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The interplay between diffusional and displacive atomic movements is a key to understanding de-
formation mechanisms and microstructure evolution in solids. The ability to handle the diffusional
time scale and the structural complexity in these problems poses a general challenge to atomistic
modeling. We present here a new approach, called Diffusive Molecular Dynamics (DMD), which can
capture diffusional time scale while maintaining atomic resolution, by coarse-graining over atomic
vibrations and evolving a smooth site-probability representation. The model is applied to nanoin-
dentation and sintering, where intimate coupling between diffusional creep, displacive dislocation
nucleation and grain rotation are observed.

PACS numbers: 62.20.-x, 66.30.-h, 68.35.Fx, 02.70.Ns

I. INTRODUCTION

Materials behavior depends on processes that take place on a variety of time scales. These range from atomic
vibrations or dislocation-mediated slip processes, which have typical time scales of hundreds of femtoseconds (fs) to
hundreds of picoseconds (ps), to diffusion, which may take place on the order of seconds or longer. This disparity
in time scales leads to difficulties when trying to model slower processes where individual atomic motions may
be important, such as diffusion controlled boundary migration and dislocation climb. A straightforward molecular
dynamics (MD) approach, with a typical time step of 1 fs, would require an enormous computation time to adequately
capture these processes. This has lead to the development of a variety of techniques to overcome the time scale
limitations of MD. Phase Field Crystal methods1 coarse-grain over atomic vibrations to achieve longer time scale, but
the use of a planewave basis restricts its applications. Transition state theory (TST) based approaches such as Hyper-
MD2,3 suffer from the problem of low barriers. Also, representing long-ranged diffusion by instantiating billions
of vacancy random walks individually at TST level is often neither practical nor necessary. Kinetic Monte Carlo
methods use a catalog of possible events, but a complete catalog may be difficult to create for complex systems. On-
the-fly KMC4, in principle, circumvents this problem by building a state-specific catalog on the fly, but programming
and computational overheads are very demanding. In this paper we present a chemical and kinetic extension of
the Variational Gaussian (VG) method5,6, called diffusive molecular dynamics (DMD), to model coupled diffusional-
displacive processes7.

II. METHODOLOGY

A. Theory

In traditional MD, 6N variables, the atomic positions and momenta {xi,pi} , i = 1 . . . N , where N is the number
of atoms, are numerically integrated. However, most atomic motions in solids are spent in thermal vibrations about
some mean position Xi ≡ 〈xi〉. When viewed on time scales much longer than the vibrational, an atom appears as
a density cloud. In most solids, the extent of these vibrations is narrow enough and nearly isotropic such that one
atomic density cloud can be approximated by a normalized Gaussian

G (xi|Xi, αi) = (αi/π)
d/2

exp
[
−αi |xi −Xi|2

]
, (1)

where αi is related to the Debye-Waller factor, αi = miω
2
i /2kBT if in the Einstein model solid, mi is the atomic mass,

ωi is the Einstein frequency and d is the dimensionality of the system, kB is the Boltzmann constant, and T is the
absolute temperature.
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In real systems, atomic vibrations are correlated with those of nearby atoms. If the correlation effect is small, the
Gibbs-Bogoliubov inequality to a reference system of Einstein oscillators may yield a variational upper bound FVG

that well approximates the real Helmholtz free energy5. For an embedded atom method (EAM) potential, this gives6

FVG =
1

2

N∑
i=1

∑
j 6=i

w (Xij , αij) +

N∑
i=1

E
(
ψi,VG

)
+
d

2
kBT

N∑
i=1

{
ln

[
αiΛ

2
T

π

]
− 1

}
(2)

where ψi,VG =
∑
j 6=i ψ (Xij , αij), ΛT = ~

√
2π/mikBT is the de Broglie thermal wavelength, Xij = |Xi −Xj |,

αij ≡
(
α−1i + α−1j

)−1
, E is the EAM embedding function, w is the Gaussian-averaged pair potential u, and ψ is the

Gaussian-averaged density function ρ of the EAM potential (discussed in details later). Here, the ensemble average
of the embedding function (〈E〉0) has been approximated by averaging the Taylor expansion of the embedding energy
and dropping second- and higher-order moments. Though the second moment is small and positive (0.001 eV/atom
in Cu6), the final free energy is no longer guaranteed to be an absolute upper bound. In the VG method, FVG

is minimized with respect to {Xi, αi} to estimate the real Helmholtz free energy. This method has 4N degrees of
freedom (Gaussian width and mean position) in contrast to the 6N variables of traditional MD, and requires only
static minimization. LeSar et al.6 have tested the accuracy of VG method by comparing it with an exact free-energy
calculation of Foiles and Adams using EAM over a wide range of temperatures8.

To extend this model to handle diffusive mass transport by vacancy exchange, for instance, one could consider
a Monte Carlo/VG (MCVG) simulation in which one would swap empty sites with adjacent occupied sites, relax
{Xi, αi}, and then accept or reject the swap. But there is a considerable computational cost from many such random
swaps with relaxation. A much faster method is to consider the ensemble average where each site, instead of being
either vacant or occupied, has a continuous occupation probability ci ∈ (0, 1), where ci = 0 resembles a site vacancy
with complete certainty, and ci = 1 resembles an atom (say Cu) with complete certainty. In multi-component alloys,
ci is generalized from a scalar to a vector to represent site chemical composition, and using such site “color” and
density cloud is philosophically akin to the Kohn-Sham density functional theory (DFT) for electrons9. A variational
Helmholtz free energy that incorporates these site “colors” can be derived by applying the Gibbs-Bogoliubov inequality
to a reference system of harmonic oscillators in the grand canonical ensemble, which yields

FDMD =
1

2

N∑
i=1

∑
j 6=i

cicjw (Xij , αij) +

N∑
i=1

ciE
(
ψi
)

+
d

2
kBT

N∑
i=1

ci

{
ln

[
αiΛ

2
T

π

]
− 1

}
+

kBT

N∑
i=1

{ci ln ci + (1− ci) ln (1− ci)} (3)

where

ψi =
∑
j 6=i

cjψ (Xij , αij) . (4)

We may define an exchange chemical potential between an atom and a vacancy for site i by differentiating (3),

µi ≡
∂FDMD({Xi, αi, ci})

∂ci
(5)

and identify an exchange formation energy

fi ≡µi − kBT ln

[
ci

1− ci

]
(6)

which excludes the configurational entropy contribution.
Following the master equation, the rate of change of the site probability is given by

dci
dt

=
∑
j

′
ν exp

[
− Qm

kBT

]{
cj (1− ci) exp

[
− fij

2kBT

]
− ci (1− cj) exp

[
fij

2kBT

]}
, (7)

where the primed summation is over diffusing neighbors, currently taken to be the first nearest neighbors. The steric
factors cj (1− ci), ci (1− cj) reflect the observation that diffusional jumps can only happen if one site is occupied
while the other site is empty: if both sites are fully empty or fully occupied, then mass exchange cannot happen
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kinematically. ν is the jump attempt frequency, and Qm = F ∗ij − (fi + fj)/2 is the activation energy for vacancy
migration, where F ∗ij is the saddle height energy between site i and j. fij ≡ fi−fj is the difference in formation energies
between the two sites. For simplicity, in the current implementation the vacancy migration attempt frequency ν and
activation energy Qm are assumed to be independent of a site’s local structural and chemical environment, for example
the spatial arrangements of nearby sites. But in principle, one could develop and then use environment-dependent
ν, Qm functions in DMD simulations, which have been previously parametrized against experimentally-measured
or DFT-computed diffusivities. For example, one may develop a local diffusivity expression that varies with the
coordination number, that is fitted to a database of bulk, surface, dislocation core and grain boundary diffusivities.
In the current implementation, by linearizing (7), one can estimate the vacancy diffusivity DV as

DV =
Z

2d
νb2 exp

[
− Qm

kBT

]
, (8)

where b is the nearest-neighbor distance, and Z is the coordination number. Because displacive relaxation of {Xi, αi}
is “instantaneous” in DMD, the fundamental “clock” of DMD is controlled by the value of chemical diffusivity, not
by atomic vibration. We thus define

t̃ ≡ 4πDVt

b2
≡ t

τ
(9)

to be the dimensionless (reduced) time.

Equation (7) satisfies mass conservation since the pair mass-exchange rate cj (1− ci) exp

[
− ∆fij

2kBT

]
−

ci (1− cj) exp

[
fij

2kBT

]
is anti-symmetric with respect to i ↔ j permutation. One can also prove that FDMD will

decay monotonically with time, since

(µi − µj)
{
cj (1− ci) exp

[
− fij

2kBT

]
− ci (1− cj) exp

[
fij

2kBT

]}
=

(
fij + kBT ln

ci(1− cj)
(1− ci)cj

){
cj (1− ci) exp

[
− fij

2kBT

]
− ci (1− cj) exp

[
fij

2kBT

]}
(10)

is non-positive, contributing to chemical dissipation in the system.

B. Implementation

DMD has 5N degrees of freedom {Xi, αi, ci}, which are the mean position, Gaussian width and the occupation
probability of site density clouds, in contrast to the 6N variables of traditional MD. During a DMD simulation, each
time step is realized in two parts. First, the variables {Xi, αi} are statically minimized as in the VG method, while
holding {ci} constant. This process can be assumed to take place instantaneously because Xi and αi change on the
inertial (ps) and thermalization (100 ps) time scales, respectively, both of which are much smaller than τ . Then in
the second part, the {ci} are integrated numerically according to Eq. (7) while holding {Xi, αi} constant. This is
equivalent to assuming the system is always in vibrational and mechanical equilibrium, but not chemical equilibrium,
at each timestep. It is therefore not possible to model dynamical effects where inertia plays a role.

In the simulations below for pure Cu, we use the Mishin EAM potential10. The Gaussian averaged pair potential
w (Xij , αi, αj) and the Gaussian averaged electron density function ψ (Xij , αi, αj) are originally given as6

w (Xij , αi, αj) =
(αi
π

)d/2 (αj
π

)d/2 ∫
· · ·
∫
dxidxje

−αi(xi−Xi)
2

e−αj(xj−Xj)
2

u (xij)

ψ (Xij , αi, αj) =
(αi
π

)d/2 (αj
π

)d/2 ∫
· · ·
∫
dxidxje

−αi(xi−Xi)
2

e−αj(xj−Xj)
2

ρ (xij)

(11)

where xij = xi−xj , xij = |xij |, and u (x) and ρ (x) are the pair potential and the electron density function of the EAM
potential, respectively. In the VG method, LeSar et al.6 fitted the functions w and ψ to a sum of Gaussian functions
of the interatomic distance. For the present study, w and ψ were numerically integrated to create a 2-dimensional
lookup-table which was then used with bicubic interpolation to achieve a better accuracy. The procedure is described
below.
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It can be proven using Fourier transform that if two particles are independently Gaussian, then their separation
vector x is also a Gaussian cloud with parameter

αij =
(
α−1i + α−1j

)−1
. (12)

If there is an offset X in the centers of the two clouds, then the above Gaussian is also shifted by X. Therefore Eq.
(11) can be rewritten in the form of

w (Xij , αij) =
(αij
π

)d/2 ∫
· · ·
∫
dxe−αij(x−Xij)

2

u (|x|)

ψ (Xij , αij) =
(αij
π

)d/2 ∫
· · ·
∫
dxe−αij(x−Xij)

2

ρ (|x|) .
(13)

Furthermore, for integration, one can choose a coordinate system in which the origin is identical to the origin of the
effective Gaussian. Then, in 3D, the Gaussian averaged potential and density function become

w (X,α) =2π
(α
π

)3/2 ∫ rc

0

∫ π

0

r2drdθ sin θ

u
(√

r2 +X2 + 2rX cos θ
)

exp
[
−αr2

]
ψ (X,α) =2π

(α
π

)3/2 ∫ rc

0

∫ π

0

r2drdθ sin θ

ρ
(√

r2 +X2 + 2rX cos θ
)

exp
[
−αr2

]
,

(14)

where rc is the cutoff on the Gaussian. Since the integrand in both cases is the product of a Gaussian and u or ρ, the
cutoff in X for w and ψ is the sum of rc and the cutoff of the respective functions. For Cu EAM potential10 the cutoff
is after 5.5 Å in both the pair potential and density function. The choice of rc is a compromise between accuracy and
efficiency since longer cutoffs will better match the integrals in Eq. (13) but include more atoms in the calculations
during simulations. The 2-dimensional lookup-tables used in the current implementation of the DMD method cut the

Gaussian off after 1 Å. Experience has shown that producing a table for α from 10 Å
−2

to 210 Å
−2

is adequate for
simulations run at temperatures of 500 K or higher using either the Morse potential used in the original VG work5

or Cu EAM potential10. For rc = 1 Å, this integration includes 4 standard deviations of the widest Gaussian of the

table α = 10 Å
−2

while adding 2 neighbor shells to calculations.
For the calculation of mechanical stress tensor, with {αi} instantaneously minimized for arbitrary {Xi, ci} config-

uration, it can be shown that the Virial stress formula can be applied to just the first two terms of Equation (3) to
calculate the stress tensor in DMD, as if it were the normal interatomic potential in MD with Xi replaced by xi, and
pretending {αi, ci} are frozen parameters.

The displacive relaxation step in DMD was implemented with L-BFGS11, a limited memory quasi-Newton optimiza-
tion algorithm, and the chemical integration step with CVODE, a solver for stiff and nonstiff initial value problems
for systems of ordinary differential equation from SUNDIALS12. Otherwise, the programmatic structure of DMD is
identical to that of MD, which means lightweight code patches can be easily applied onto a MD code base. We have
accomplished this successfully on LAMMPS13,30, taking advantage of its efficient parallelism for short-range interac-
tions. It should be obvious from the formulation above that as T → 0 and diffusion kinetics is frozen, DMD/VG will
give identical results as T → 0 classical MD. This is shown in Table I, where the DMD free energy, elastic properties,
lattice parameter and vacancy formation energy as T → 0 are seen to be all in excellent agreement with direct MD,
using the same EAM potential10 for Cu.

Next we check some finite-temperature properties against MD, in Figure 1. We see that the thermal expansion and
zero-pressure free energy are in excellent agreement with direct MD calculation and full-spectrum harmonic phonon
theory, respectively, giving us confidence that VG can provide reasonable finite-temperature properties up to 90%
of the melting point. However, the root mean squared displacements in VG representation is about 30% lower than
the actual value from direct MD. Philosophically, the reason for the simultaneously good agreements in Fig. 1(a),(b)
but not-so-good agreement in Fig. 1(c) has more to do with the VG representation, and less to do with the VG
formulation. Just like in Kohn-Sham DFT for electrons where one maps an actual interacting-electrons system to a
hypothetical system of non-interacting electrons9, VG maps an interacting-atoms system onto a noninteracting-atoms
Einstein solid. When the motions of nearby atoms are uncorrelated as in an Einstein solid, the vibrational amplitude
has to be smaller to prevent neighboring two atoms from getting too close to each other. On the other hand, in an
interacting-atoms solid the oscillations are correlated, so both atoms could oscillate in the same direction, increasing
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the root mean squared displacement for a single atom without incurring huge energy penalty for getting too close to
each other, e.g. forming a “correlation hole” in the 2-particle distance distribution. This deficiency in geometrical
representation does not seem to prevent VG from giving reasonable vibrational free energy and thermal expansion,
though.

Presently, the site density clouds stay spherical even when crystal is sheared, or near low-symmetry defects like
surfaces. A straightforward improvement is to introduce anisotropic or even non-ellipsoidal density clouds, by vari-
ationally tuning the model potential shapes in the Einstein reference solid. This, however, will introduce additional
complexities in the Equation (11)-(14) effective potentials.

For ease of checking, the source code of DMD and input files for all examples in this paper will be placed at a
publicly available website30.

C. Validation

Before performing DMD simulations, the model is validated against the analytical random-walker solution of va-
cancy diffusion by examining diffusion of a single vacancy under periodic boundary conditions (PBC). Imagine one
instantiates a vacancy in an otherwise perfect crystal, and then allow diffusive jumps to happen, by for instance
performing Monte Carlo/VG (MCVG) simulations. After many jump periods, the vacancy concentrations on various
sites are expected to follow the analytical solution of the diffusion equation for a point source14, also known as the
random walker solution. In particular, the vacancy concentration for a site at a distance ∆X from the initial vacancy
at time t is given by

cV
(
∆X, t̃

)
≈ Ω

(
t̃b2
)−d/2

exp
[
−π∆X2/

(
t̃b2
)]
, (15)

where Ω is the average atomic volume, and t̃ = 4πDVt/b
2 is the dimension-less reduced time, b being the nearest

neighbor distance. A simulation cell spanned by the fcc lattice vectors 30× [100] , 30× [010] and 30× [001] (consisting
of 108000 sites) was chosen with one site being vacant (c = 10−20). All the occupied sites were initially assigned the

equilibrium vacancy concentration of cEq
V = exp(−Ef

V/kBT ) with Ef
V = 1.25 eV and a value of α corresponding to

that of an atom in a bulk crystal at the temperature of interest. We chose Qm = 0.7 eV and ν = 1 × 1013 s−1 to
match the experimental bulk vacancy diffusivity Dbulk

V of Cu. Fig. 2 shows the simulation results, which match the
analytic solution well with d = 3 and significant deviation occuring only at times shorter than the mean jump period
and at long times when the system begins interacting with its images under PBC. This deviation at short times is
expected as the Gaussian point-source solution14 is the result of solving a continuum partial differential equation,
valid in the limit when an infinite number of random walks have been executed, whereas DMD gives solution to the
master equation when only a finite number of random walks has been executed on a discrete lattice.

III. RESULTS

We chose examples of nanoindentation and hot isostatic pressing of pure copper to demonstrate the capabilities
of DMD in resolving coupled diffusive and displacive atomic movements7. At 900 K, though our model predicts an
equilibrium vacancy concentration of 10−7, a higher background vacancy concentration of 10−4 was used by assigning
c = 0.9999, unless otherwise specified. The reason for this is with (1− c) ≈ 10−7 (the entire system has less than
one vacancy typically), one needs to choose a stricter tolerance in solution vector {ci}, preventing the solver to reach
the time scale necessary for transporting required vacancies from far-field in reasonable computation time. Such
non-equilibrium vacancy concentration can actually be found in many physical situations, such as irradiation damage,
Kirkendall effect, severe plastic deformation during cold-rolling and fatigue, etc.15,16. In the bulk, the diffusivity
was set to Dbulk

V as in the random-walker validation. Due to the importance of surface diffusion in nanoindentation
and sintering, higher diffusivity was attributed to the surface sites using a simple scheme where the diffusivity was
increased to DS

V = χDbulk
V , χ ≥ 1, if the weighted coordination (

∑′
j cj) of diffusing sites is less than z − 1. We chose

χ to be 1000 since grain boundary and surface diffusivity are typically three orders of magnitude higher than that of
the bulk. The definition of reduced time t̃, however, was not modified.

A. Nanoindentation

In nanoindentation, different mechanisms can contribute to the total plastic strain. At low indentation rates or high
temperatures, diffusional creep may occur due to the chemical potential gradient produced by stress field beneath the
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indenter. This accommodates the indenter by diffusing surface layers of atoms away from the contact area, forming
recessed terraces17. Further building-up of strain, however, leads to nucleation of displacive plasticity. To study these
mechanisms, a frictionless spherical indenter with a radius of 40 Å was pressed onto a Cu(111) surface at 900 K at
two different rates of 4.89 × 10−3 Å/τ , henceforth referred to as the “slower rate case” and 4.89 × 101 Å/τ , referred
to as the “faster rate case”. The interaction between the sample and the indenter tip is modeled through a repulsive
potential given by18

Uind (Xi,ind) =ciE0 exp

(
λ

Hind
− Hind

λ

)
, Xi,ind < Rind (16)

where Xi,ind is the distance of site i to the center of the indenter, Rind is the radius of the indenter, λ = Rind−Xi,ind,

E0 = 1 eV and Hind = 1 Å. A slab of dimension 10.38nm × 5.08nm × 10.78nm containing 46080 sites was used
to represent the surface. Periodic boundary conditions were prescribed on four sides parallel to the indentation
direction, while the top and the bottom surfaces were kept free19. Additionally, a thick layer of sites are held at
fixed concentration c = 0.9999 around the cell in the direction perpendicular to the indentation direction to serve as
vacancy source or sink that correspond to, in reality, climbing dislocations or grain boundaries in bulk.

During the nanoindentation simulations, several different mechanisms were observed. In the “slower rate” inden-
tation, surface diffusional creep is evident from the terraced structure shown in Fig. 3(a) that formed spontaneously
under the indenter before nucleation of any dislocations. No such surface vacancy disk or terrace formed during
the “faster rate” indentation, since diffusion is “frozen” outside of a temperature-strain rate envelop, resulting in a
purely Hertzian elastic behavior prior to the onset of displacive plasticity. Fig. 3(b) shows the dislocation structure
produced after the first large load drop for the “slower rate” indentation where the surface step provides preferential
sites for heterogeneous nucleation of dislocations adjacent to surface defects20. This is significantly different from
the one observed in the “faster rate case”, shown in the inset of Fig. 3(b), where dislocation loops were nucleated
homogeneously inside the bulk21,22. The load-displacement curve (Fig. 3(c)) does show a decrease of the load23 in
the presence of surface diffusion due to diffusional creep accommodation, but the decrease only became large after
the mass-deficient defect, i.e. surface vacancy disk, attained certain size, triggering dislocation nucleation (from sur-
face, not bulk) and subsequent dislocation plasticity, that gave the characteristic serrated flows. These features are
qualitatively similar to that of a surface with an initial step observed in experiment23 and simulation20. Our DMD
simulations above demonstrate that displacive plasticity can be sensitively controlled by the remnant debris of prior
diffusional plasticity.

B. Sintering

To apply DMD to hot isostatic pressing24, a simulation cell of dimension 8.80nm × 8.80nm × 8.80nm containing
24 randomly oriented grains with normally distributed radii (Fig. 4(a)) was chosen with PBC. Empty “ghost” sites
with c = 10−4, equal to the background vacancy concentration, were added surrounding the grains to allow diffusion
into the pore structure for neck formation. The edges of the cell were compressed down to the theoretical density at
a constant rate of 2.25 Å/τ at 900 K.

This system represents, to a large extent, the complexity of a realistic situation of many-particle sintering. A
movie of this simulation is included in the supplement25. In the process of densification, along with surface and grain
boundary diffusion, DMD captured mechanical reorientation of particles, plastic deformation, rapid neck formation,
consumption of small grain by bigger one, and breaking of long thin pore structure into pore droplets, etc. in a highly
realistic manner. In Fig. 5(a)-(g), snapshots of the system at different (reduced) times are shown to elucidate some
of the above mechanisms. The process of grain rotation and rapid neck formation can be seen in Fig. 5(a) and (b) for
the particles marked by the green arrows (It happens for many other grains also). The evidence of consumption of
smaller grains by bigger ones is shown in Fig. 5(c), indicated by the red arrow. Similarly, by comparing Fig. 5(f) with
Fig. 5(e), breaking of the pore into smaller pore structures is evident (cyan arrow). The time evolution of FDMD, as
shown in Fig. 4(c) for this closed system, shows a gradual decrease largely due to diffusional processes, occasionally
interrupted by sharp reduction as large structural rearrangements are accommodated. These rearrangements occur
less frequently at the later stages as it becomes energetically unfavorable for a large grain to rotate. The final
configuration (Fig. 4(b)) shows a high degree of homogeneity in structure as well as in chemical potential.

IV. CONCLUSION

In summary, DMD free energy is an atomistic realization of the regular-solution model, with gradient thermody-
namics, long-range elastic interactions, and short-range atomic coordination interactions all included. But the novelty
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of DMD also lies in the fact that it reveals a microscopic mass-action pathway, which emerges out of the computer
simulation automatically while decreasing the free energy, relieving chemical non-equilibrium by short-ranged and
long-ranged mass transfer. One view of DMD is that it automatically guides “atom creation” and “atom annihi-
lation” operators in a traditional MD or VG simulation; another equally valid view, coming from the continuum
modeling side, is to think of DMD as solving the Cahn-Hilliard equation7, but on a moving-atoms grid. Because
of the static minimization of {Xi, αi}, the fundamental “clock” of DMD is controlled by the value of diffusivity,
not by atomic vibration. Therefore DMD can be seamlessly coupled to continuum diffusion-elasticity field solvers
such as finite-element or phase-field method, with adaptive grids down to the atomic scale as in the quasi-continuum
method26, but now with compositional degrees of freedom as well as the displacive ones7.

The present implementations of DMD thermodynamics and kinetics both have errors, though. A more accurate
free-energy “density functional” in terms of the site occupations that effectively include pair, triplet, quartet, etc.
correlations27 could be adopted. The simplistic way of modeling the diffusivity used here does not realistically represent
the effect of local environment28, deformation and local stress on kinetics. DMD kinetics is presently just a “downhill
ski” on the DMD free-energy landscape, and cannot capture up-hill phenomena in mass-action reaction coordinate
space due to omission of the noise term. One can, however, easily envision implementing a variety of accelerated
dynamics2,3 and nudged elastic band type calculations29 with DMD free energy in the extended {Xi, αi, ci} space.
The future work will address these issues.

For ease of checking, the source code of DMD and input files for all examples in this paper will be placed at a
publicly available website30.
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a0(Å) FDMD(eV/atom) K(GPa) Ef
V(eV)

Original EAM (0 K) 3.615 −3.54 138.3 1.272

Gaussian averaged potential (1 K) 3.621 −3.53 136 1.277

TABLE I: Comparison of lattice parameter a0, (free) energy per atom FDMD/atom, bulk modulus K, and vacancy formation
(free) energy Ef

V of the Gaussian averaged potential at 1 K with Mishin EAM potential10 for Cu at 0 K. Calculations were
performed with (1− c) = 10−20 on occupied sites and c = 10−20 on vacant sites.
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FIG. 1: Benchmarking VG/DMD with Mishin EAM potential10 for Cu. Calculations were performed with (1− c) = 10−20

on occupied sites of a perfect crystal. (a) Helmholtz free energy per atom FDMD/atom (red solid line), in comparison with

analytical free energy e0 + N−1 ∑3N
k=1 kBT ln(~ωk/kBT ) based on harmonic phonon theory (blue dash-dot line), with phonon

frequencies {ωk} extracted from T ≈ 0 MD simulations. (b) Lattice parameter a0 from DMD calculation (red solid line), in

comparison with direct MD simulations (black dash line). (c) Root mean square displacement
√
〈|xi −Xi|2〉 per atom, based

on DMD calculation (=
√

3(2α)−1, red solid line), full-spectrum harmonic phonon theory (=
√
N−1

∑3N
k=1 kBT (mω2

k)−1, blue

dash-dot line) and direct MD simulations (black dash line).
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a

b

FIG. 2: (a) Vacancy concentration of the initially vacant site over time at several temperatures. Lines show the analytic
solution and mean vacancy jump period b2/DV. (b) Vacancy concentration along the [111] direction for different reduced times
at 900 K. Solid lines show the analytic solutions.(Color online)
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FIG. 3: (a) Indenter accommodation by pure diffusional creep in the form of a surface vacancy disk at t̃ = 1000 for the slower
indentation rate. The black to white color scale represents the value of c with black signifying fully occupied sites. Atomic
sites having c ≤ 0.01 are not shown. (b) Dislocation structures viewed by centrosymmetry parameter21 along [112̄] direction.
Dislocation nucleation occurs at t̃ = 1010. In the inset, shown a typical dislocation loop grown after homogeneous nucleation.
(c) Load-displacement curve for slower and faster rate indentation showing reduced dislocation nucleation load, due to surface
vacancy disk / terrace created by prior diffusion.(Color online)
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FIG. 4: (a) Initial configuration with c = 0.9999 for black sites, c = 0.0001 for white sites. (b) Final configuration after
compressing to theoretical density over a reduced time of t̃ = 13.30. Atomic sites with c ≤ 0.01 are not shown. A movie of this
simulation is included in the supplementary online material25. (c) Time evolution of FDMD per site referenced to the bulk free
energy F bulk

DMD per site for a perfect crystal. In the inset, distribution of site-wise chemical potential is shown for the initial and
final configurations.
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FIG. 5: Time evolution of the microstructure at (a) t̃ = 0 (b) t̃ = 1.33 (c) t̃ = 4.00 (d) t̃ = 6.64 (e) t̃ = 9.30 (f) t̃ = 12.72 (g)
t̃ = 13.30. Atomic sites with c ≤ 0.01 are not shown. The significance of the arrows is discussed in the text. (Color online)


