the lowest-energy TA1 branch in green, and the TA2 branch in blue.

Although Eqns. 14 and 15 are not rigorous, they directly connect the phonon linewidth to the two-phonon density
of states, and help explain the main physics. As shown in Fig. 2, up-conversion processes D↑ are prominent as q → 0,
but their contribution to the phonon linewidth is small. This is understood with Eqn. 14 in which the two-phonon
densities of states are weighted by ω2. Similarly, Eqn. 15 suggests that linewidths for most TA modes are zero as
T → 0 because down-conversion processes are prohibited.
Using experimental Grüneisen parameters of 2.0, 2.4 and 3.019, and average sound velocities of 3.687, 2.617 and

2.059 km/s for Cu, Ag and Au respectively, we calculated phonon linewidths at 600K with Eqn. 14 and show the
results in Fig. 4. The linewidths predicted with Eqn. 14 generally overestimate the phonon linewidths in comparison
to those from the full calculations shown in Fig. 3. Nevertheless, the Grüneisen model for anharmonic force constants
gives approximately the magnitude and shape of the phonon lineshape broadening. In further work, the individual
mode Grüneisen parameters were obtained from the DFT calculations by examining the change in phonon frequencies
with changes in the lattice parameter, and Eq. 11 was again used to obtain phonon coupling constants. The linewidths
calculated with this more detailed model using mode Grüneisen parameters were in no better agreement with the full
DFT calculations than the results shown in Fig. 4.
An interesting difference between the LA phonon linwidths of Cu, Ag and Au is the location of the most anharmonic

mode (see Fig. 3), which corresponds to the highest peak in the two-phonon densities of states (Fig. 2). By analyzing
the energies of the phonons in the final state of the decay process and comparing them with the one-phonon densities
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of states, we find the final state energy spectra of these most anharmonic modes have the highest density of states for
their decay. The central energy of the final state phonon spectra is at half of the energy of the initial phonon, and
located where the one-phonon density of states is high. This can be generalized. The maximum linewidth of the LA
modes is at least at twice the energy of the first Van Hove singularity in one-phonon density of states.
Finally, the full phonon linewidth comprises contributions from both phonon-phonon interactions and electron-

phonon interactions. Because of the low electronic density of states near the Fermi level, the electron-phonon inter-
actions in these noble metal systems are expected to be small21. The effects of electron-phonon coupling on phonon
linewidths of Au were predicted by a previous first-principles study to be less than 0.01 meV22, which is two orders of
magnitude smaller than the effects of phonon-phonon coupling at room temperature. Interestingly, these calculations
also gave prominent peaks in linewidth at the K and L points, much as seen in Fig. 3.

V. CONCLUSIONS

A systematic first-principles study of lattice anharmonicity and phonon linewidths was performed for the noble
metals Cu, Ag and Au using density functional theory with phonon-phonon scattering theory. A direct supercell
method was used to obtain both harmonic and third-order anharmonic force constants. While large supercells and
fine k-grids are required for accurate forces due to the long-range interactions in these metal systems, the dominant
contribution to the phonon linewidth is from the anharmonic force constants between nearest neighbors. The phonon
linewidths of Cu, Ag and Au are comparable. The LA phonons of maximum linewidth are at different q-points for
these three metal systems owing to differences in their final state spectra. For Cu, Ag, and Au, these peak LA
linewidths occur at energies at least twice that of the first TA Van Hove singularity in the one-phonon densities
of states. A simple Grüneisen model for the anharmonic phonon coupling constants can separate the third-order
anharmonic potential from the scattering kinematics and connect directly the two-phonon densities of states with
the phonon linewidth. Although not rigorous, this model predicts phonon linewidths that are in semiquantitative
agreement with full calculations for Cu, Ag and Au. An energy factor before the two-phonon densities of states boosts
the contribution from down-conversion processes, depresses the contribution from the up-conversion processes, and
causes the maximum phonon linwidth to lie away from the center of the Brillouin zone. With its lower phonon energy
and comparable phonon broadening as copper and silver, gold is the most anharmonic of these three noble metals.
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