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Abstract 

Nanoscale enables a broad range of electromechanical coupling mechanisms that are forbidden or 

negligible in the materials. We conduct a theoretical study of the electromechanical response of thin 

paraelectric films with mobile vacancies (or ions) paradigmatic for capacitor-type measurements in X-ray 

scattering, piezoresponse force microscopy (PFM), and electrochemical strain microscopy (ESM). Using 

quantum paraelectric SrTiO3 film as a model material with well known electromechanical, electronic and 

electrochemical properties, we evaluate the contributions of electrostriction, Maxwell stress, flexoelectric 

effect, deformation potential and compositional Vegard strains caused by mobile vacancies (or ions) and 

electrons to the electromechanical response. The local electromechanical response manifests strong size 

effects, the scale of which is determined by the ratio of the SrTiO3 film thickness and PFM/ESM tip size 

to the carriers screening radius. Due to the strong dielectric nonlinearity effect inherent in quantum 

paraelectrics, the dependence of the SrTiO3 film electromechanical response on applied voltage 

demonstrates a pronounced crossover from the linear to the quadratic law and then to the sub-linear law 

with a factor of 2/3 under the voltage increase. The temperature dependence of the electromechanical 

response as determined by the interplay between the dielectric susceptibility and the screening radius is 

non-monotonic and has a pronounced maxima, the position and width of which can be tuned by film 

thickness. This study provides a comparative framework for analysis of electromechanical coupling in the 

non-piezoelectric nanosystems. 
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I. Introduction 

 The nanometer scale introduces a novel functionality in materials, with multiple examples 

including optical, magnetic, mechanical, and electronic transport properties [1, 2]. Many of these 

phenomena underpin multiple device, biological, or medical applications, and give rise to novel 

areas of scientific enquiry [3, 4, 5, 6]. In particular, nanoscale mechanical behaviors recognized 

as a vital component of nanoscience [7] are accessible as a result of evolutionary development 

from macroscopic testing to micron and nanoindentation [8], and subsequently to force-based 

Scanning Probe Microscopy (SPM) techniques [9]. Similarly, transport properties have been 

studied from macroscopic to molecular scales, both as the result of the development of new 

probing techniques and ever increasing demands of information technology [1]. The combination 

of a recognized need for understanding mechanical and electrical behavior at the nanoscale, and 

the evolution of measurement tools capable of addressing these properties on an ever decreasing 

length scale, has led to the present spectacular progress.  

 Of interest for nanoscale systems is the coupling between electrical, mechanical and 

transport phenomena including piezoresistive [10] and direct and converse electromechanical 

effects [11] in bulk materials and molecular systems. For the classical bulk piezo- and 

ferroelectric materials, the electromechanical coupling coefficients are typically small (~1-100 

pm/V) [12, 13], thus requiring precise measurement even for macroscopic samples. Furthermore, 

for disordered materials such as (unpoled) polycrystalline ceramics and biological systems, the 

electromechanical properties described by antisymmetric tensors average to zero. These factors 

have limited quantitative and reproducible macroscopic studies of electromechanics to single 

crystals of materials such as quartz or ferroelectrics, recognized as important (microbalances, 

SAW, sonar, RF devices, ultrasonic imaging) [14, 15], but by now well studied class of systems.  

 The situation cannot be more different in the transition from the macroscopic to the 

nanometer scale. Nanoscale offers a broad array of novel electromechanical phenomena induced 

by symmetry breaking and low dimensionality that do not have macroscopic analogs. Examples 

include purely physical effects such as surface piezoelectricity and flexoelectricity [16, 17, 18, 
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19, 20, 21, 22, 23] as well as chemical and ionic processes in electrochemical [24, 25, 26, 27, 28, 

29], molecular [30] and biological [31, 32] systems. These behaviors are enabled by larger strains 

that can be supported in nanoscale systems, as well as by the fact that local electroneutrality 

conditions are relaxed once system size becomes comparable or below the corresponding 

screening lengths (e.g. Debye lengths) [33]. This opens a new set of phenomena due to the 

electrostriction, Maxwell stress and deformation potential effects.  

 Despite the multitude of the electromechanical coupling mechanisms possible on the 

nanoscale, they are traditionally much less studied then optical, magnetic, and electronic effects. 

However, the situation has been changing rapidly in the last decade. Recent advances in 

scattering methods demonstrate that strain development in ultrathin films can be probed on the 

nanosecond scale [34, 35, 36, 37]. The strains can be also ascertained by the interferometric 

methods [38, 39, 40, 41]. The advances in aberration corrected scanning transmission electron 

microscopy now allow for direct mapping of atomic spacing, providing for observation of 

polarization, chemical effects, and strains on atomic (more specifically, single atomic column) 

level [42, 43, 44, 45, 46, 47]. Finally, techniques such as Piezoresponse Force Microscopy [48, 

49] and Electrochemical Strain Microscopy [50, 51] allow studying time- and voltage 

electromechanical coupling on bare surfaces and in device structures locally, enabling direct 

observation of domain structures, polarization switching, and electrochemical reactivity. 

 Until recently, the nanoscale studies have been focused on material systems exhibiting 

macroscopic electromechanical responses such as piezoelectrics, ferroelectrics, and multiferroics. 

However, a large number of PFM/ESM studies of nominally non-polar materials such SrTiO3 

[52],CaCu3Ti4O12 [53] and (La,Sr)MnO4 [54] has been reported. While the flexoelectric effect, 

electron motion via deformation potential and ionic motion could give rise to electromechanical 

signal [55] in mixed ionic-electronic conductors, the origins of ESM contrast in paraelectric 

materials such as SrTiO3, SrTiO3:La, SrTiO3:Eu:Pr, (Sr,Mn)TiO3, etc, with mobile oxygen 

vacancies and impurities remain open. This motivates us to study all factors affecting 

electromechanical response in PFM on prototypical paraelectric material SrTiO3 (STO), 

including the effects of concentration changes of the free charges due to diffusion and 

electromigration, flexoelectricity, electrostriction and Maxwell stresses. This analysis offers a 

model for other oxides, and also sets the context for future experimental studies.  
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2. Electromechanical response of paraelectrics 

 Experimental approaches for probing electromechanical coupling in nanoscale systems 

typically utilize local or global strain sensor coupled with the electrode material. In comparison, 

the current detection method directly uses detection of conduction (piezoresistance), 

displacement (ferroelectric) or Faradaic (ionics) currents. The comparative analysis of different 

detection principles suggests that strain detection offers significant advantages for nanoscale 

systems [56]. This approach is exemplified by PFM, in which the detection is performed using a 

small probe tip in contact with the free or electrode surface. In the former case, the tip acts both 

as an electrode and sensor, while in the latter case, it detects local deformations induced by the 

uniform field. This approach allows for spatial resolution and can be extended to time- and 

voltage spectroscopy methods [49]. The response in the capacitor structures can be tested by 

interferometric methods [40, 41]. These generally do not allow a spatial resolution, but offer a 

much higher z-resolution. Finally, laser vibrometers combine micron-scale lateral resolution with 

sub-nanometer sensitivity. Here, we study both top-electrode and tip-electrode geometries as 

shown in Fig. 1. Note, that even a very thin, flat capacitor is not equivalent to the SPM tip 

geometry, since in the latter case the lateral transport of electrons and ions is possible. Thus we 

will consider these cases separately: the electromechanical response in planar geometry is 

considered in Section 3, and the local electromechanical response (referred to as PFM response) 

is considered in Sections 4 and 5.  
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Fig. 1. Schematics of ESM/PFM measurements of the electromechanical response of the STO 

film placed between planar electrodes. The surface displacement counted from the fixed back 

interface is u3; voltage V0 is applied to the top electrode, Vb is the built-in potential resulting from 

the Shottky barrier. Inhomogeneous polarization (arrows of different length and direction) 

induced by inhomogeneous electric field leads to the surface displacement via the flexoelectric 

and electrostriction effect. Compositional Vegard strains originate from the electron (blue balls) 

and ionized donors (red balls) electromigration due to the lattice dilatation. 

 

2.1. Generalized concentration-deformation free energy functional 

In order to model the electrical and elastic properties of ionic semiconductor in equilibrium, we 

derive the generalized expression for the free energy functional. Free energy for cubic symmetry 

paraelectrics including quantum corrections has the following form: 

CSSEFLEXOES FFFFF +++=                                          (1a) 

 The first term in Eq.(1a) is the electrostatic energy of the quantum paraelectric with soft 

phonon mode, polarization gradient and space charge, that can be written down as 
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and is derived in Appendix A.1. Hereinafter ( )rmP  denotes electric polarization, εb background 

permittivity and ε0=8.85×10−12 F/m the dielectric permittivity of vacuum. For quantum 

paraelectrics such as SrTiO3, KTaO3, and EuTiO3 in cubic phase [57, 58, 59], the expansion 

coefficient α is temperature dependent in accordance with Barrett Law, 

( ) ( )( )( )022coth TTTTT qqT −α=α . The higher order coefficients ijα , including the 4th order 

terms in polarization, are relevant for cubic materials with soft mode nonlinearity. These and 

other quantities, including gradient coefficient ijklg , are listed and defined in the Table 1. Note 

that for high temperatures Eq.(1b) is applicable to all cubic perovskites, e.g. for ferroelectrics in 

paraelectric phase above the Curie temperature. Film-substrate misfit strains can be accounted 

through the renormalization of the free energy coefficients ( )Tiα  and ijα  [60]. However below 

we consider only matched substrates (film-substrate misfit strain is negligibly small), or thick 

slabs (where misfit strain is relaxed [61]) and defer the discussion of the effect of strain-induced 

ferroelectric phase transition [62, 63] to future studies.  

 In Eq. (1b), ( ) ( ) kk xE ∂ϕ∂−= rr  denotes the electric field, ( )rϕ  the electric potential, 

( )nNe d −+  the space charge density, e=1.6×10−19 C the electron charge, ( )rn  the concentration of 

the electrons in the conduction band and ( )r+
dN  the concentration of ionized defects (e.g. oxygen 

vacancies) which could be mobile. The latter term in Eq.(1b) is the electrostatic energy of free 

charges with density ( )nNe d −+  in the electric field with potential ϕ  (e.g. Ref.[64]). 

 The second term in Eq.(1a) is the flexoelectric effect contribution: 
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Hereinafter ( )rklu  denotes the elastic strain and ijkmf  the flexoelectric tensor. The third term in 

Eq.(1a) is the contribution of electrostriction coupling and elastic energy: 
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Here ijklq  denotes the electrostriction stress tensor, ijklc  the elastic stiffness tensor and 
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22 0ED,  the Maxwell stress tensor [65, 66]. For 

polarized media of cubic symmetry with isotropic dielectric permittivity tensor ijij εδ=ε  the 

electric displacement is given as kkk EPD 0ε+= . 

 The last term in Eq. (1a) represents the contributions of concentration-strain coupling and 

configuration entropy of the charged species: 

( ) ( )( ) ( ) ( )( )++++ ++−β+−Ξ= ∫ ddeBeBijdedijeij
V

CS NNSTknnSTkuNNnnrdF ,,3                  (1e) 

In the Boltzmann-Planck-Nernst approximation, the configuration entropy function is given as 

( ) ( ) yxyyyxS −= ln, ; kB=1.3807×10−23 J/K, where T is the absolute temperature. Equation (1e) 

includes electrochemical concentration-deformation energy, ( ) ( )( ) ijdedijeij uNNnn ++ −β+−Ξ , 

which is determined by the convolution of the tensorial deformation potential tensor ijΞ  and 

Vegard expansion tensor ijβ  with elastic strain tensor ( )rjku . In the absence of external potential 

and strains, the equilibrium concentrations of the electrons in the conduction band and ionized 

defects are represented as en  and +
deN  respectively. Typical values of en  and +

deN  for SrTiO3 with 

mobile oxygen vacancies are listed in the Table 1. 

 The functional in Eq.(1a) is the Helmholtz free energy with the strain field as its 

independent variable [67, 68, 69, 70, 71]. Other forms of free energy functional (e.g. Gibbs form) 

could be deduced from Eqs.(1) using corresponding Legendre transformations. 

 Finally, here we neglect the surface energy contribution in free energy (1), in particular 

the surface piezoelectric effect, originated from the inversion center absence in the immediate 

vicinity of surface [72, 73, 74]. Despite the fact that the surface piezoelectric effect should exist 

as required by symmetry theory, the magnitudes of its coefficients are still a challenge and are 

likely to be small for an ideal surface (also note that surface behavior is likely to be dominated by 

the ionic screening conditions, as analyzed by Stephenson et al [75]).  

 



 8

Table 1. Material parameters for SrTiO3. 

Parameter Unit Quantum paraelectric 
SrTiO3    Notes and Refs    

Background permittivity   εb dimensionless 3 − 43 * [76] 

Full permittivity ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

αε
+ε=ε

0

1
b  

dimensionless 297-300 * at RT 

Soft mode related permittivity 

( ) 1
0

−αε=εQP  

dimensionless 257-207 * at RT 

LGD-expansion coefficient   αT 106 m/(F K) 1.66 * [57, 58] 
Curie temperature   T0 K 36 * [57, 58] 
Quantum vibration temperature   Tq K 100 * [57, 58] 
LGD-gradient coefficient   g 10-10 V⋅m3/C 1 − 10    [77] 
LGD-expansion coefficients  αijkl 
for elastically free system 

109 m5/(C2F) α11=8.1 
α12=2.4 

* [57, 58] 

LGD-expansion coefficients   αijkl 
for elastically clamped system 

109 m5/(C2F) α11=9.6 
α12=3.2 

* [57, 58] 

Electrostriction strain coefficients  
Qijkl 

m4/C2 Q11=0.051  
Q12= −0.016 
Q44=0.020 

* [78] 

Electrostriction stress coefficients  
qijkl=-cijnmQnmkl (Vogt notation) 

109mJ/C2 q11=-13.7  
q12= 1.6 
q44=-2.5 

* recalculated from 
Qijkl and cijkl 

Flexoelectric tensor α=γ ijklijkl f  at 
room temperature (300 K)  
(Vogt notation for cubic symmetry) 

10-9C/m γ11= − 9 
γ12= 4 
γ44= 3 

measured by [79] 
only once  

Elastic stiffness   cij 1011 N/m2 c11=3.36 
c12=1.07 
c44=1.27 

* [78] 

Elastic compliances   sij 10-12 m2/N s11=3.52 
s12= −0.85 
s44=7.87 

* recalculated from 
stiffness cijkl 

Vegard expansion tensor βij 
(for cubic symmetry ijij βδ=β ) 

eV ~1 order of magnitude 
taken from [80, 81, 
82] 

Tensorial deformation potential Ξij 

(for cubic symmetry ijij δΞ=Ξ ) 
eV 2.87  estimated as 2EF/3 

for EF=4.3 eV  
* [83, 84] 

Equilibrium concentration of the free 
electrons en  and mobile ions +

deN  
(oxygen vacancies) 

m-3 1023 − 1026 * [85, 86] 
at RT, depending 
on the oxygen  

* means that the parameter value is well known, RT – room temperature 
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2.2. Thermodynamic equilibrium: equations of state with boundary conditions 

A variation of the free energy functional Eq.(1) with respect to its independent variables 

(potential ϕ, polarization P and strain tensor uij) allows us to derive corresponding equations of 

state. These, along with the corresponding boundary conditions, are discussed below. 

1)   Equation of state for polarization follows from the minimization of the free energy (1) 

0=δδ iPF  (here, δ represents the variation derivative [87]) as 
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l
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The Maxwell stress term ⎟
⎠
⎞

⎜
⎝
⎛ − i

kk
jij EuEu

2
 is typically very small in comparison with iE , since the 

absolute values of strain are always very small in comparison with unity, 1<<iju . If 

nonlinearity and gradient effects are not taken into consideration, then Eq.(2a) yields 

( ) ( )( )jkmnmnkjmnijmniji ExufquP +∂∂+αδ≈ −12  ( ijδ  is Kroneker delta). 

 Allowing for the gradient term contribution to free energy (1b), the natural boundary 

conditions for Eq.(2a) are obtained after the minimization of free energy: 

0=
∂
∂

Sl

k
jijkl x

P
ng                                                    (2b) 

Note that this condition is consistent with the quasi-homogeneous distribution of polarization, 

since we do not consider the surface energy contribution to free energy, which leads to the 

intrinsic distribution of spontaneous polarization in nanosized ferroelectrics [88].  

2)   Variation 0=
δϕ

δ=
δϕ
δ ESFF  leads to the Poisson-type equation for electrostatic potential ( )rϕ : 

( )
k

k
d

ii
b x

PnNe
xx ∂

∂+−−=
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ϕ∂εε +

2

0 .                                         (3a) 

Boundary conditions to Eq.(3a) have the form:  

( ) ( ) 0,,,)0,,( 21021 =ϕ+=ϕ hxxVrVxx b .                                     (3b) 

where ( )rV0  denotes the radially symmetric electrostatic potential distribution produced by the 

PFM tip at the sample surface z=0, 2
2

2
1 xxr +=  and h is the film thickness. Vb represents the 
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constant built-in potential [89, 90], which originate from surface dipole layers, e.g. due to the 

Shottky barrier at the tip (or electrode) – surface junction. The planar electrode at z=h is regarded 

ohmic, i.e. the potential is continuous here. 

 Concentrations of the electrons and ionized donors in the Boltzmann-Planck-Nernst 

approximation are 

( ) ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ϕ+Ξ−
=

Tk
eu

nn
B

ijij rr
r exp0 ,      ( ) ( ) ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ϕ−β−
= ++

Tk
eu

NN
B

jkjk
dd

rr
r exp0 .            (4) 

 Note, that no principal constrains exist on the values of 0n  or +
0dN  for the case of ion or 

electron conducting interfaces (CI); however, they are dependent on the electrochemical 

potential of the material and electrodes. Here, we choose the special case of boundary conditions 

enn ≡0  and/or ++ ≡ ded NN 0  for electron/ion CI respectively. The condition 00 nNd =+  holds for a 

semi-infinite paraelectric, since the electric field should vanish in the material depth. For the 

films of small thickness, electro-neutrality of the whole system “film + electrodes” can be 

maintained by the free charges accumulated at the planar electrodes and 00 nN d ≠+  is possible in 

thin films due to the carriers injection/divergence.  

 For the case of blocking interfaces (BI) constrains, the 0n  and +
0dN  values can be derived 

from appropriate conservation laws. When both interfaces z = 0 and h are ion-blocking, the total 

amount of donors remain constant ( ) constVNrdN de
V

d == ++∫ 3r  in the material of volume V, and  
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When both interfaces are electron-blocking, the total amount of electrons are constant 

( ) constVnrdn e
V

==∫ 3r  and  
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In the case when even one of the interfaces are ion(electron)-conducting, no such constrains are 

present in the thermodynamic equilibrium, while kinetic processes (current flow) essentially 

depend on the blocking/conducting conditions at both interfaces.  
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3)   Variation of the free energy (1) on the strain tensor gives the stress tensor, ( ) ijij uF δδ=σ r , 

as: 
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As the strain tensor is given by ⎟
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1 , the Lame-type equation for mechanical 

displacement ui can be obtained from the equation of mechanical equilibrium 0)( =∂σ∂ iij xr , 

where the stress tensor )(rijσ  is given by Eq.(6), namely:  
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Mechanical boundary conditions [91] corresponding to the PFM/ESM experiments [49, 50, 56] 

are defined on a mechanically free interface, z = 0, where the normal stress is absent (more 

specifically, tip-surface forces are small), and on substrate interface z = h, where the 

displacement ui is zero for a thick “rigid” substrate or continuous for a “soft” thin substrate: 

( ) 00,, 213 ==σ zxxi ,                                          (8a) 

( ) 0,, 21 == hzxxui      or   ( ) ( )0,,0,, 2121 +==−= hzxxuhzxxu ii .              (8b) 

 

2.3. The electromechanical response of the film surface 

 The electromechanical response of the film surface at the point x3=0, i.e. surface 

displacement at the tip-surface junction detected by SPM electronics, for elastically isotropic 

semi-space, can be calculated as: 

MTESFLEXOCSi uuuuzxxu +++=),,( 21 .                              (9a) 

 For cubic symmetry, the four contributions in Eq.(9a) are concentration-strain, 

flexoelectric, electrostriction, and Maxwell strain respectively. Their explicit forms are following.  
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Concentration-strain contribution including compositional Vegard strain and deformation 

potential: 

( ) ( )( ) ( )( )( )∫∫∫
<ξ<

++ −β+−Ξ
ξ∂

ξξ−ξ−∂
−=

h
dedmjemj

m

S
ij

CS dNNnn
zxxG

u
30

332211 ,,,
ξξξ ,    (9b) 

Here, S
ijG  denotes the tensorial elastic Green function corresponding to a semi-space (the case 

∞→h ) as listed in e.g. Ref.[92]) or to a thin film placed on a rigid or matched substrate (derived 

in Refs.[93, 94]).  

Flexoelectric contribution: 

( )
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Electrostriction contribution: 
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Maxwell stress contribution: 
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Explicit form of Eqs. (9b)-(9e) is listed in Appendix B for materials with cubic symmetry. 

 

2.4. Electromechanical response in decoupling approximation 

Equations (9a-e), (3a-b) and (2) form the nonlinear coupled system. Below, we introduce a 

decoupling approximation in which we consider the flexoelectric effect. The electrostriction 

contribution is small enough to be disregarded in the Poisson equation. The accuracy of the 

approximation is discussed in the next subsection. The decoupling approximation allows the 

individual terms in Eq.(9a) to be evaluated as following: 

 Step 1. Determination of the electric potential from the Eq.(3a) without strain terms: 

( )nNe db −−=ϕΔ⎟
⎠
⎞

⎜
⎝
⎛

α
+εε +1

0                                      (10a) 

Where  

( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ−
= ++

Tk
e

NN
B

dd
r

r exp0       and    ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ=
Tk

enn
B

rr exp0 .                    (10b) 
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In linear Debye approximation, mainly used hereinafter, i.e. regarding that 1<<ϕ Tke B  and 

expanding the exponents in Eq.(10b) as ( ) xx +≈ 1exp  we get 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ−≈ ++

Tk
eNN
B

dd 10  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ+≈
Tk

enn
B

10 ,                                      (10c) 

the solution of the Poisson equation (10a) with boundary conditions (5) was determined as: 

( )

( ) ( )( ) ( )
( )

( ) ( )( )
( ) ( ) ( )⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ϕ⋅+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−−−−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−−
εε

−

=ϕ

∫
∞

+

zkkrkJdk
Rh

RzhRzV

Rh
RzRzhRnNe

zr

V
d

dd
b

d

dddd

,~
2exp1

2expexp

exp1
expexp1

,

0
0

0

2
00

    (11a) 

( ) ( ) ( ) ( )( )
( )hkK

zhkKzkKkVzkV )(2exp1
2)(exp)(exp~,~

0 −−
−−−−=ϕ                              (11b) 

Where 22)( −+= dRkkK , since above the temperature of the structural phase transition 

(~105 K) the dielectric permittivity is isotropic: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

αε
+ε=ε

0

1
b . The Debye screening radius is 

introduced as ( )++
εε=

00
2

0

d

B
D Nne

TkR .  

 Step 2. Substitution of the polarization from Eq.(2), disregarding the strain terms, 

( ) ii xP ∂ϕ∂α−≈ −1 , in Eq.(9a) leads to 

( ) ( )( ) ( )( )
∫∫∫

<ξ<

++

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

ξ∂ξ∂
ϕ∂

α
−

ξ∂
ϕ∂

ξ∂
ϕ∂

α
+

−β+−Ξ

ξ∂

ξξ−ξ−∂
−=

h
lk

mjkl

lk

MT
ijkl

dedmjemj

m

S
ij

i dfq

NNnn
zxxG

zxxu
30

32

2

32211
21

,,,
),,( ξ

ξξ
   (12a) 

Where the electrostriction tensor is renormalized by the Maxwell stress as 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ δδ
−δδ

−εε
ε

+=
21 2

0

klij
jlikijkl

MT
ijkl qq                     (12b) 

In fact, Eq.(12b) shows that the electrostriction term acts as the “electrostatic force” effect. 

 For cubic symmetry the Eq.(12a) contains three contributions: concentration-strain, 

electrostriction renormalized by the Maxwell stress in accordance with Eq.(12b) and the 

flexoelectric contribution (see Appendix A). Interestingly, the contribution of Maxwell stress to 

(12b) is estimated to be negligibly small for SrTiO3, since 109 1010~ −ijklq mJ/C2 (see Table 1), 
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while 
( )

7

0
2

0

108.3
1

1
×=

εε
≅

−εε
ε

 mJ/C2 at room temperature, so their ratio ( ) 5012 2
011 ≈ε−εεq . 

It is obvious that for the case ( ) 112 2
011 ≤ε−εεq  Maxwell’s stress would be comparable with 

electrostriction for the considered geometry of film on substrate electrode. For instance, 

estimations for fused silica, SiO2, gives ( ) 28.012 2
011 ≈ε−εεq , and ( ) 412 2

011 ≈ε−εεq  for MgO 

(electrostriction coefficients are taken from Ref.[95]). 

 Equations (12a-b), (11a-b) and (10b) form the linear decoupled system that can be solved 

analytically. Within the decoupling approximation, the concentration-strain and flexoelectric 

contributions are linear with respect to the electric field (and hence applied voltage) and thus they 

mimic “piezoelectric like”, while electrostriction and Maxwell stress contribution are quadratic 

with respect to the applied voltage.  

 

2.5. Accuracy of the decoupling approximation. Polarization nonlinearity impact  

 To estimate the accuracy of the decoupling approximation we studied numerically and 

semi-analytically the following 1D-model: 

(a) All variables are only z-dependent in the coupled system (2), (3), (9). 

(b) Debye approximation Eq. (10c) is used for electrostatic potential. 

(c) The assumption 00 nNd =+  is introduced, i.e. formation of each immobile ion produces an 

electron. 

 Within the coupled model we minimized the free energy (1) numerically and analytically 

by the direct variational method [73] and then derived an approximate analytical solution for the 

electric field ( )zE3 , polarization ( )zP3  and strain ( )zu33  distributions (see Appendix A.3). The 

approximate analytical dependence of the displacement (9) on applied voltage has the form: 

( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>>⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ κ
+

α
+

α
−

κ+β−Ξ

≤⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

α
+

+κα
−

β−Ξ

=

d
c

d

ccc

dd

B

d
dB

coupled

Rh
L

gR
Lc

qU
L

U
c
f

L
gRR

cTk
Ue

n

Rh
U

h
c
q

hgR
hU

c
fh

cTk
Ue

n

u

,
2

~~

2
1

~~
~~~

,,~~12~2~2
)0(

3
11

11
2

2

11

11
2

11
0

3/2

11

3/1

11

11
22

3

11

11

11
0

3  

(13a) 
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Here we introduced the total potential drop bVVU += 0 , coefficient 11
2
111111 2~ cq−α=α  

renormalized by electrostriction, inverse susceptibility α~  renormalized by paraelectric 

nonlinearity ~ 2P , and permittivity bεε=κ 0 , renormalized Debye screening radius dR~  and 

gradient term g~  as: 

2
11

~3~ Pα+α=α ,    ⎟
⎠
⎞

⎜
⎝
⎛

α
+εε=

+ ~
1

2
~

02
0

2
b

d

B
d eN

Tk
R ,   ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−≡

11

2
33

33
~

c
fgg .                (13b) 

The characteristic length 
α

+κ+= ~
~

~~2~ 2 g
gRRL ddc  includes the combination of the screening 

radius dR~  and correlation length of paraelectric α= ~~glc  (and we regard it as the screening-

correlation length). Estimations for STO parameters gives g~κ ~0.4 nm, dR~ ≤10 nm and 

α~~g ~1 nm for U=0. 

Note that the difference between α~  and α depends on the applied voltage, since average 

polarization dzP
h

P
h

∫=
0

33
1  depends on the potential U and film thickness h via the cubic 

equation hUPP =⎟
⎠
⎞⎜

⎝
⎛ α+α 3

2

311
~ , where the right-hand side is the average electric field, 

h
U

dzE
h

h

≡∫
0

3
1

, independent on the Debye screening Rd. The solution of the cubic equation has the 

form: 

( )
( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

α

<<
α

≈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

α
α

−=
.,~

,,

,~3
1, 3/1

11

2
11

3

c

c

E
h
U

h
U

E
h
U

h
U

Uhp
UhpP                (14a) 

Where the amplitude ( )Uhp ,  and characteristic field cE  are: 

( )
3/1

2

11

3

1111
~2~3~2

,
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

α
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

α
α

+
α

=
h

U
h

U
Uhp ,       

2/3

11
11 ~3

~2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

α
α

α=cE              (14b) 
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The characteristic field cE  mimics the thermodynamic coercive field of ferroelectrics with 

negative α, 
2/3

11
11 ~3

~2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

α
α−

α=FE
cE . The characteristic field is 7109.3 ×=cE V/m for STO 

parameters at room temperature. The field cE  decreases with temperature, since α falls with 

temperature in accordance with Barrett Law. Two limiting cases of Eq.(14a) correspond to a low 

and a high effective field hUE ~* .  

 In the decoupling approximation (i.e. assuming ( ) ii xP ∂ϕ∂α−≈ −1  as described in 

subsection 2.4) the surface displacement has the form: 

( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>>
α

+
α

−
β−Ξ

≤
α

+
α

−
β−Ξ

=
.,

2
11

,,
1

22
)0(

11

11
2

2

11

11

11
0

11

11
2

2

2
11

11

11
0

3

d
dd

d
B

d
dBdecoupled

Rh
Rc

qU
R

U
c
f

R
cTk

Ue
n

Rh
hc

qU
R
hU

c
fh

cTk
eU

n
u           (15) 

As anticipated, the coupled solution Eq.(13a) yields the decoupled solution Eq.(15) in the 

limiting case where 0~ →g  and 0~
11 →α . 

 Note that the difference between the displacement calculated in the coupled problem 

(Eq.(13)-(14)) and decoupled approximation (Eq.(15)) are determined by the thickness 

dependence (especially important at small thicknesses dRh ≤ ) and coefficients dR~  and α~  

renormalization. In particular, in the coupled problem, the striction contribution scales as 

( ) 3/2
11

3/1 ~αUh as the film thickness decreases, compared to the behavior expected in linear 

decoupled model, where it increase as ( )hU 22 α  with thickness decrease. The origin of the 

electrostriction contribution divergence in the pure decoupling approximation at small 

thicknesses is the divergence of the electric field, since electrostriction strain per se is 

proportional to the squire of the electric field, that is in turn proportional to the film thickness 

square: ( )22 ~~ hUEu iii . Integration of the electrostriction strain yields 

∫
h

iiii hhudzuu
0

3 1~~~)0( . The rapid increase of the electrostriction contribution starts at the 

critical thickness dcr Rh ~ .  
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 From Eqs.(13)-(15) it is obvious that the electrostriction contribution dominates at high 

applied voltages and/or small film thicknesses. Correspondingly, in this region the decoupling 

approximation accuracy is not satisfactory. Accuracy of the decoupling approximation should be 

high enough for thick films with dRh >> . 

 Comparison between numerical simulations of the coupled problem and analytical 

expressions obtained in decoupling approximation is shown in Fig.2.  
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Fig.2. Thickness dependence of one-dimensional electromechanical response amplitude 

calculated for STO film and different total potentials U=0.1 V, 1 V, 10 V (figures near the 



 18

curves); n0=Nd0=1024 m-3 (a, b); n0=Nd0=1025 m-3 (c, d); gradient coefficient g = 10-10 V⋅m3/C (a, 

c); g = 10-9 V⋅m3/C (a, c). Dotted curves are calculated in net decoupling approximation (15); 

dashed curves correspond to the coupling problem (13)-(14); solid curves are calculated in 

decoupling approximation (15) but with substitution 2
11

~3 PP α+α=α→α  in the 

electrostriction term. STO parameters are listed in the Table 1 and T=300 K is chosen. 

 

 It can be seen from Fig. 2, that the difference between the “coupled” (dashed) and the 

“decoupled” (dotted) curves is significant for thin films ( dRh << ), since the unphysical 

divergence happens only in the decoupled case due to the electrostriction contribution, while 

concentration-strain and flexoelectric contributions calculated in the decoupling approximation 

still have satisfactory accuracy. All the curves (“coupled” and “decoupled”) saturate and tend to 

the same value in the limit dRh >> .  

 At low potentials (U≤ 0.1 V) the response changes its sign approximately at dRh ~ , since 

the flexoelectric and electrostriction contributions have different signs and different thickness 

dependence (as studied in detail in Section 3). At low potentials (U≤ 0.1 V), the decoupling 

approximation is applicable even for dRh 5.0> . For high potentials, the decoupling 

approximation (dotted curves) works adequately at film thickness dRh >> . The accuracy of the 

decoupling approximation is almost independent of the value of the gradient coefficient g and 

carrier concentration n0=Nd0 (compare plots a-d in Fig.2). We expect that the net linear 

decoupling approximation (15) should work much better for linear dielectrics. 

 It can be seen from the figure, that the accuracy of the decoupling approximation (15) for 

intermediate and high potentials can be essentially improved (up to several % from exact 

solution) by the substitution 2
11

~ PP α+α=α→α  in the electrostriction contribution 

11

11
2

2

~
c
qU

u
P

ES α
 (see dotted and solid curves, which almost coincide). Note, that the 

renormalization accounts for the effect of paraelectric nonlinearity (nonzero 11α ) that is relatively 

strong for quantum paraelectrics like STO. Being more rigorous, one could substitute α→α ~  and 

dd RR ~→  in the flexoelectric contribution 
2

11

11

2 d

decoupled
FLEXO R

hU
c
f

u
α

=  in Eq.(15), but the substitution 
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does not lead to any essential improvements of its accuracy, required at small thicknesses, since 

2
2

0
02

0

2

2~
1

2

~~~
d

d

B
b

d

B
d R

eN
Tk

eN
Tk

R α≈≈⎟
⎠
⎞

⎜
⎝
⎛

α
+εε

α
=α

++
 for STO material parameters. The flexoelectric term 

in Eq.(15) coincides with the corresponding term in Eq.(13a), ( )22

3

11

11
~12~2~ hgR

hU
c
f

u
d

coupled
FLEXO +κα

= , 

in the limit 2~12 hg <<κ . The concentration-strain contribution 
( )

211
0

h
cTk

eU
nu

B
CS

β−Ξ
=  is 

identical for coupled and decoupled cases at small film thicknesses.  

 To summarize, the difference between the electromechanical response calculated in the 

“coupling” and the “decoupling approximation” is very significant for thin films ( dRh << ), since 

unphysical divergence happens only in the decoupled case due to the electrostriction contribution. 

Both “coupled” and “decoupled” responses saturate and tend to the same value in the limit 

dRh >> . The renormalization 2
11

~ PP α+α=α→α  significantly improves the linear decoupling 

approach for paraelectric thin films and transfers all the nonlinearity into the coefficient Pα  that 

becomes h and U dependent. Correspondingly, this approach will be used in Section 3. Finally, 

for thick films with dRh >> , and especially for semi-infinite samples (h→∞), the average 

polarization 2P  is zero for non-polar materials (since the electric field from the planar electrode 

vanishes at distances dRr >> ) and α≡αP , α≡α~ . Thus the net decoupling approximation has 

the appropriate accuracy for a thick film and semi-infinite samples (in agreement with Eq.(14)). 

Repeating similar analyses for a localized tip electrode, again leads to 02 →P  in the limit 

h→∞. This allows us to use the net decoupling approximation in Section 4, where the tip 

electrode and the limit h→∞ will be considered. 

 

3. Electromechanical response of thin film in the planar capacitor geometry  

 For the strain measurements in the planar capacitor geometry, the top electrode is 

considered to be mechanically free (e.g. ultra-thin, or liquid, or soft polymer). For the cubic 

symmetry film on a thick substrate, mechanical boundary conditions are ( ) 0=hui , ( ) 003 =σ i . 

We also set ( ) ( ) 02211 == zuzu , and derive the surface displacement in the form [96]: 
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( )( ) ( )( )( )∫ ⎟
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)0(         (16a) 

To improve the accuracy of the decoupling approximation, including the effects of (paraelectric 

or ferroelectric) polarization nonlinearity, we substitute 2
11

~ PP α+α=α→α  and derive:  

( ) ( )
( )

2

2
11

2
11 ,~3

1,~, ⎟
⎟
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⎞
⎜
⎜
⎝

⎛
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UhpUhP               (16b) 

where the function ( )
3/1

2
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α
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h
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Uhp , the total potential bVVU += 0 , 

and 11
2
111111 2~ cq−α=α . 

 The net (or linear) decoupling approximation is valid for low potentials U and/or thick 

films ( dRh >> ). In the case where the concentration-strain and flexoelectric contributions are 

linear with respect to electrostatic potential ϕ , and thus they mimic piezoelectric effect, while 

electrostriction and Maxwell stress contribution are quadratic with respect to potential.  

 In the Debye approximation and 1D case ( ( ) const0 =rV ) the solution (11) is reduced to: 
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 Within the section enn ≡0  for electron-conducting interfaces, 
( )
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⎠

⎞
⎜⎜
⎝

⎛ ϕ
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h

B
e dz

Tk
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hnn
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0 exp  

for electron-blocking interfaces in accordance with Eq.(5b); ++ ≡ ded NN 0  for ion-conducting 

interfaces and 
( )

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ−
= ++

h

B
ded dz

Tk
ze

hNN
0

0 exp  for ion-blocking interfaces in accordance with 

Eq.(5a). The electric potential is given by Eq.(14a). 
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 Then direct integration of Eq.(16) leads to the analytical expression for the surface 

displacement: 

)0()0()0()0(3 ESFLEXOCS uuuzu ++== .                                   (18a) 

Where the concentration-strain contribution depends on the interfaces (blocking/conducting) type 

as follows: 
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Where concentration strain contribution is 
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flexoelectric contribution is: 
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electrostriction contribution is: 
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and dRhy = . It can be seen from Eqs.(18b-e) that the size effect of the contributions scales with 

dRh  as a relevant length scale. 

 The contributions to electromechanical response of STO films, namely chemical 

expansion/deformation potential, flexoelectric strain and electrostriction, are shown in Figs.3 for 

fixed potential, ion-conducting interfaces and different concentrations of donors.  
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Fig.3. Thickness dependence of one-dimensional electromechanical response (R) and its 

concentration-strain (CS), electrostriction (ES) and flexoelectric (FE) contributions calculated 

for STO film at applied voltage 0V =0.1 V (a, c, e), 1 V (b, d, f), n0=Nd0=1025 m-3 (a, b); 

n0=1025 m-3 and Nd0=1024 m-3 (c, d); n0=1024 m-3 and Nd0=1025 m-3 (e, f). STO parameters are 
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listed in the Table 1, T=300 K and built-in potential Vb=0. The chosen space charge 

concentrations are ≈dR 4.6 nm for the case 00 nNd =+  and =dR 6.2 nm for 00 nN d ≠+ . 

 

 The electromechanical response behaviour with increasing thickness also depends on the 

relationship between the donor concentration +
0dN  and the electron concentration 0n  (compare 

Figs. 3a,b calculated for 00 nNd =+  with Figs. 3c-d calculated for and 00 nNd >+  and Figs. 3e,f 

calculated for 00 nNd <+ ). Note that the condition 00 nN d ≠+  may readily be achieved for thin 

films with planar ohmic electrodes, when the whole system “film + electrodes” remains electro-

neutral due to the free charges accumulated at the planar electrodes. However, the condition 

00 nNd =+  holds rigorously only for a semi-infinite material, while for the films of small thickness 

( 100<dRh ) the situation 00 nN d ≠+  is possible in thin films due to the carrier injection from the 

planar electrodes. 

 It can be seen from Figs. 3a,b that the concentration-strain contribution to the 

electromechanical response is smallest under the condition 00 nNd =+  for chosen material 

parameters. It monotonically increases with the film thickness for the case 00 nN d =+ .  

 Under the condition 00 nN d ≠+  the concentration-strain contribution increases linearly 

with the film thickness h and for small potentials U may become more significant than the 

electrostriction and flexoelectric contributions, Figs. 3c,e. However, for higher U the 

concentration-strain contribution is smaller than the electrostriction and flexoelectric 

contributions even at 00 nN d ≠+  (see Figs. 3d,f). For the case 00 nN d <+  the maxima exists on the 

thickness dependence of the concentration-strain response. 

 The flexoelectric contribution increases monotonically with the film thickness and 

saturates at 1>>dRh  independent of the ratio between +
0dN  and 0n . Both concentration-strain 

and flexoelectric contributions monotonically tend to zero at 0→h . The electrostriction 

contribution has a maximum at small film thicknesses, but remains finite and even tends to zero 

as at 0→h  allowing for the renormalization 2
11

~ PP α+α=α→α  (as shown in Figs.3). Note, 

that in net decoupling approximation, electrostriction contribution diverges at 0→h  and 
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strongly dominates at small thicknesses, since it is inversely proportional to film thickness h in 

accordance with Eq.(18e).  

 The potential dependence of the STO film electromechanical response is shown in Fig. 4 

for different film thickness, potential window and concentrations of donors. It is seen that for 

case 00 nNd =+  the response is zero for zero potential (all the curves start from the coordinate 

origin), while for 00 nNd ≠+  there is a response from the bulk charge, independent of potential 

(compare Fig. 4a,c with e,f). 

 Note that all curves in Figs.4 demonstrate a crossover from the linear ( Uu ~3 ) at very 

small total potentials ( chEU << ), to the quasi-parabolic-like 2
3 ~ Uu  dependences at low 

potentials chEU ≤  to the sub-linear 32
3 ~ Uu  with the potential increase chEU >>  (see log-

log plots b and d). At a fixed potential window, the electromechanical response voltage 

dependence changes from quasi-linear and quadratic to the one with thickness decrease (Figs. 

4a,c,e,f). This behavior can be understood as follows. At film thickness higher than the 

characteristic thickness cEUh >>  (or at very low chEU << ) the nonlinearity in equation 

hUPP =⎟
⎠
⎞⎜

⎝
⎛ α+α 3

2

311
~  can be disregarded and the average polarization is ( )hUP α=3  

in accordance with Eqs.(14). Hence, the response is determined by the flexoeffect at very small 

potentials U and is a linear function of U: UPhuu FLEXO ~~~ 33 . At higher voltages 

chEU ≤  (but still enough low to account for nonlinearity in equation 

hUPP =⎟
⎠
⎞⎜

⎝
⎛ α+α 3

2

311
~ ) the response is determined by electrostriction and thus becomes a 

quadratic function of potential: 22
33 ~~~ UPhuu ES . Finally, at high total potential chEU >>  

(or very small film thickness cEUh << ) the nonlinearity cannot be disregarded and the 

dependence of polarization on potential changes to a nonlinear relationship: 

( )( ) 3/1
113

~ hUP α= . As a result, the electromechanical response is determined by the biggest 

electrostriction contribution ( )( ) 3/2
11

3/12
33

~~~~ αUhPhuu ES , since flexoelectric and 
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concentration-strain contributions increase with the potential at a much slower rate: 

( )( ) 3/1
113,

~~~ hUPhu CSFLEXO α  (weak sub-linear low).  
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Fig.4. Potential dependence of the one-dimensional electromechanical response of STO film of 

thickness =dRh 1, 2, 5, 10, 20 (figures near the curves), n0=Nd0=1024 m-3 (a – linear scale, b – 
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log-log scale); n0=Nd0=1025 m-3 (c – linear scale, d – log-log scale); n0=1025 m-3 and Nd0=1024 m-3 

(e), n0=1024 m-3 and Nd0=1025 m-3 (f). STO parameters are listed in the Table 1 and T=300 K. 

 

 Contour plot of the electromechanical response in coordinates total potential – film 

thickness is presented in Fig. 5 for the case 00 nNd =+ .  
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Fig.5. Contour plot of the electromechanical response in coordinates total potential – film 

thickness. Color scales indicate the response values in picometers (pm=10−12m). STO parameters 

are listed in the Table 1, n0=Nd0=1024 m-3 (a) and n0=Nd0=1025 m-3 (b); also we set T=300 K. 

 

 It can be seen from Fig. 5 that the shape of the contours is asymmetric with respect to the 

sign of total potential U  at small thicknesses. The asymmetry originates from flexoelectric and 

concentration-strain contributions FLEXOCSu , , which are odd functions of the total potential U  at 

00 nNd =+ , while the electrostriction contribution )0(ESu  is the even function of U at 00 nNd =+ . 

The asymmetry vanishes with increasing film thickness. In the decoupling approximation, the 

electrostriction contribution has a quadratic potential dependence and dominates with potential 

increase 1
2~)0( CBUAUuES ++  (parabolic form of some curves), while other contributions 

have linear dependence, 2, ~)0( CDUu FLEXOCS + , and responsible for the asymmetry of the 

curves, since the coefficients ( )002,1 ~ nNC d −+  and ( )00~ nNB d −+  are zero in the case 00 nNd =+ . 
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 To summarize, the electromechanical response of SrTiO3 films exhibits a size effect 

controlled by the ratio of the film thickness h  to the carriers screening radius dR , and all the 

contributions (electrochemical, flexoelectric, electrostriction and Maxwell stain) of the response 

depend on the ratio dRh  and saturate at 1>>dRh . The potential dependence of the response 

demonstrates a crossover from the linear to the quadratic law and then to the sub-linear (power 

law 2/3) with a decrease in the film thickness at a fixed potential window (or with increasing 

applied voltage and fixed film thickness). The crossover originates from the cubic nonlinearity in 

electric polarization field dependence, typical for paraelectrics.  

 

4. Local electromechanical response for PFM geometry 

For the radius-dependent potential ( )rV0  induced by the SPM probe, the local displacement of 

the STO surface given by Eq.(12a) is as follows: 
PL

ESFLEXOCS ururururzu 33 )()()(),0( +++== ,                                   (19a) 

 Given that decoupling approximation has good accuracy for a thick film and semi-

infinite samples (see section 2.4), below we will consider an elastically isotropic thick film with 

thickness 1>>dRh  and 10 >>Rh . In order to consider another limiting case 10 <<Rh  one 

can easily use the results of the previous section and obtain at least semi-quantitative results. 

Furthermore, we assume 00 nNd ≈+  as expected for thick films, but locally ( ) ( )rr nNd ≠+ , 

especially in the depletion/accumulation regions (see Eqs.(4)). 

 However, the decoupling approximation assumes that the average polarization iP  

induced by the applied voltage is sufficiently small in the actual region of electromechanical 

response, so that its nonlinear voltage dependence in the equation ( ) iii EPP =α+α 2
11

~  can 

be disregarded across the entire signal generation volume. Since the “bare” tip electric field is 

Coulombic, the actual region of electromechanical response is proportional to the semi-sphere 

with radius { }dPFM RRR ,max10~ 0⋅  for the considered thick film with thickness 10 >>Rh  and 

1>>dRh . Using the results of Section 2.4, we do not consider the average polarization 

nonlinearity in the response region at the voltages cPFM ERV ≤0 , where the field cE  is given by 

Eq.(14b). For STO parameters at room temperature it gives ( )2040 −<V V at ( )50100 −=R nm.   
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 Using the decoupling approximation and the Debye approximation (11) for electrostatic 

potential in Appendix B we obtained the closed-form expressions for concentration-strain, 

flexoelectric and electrostriction (renormalized by Maxwell stress) contributions in semi-infinite 

sample limit ∞→h  as: 
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Here Y denotes the Young module, ν the Poisson ratio, 22)( −+= dRkkK  and polar radius 

2
2

2
1 xxr += , ( )xJ 0  the Bessel function of the zero order and ( )kV0

~  the x,y-Fourier transform 

of the applied potential ( )rV0 . Equation (19d) is valid for well-localized probe potentials ( )rV0 , 

when the integration can be performed by the Laplace method. Note, that ++ ≡=≡ dede NNnn 00  

for a semi-infinite sample due to the electric field and strain vanishing at depth dRz >> . The 

PFM tip has finite size and is regarded as electron-conductive, but can be both ion-blocking or 

ion-conducting; the surface outside the contact area is ionically conductive (e.g. can support ion-

exchange reaction with gas or liquid phase).  

 The expression for the radius-independent displacement b
PL Vu ~3 , which originates from 

the constant built-in potential, can be derived similarly to Eqs.(18) in the limit ∞→h , when 

00 nN d =+ . Namely: 
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 To define the boundary condition representative of the ESM experiment, we assume that 

the tip potential ( )rV0  is applied inside the circle of radius R0 and rapidly decays outside. For 

numerical estimations, we used the Gaussian model for the potential and its x,y-Fourier image of 

the surface, namely: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
0

2

00 2
exp

R
r

VrV ,           ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

2
exp~ 2

02
000

kR
RVkV .              (20) 

Here 0R  is either the tip effective size or the tip-surface contact radius and 0V  is the voltage 

applied to the tip.  

 The model potential (20) allows integration in general expressions (19b-d) leading to the 

Pade-approximations (see also exact analytical expressions in Appendix C) for the maximal 

surface displacement at r=0: 
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Here the introduced the dimensionless tip size dRRy 0= . Accuracy of the expressions (21) was 

analyzed numerically and it appeared not less than several percent. It can be seen from these 

expressions that the concentration-strain, flexoelectric, flexoelectric contributions to the PFM 

response scale are given by dRRy 0= . 

 Using expressions (19)-(20) we calculated the dependence of the PFM response 
PLuu 33 )0,0( −  on the dimensionless tip size dRRy 0= , as shown in Fig.6 for different built-in 

potentials Vb=0, Vb>0, Vb<0. From Figs.6, one can observe that the electrostriction contribution 

to PFM response dominates for applied voltages 0V >1 V, when flexoelectric and concentration-
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strain contributions are smaller in one and two orders of magnitude for chosen material 

parameters. Additional calculations show that flexoelectric and concentration-strain contributions 

overcome the electrostriction contribution for small built-in potentials 1.0≤bV V, applied 

voltages 1.00 ≤V V and room temperature (compare with Figs. 3 plotted for 1.00 =V  and 1 V).  

 The electrostriction contribution (and consequently total PFM response) increases with 

the tip size for positive applied voltage 00 >V  and positive (or zero) built-in potentials bV , then 

reaches a saturation point and becomes almost independent of the tip size at dRR 100 > . For 

0<bV  and 00 >V  it decreases with increasing tip size, then saturates and becomes almost 

independent of the tip size at dRR 100 > . The reverse situation holds for 00 <V . Analytical 

expressions Eqs. (21) proved that the PFM response contributions monotonically increase with 

the tip size at 00 ≥bVV . The concentration-strain and flexoelectric contributions always 

monotonically increase with the tip size, then saturate and become almost independent of the tip 

size at dRR 100 > . 
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Fig.6. Absolute value of PFM response (PR) of STO vs. effective tip size dRRy 0= . The 

concentration-strain (CS), electrostriction (ES) and flexoelectric (FE) contributions are shown. 

Applied voltage 0V =0.5 V (a, b, c), 1 V (d, e, f), 10 V (g, h, i), built-in potential Vb=-1 (a, d, g), 

Vb=0 (b, e, h), Vb=1 (c, f, i). STO parameters are listed in the Table 1, n0=Nd0=1025 m-3 and we 

set T=300 K. For chosen space charge concentrations ≈dR 4.6 nm. 

 

 The voltage dependence of the STO PFM response PLuu 33 )0,0( −  is shown in Fig. 7 for 

different tip radii and built-in potentials Vb=0, Vb<0, Vb>0. It can be seen from Fig. 7b in log-log 
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scale, that the electrostriction contribution has quadratic voltage dependence and becomes 

dominant for large voltages. It can also be observed from the comparison of Figs. 7a, c and d, 

calculated for Vb<0, Vb=0, Vb>0 correspondingly, that the built-in potential leads to the 

horizontal shift of the parabolic curves as anticipated.  
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Fig.7. Voltage dependence of the PFM response of STO surface calculated for the tip size 

=dRR0 0.5, 1, 2, 5, 10 (figures near the curves) and built-in potential Vb=0 (a - linear scale, b – 

log-log scale), Vb<0 (c), Vb>0 (c). STO parameters are listed in the Table 1 and we set T=300 K 

and n0=Nd0=1025 m-3. 
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 Contour plot of the PFM response PLuu 33 )0,0( −  in coordinates voltage – tip radius is 

presented in Fig. 8 for different built-in potentials Vb<0, Vb=0, Vb>0. Note that the shape of the 

contours is asymmetric with respect to the sign of the tip voltage 0V  at small tip radii and Vb≠0. 

The asymmetry vanishes with the tip radius increase. 
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Fig.8. Contour plot of the STO PFM response in coordinates applied voltage – tip radius. Color 

scales indicate the response values in pm. Built-in potential Vb<0 (a), Vb=0 (b), Vb>0 (c), 

n0=Nd0=1025 m-3 (b); STO parameters are listed in the Table 1 and T=300 K.  

 

 To summarize, concentration-strain, flexoelectric and electrostriction contributions to the 

electromechanical response of the paraelectric semiconducting material depend on the tip (or 

contact) radius for ( )2
0 1010 −≤dRR  (see Eqs.(21) and Fig.6). In comparison, piezoelectric 

response, that is dominant for ferroelectrics-dielectrics and ferroelectric-semiconductors and zero 

for considered non-polar materials, is almost independent of the tip size or contact radius 0R  [97, 

98, 99, 100, 101, 102, 103]. This behavior stems from the difference in physical mechanisms of 

the response formation: piezoelectric response is linear in polarization and exists only in 

materials without an inversion center, the flexoelectric response is linear in the polarization 

gradient, electrostriction is quadratic in polarization and exist in all symmetries, and the 

concentration-strain contribution is linear in the changes of ionic and electronic concentrations. 
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5. Temperature dependences of quantum paraelectric PFM response 

 The data shown in Figures 3-8 corresponds to room temperature. Since the dielectric 

permittivity ( )Tε  of quantum paraelectric strongly increases with decreasing temperature in 

accordance with Barrett Law for ( )Tα , we expect that all contributions CSu , FLEXOu  and ESu  

should be strongly temperature dependent via the temperature dependence of ( )Tε , ( )Tα  and 

( )TRd . The electrostriction contribution may dominate at even lower voltages and low 

temperatures. Below, we analyze the temperature dependences of the STO surface local 

displacement caused by the well-localized potential ( )rV0  of the SPM probe. As in the previous 

section, we use the net decoupling approximation for elastically isotropic films with thickness 

1>>dRh  and 10 >>Rh . Also we set 00 nNd ≈+  as expected for thick films.  

 In the decoupling approximation, the PFM response given by Eqs.(21) is temperature 

dependent via the temperature dependence of ( ) ( )( )( )022coth TTTTT qqT −α=α  in accordance 

with Barrett Law (see Table 1), dielectric permittivity ( ) ( )( ) 1
0

−εα+ε=ε TT b , Debye screening 

radius ( ) ( ) ( )TnTTTRd 0~ ε  and carrier concentration amplitude obeys the conventional 

activation law ( ) ( ) ( )TkENTNTn Bad −== ∞
+ exp00  [90].  

 The temperature dependences of the STO PFM response are shown in Fig.9. The decrease 

in the absolute value of the PFM response with the decrease in temperature could be attributed to 

the sharp increase of the Debye screening radius (see Fig. 10c, d) due to a electron concentration 

decrease with the fall in temperature (Fig.10a), while the decrease of PFM response with a 

temperature increase is related to the temperature dependence of coefficient α (see Fig. 10b). The 

response is non-monotonic due to different temperature dependences of n0, Rd and α. As a result 

of such non-monotonic behaviour the response reveals a maximum at intermediate temperatures. 

The maxima temperature monotonically decreases with an increasing tip radius; its height 

increases and halfwidth decreases with an increasing tip radius (compare different curves 

calculated for different =0R 3, 10, 30, 100 nm in Fig. 9a-c). The absolute value of the maximal 

response increases with the tip voltage (compare Fig. 9a-c). The contour map shown in Fig. 9d 

demonstrates the possibility of observing the highest PFM response in the temperature range 300-
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500 K at the tip size =0R 10 nm. The temperature range of maximal response strongly depends 

on the tip size.  

 
 

0 500 1000 

0. 

0.1 
30

3 
10 

100

 

0 500 1000 

-6 

-4 

-2 

0 

30 

3 

10 

100 

0 500 1000 
-800

-400

0 

30

3 

10

100

(a) 
V0=0.1V 

Temperature  T  (K) 

R
es

po
ns

e 
 u

3 (
pm

) 

R
es

po
ns

e 
 u

3 (
pm

) 

R
es

po
ns

e 
 u

3 (
pm

) 

(b) 
V0=1V 

(c) 
V0=10 V 

Temperature  T  (K) 

Temperature  T  (K) 

Tip voltage  V0  (V) 

Te
m

pe
ra

tu
re

  T
  (

K
) 

(d) 

0

-118

u3

 
Fig. 9. Temperature dependence of the STO PFM response calculated at applied voltage 0V =0.1, 

1, 10 V (a, b, c). Different curves in plots (a-c) correspond to different tip radii =0R 3, 10, 30, 

100 nm (figures near the curves). (d) Contour map of the STO PFM response in coordinates 

voltage-temperature at =0R 10 nm. Color scale indicates the response values in the units of pm. 

STO parameters are listed in the Table 1; the built-in potential is Vb=0 and the temperature 

dependence of concentrations are taken as n0=Nd0= ( )( )TkEN Ba−∞ exp  with ∞N =1026 m-3 and 

aE =0.1 eV.  
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Fig. 10. Concentration (a), expansion coefficient (b) and screening radius (c) temperature 

dependences. (d) Contour map of the screening radius in coordinates concentration-temperature. 

Color scale indicates the radius values in nm. STO parameters are listed in the Table 1; the built-

in potential Vb=0 and the temperature dependence of concentrations are taken as 

n0=Nd0= ( )( )TkEN Ba−∞ exp  with values ∞N =1026 m-3 and aE =0.1 eV, following Ref.[85]. 

 

 To summarize the results of Section 5, the PFM response of quantum paraelectrics has 

pronounced temperature dependence with maxima. The maxima position, height and halfwidth, 

strongly depends on the tip effective size (or contact radius) at the same other parameters (e.g. at 

the same applied voltage and carrier concentration). Since the material parameters of quantum 
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paraelectrics are relatively well known, the obtained analytical results can help to us to make the 

choice regarding the optimal experimental conditions (tip size, voltage window, working 

temperature, etc) to observe the maximal PFM response. 

 

5. Summary  

 The electromechanical response of a paraelectric film to external voltage in the planar 

capacitor and SPM geometry is analyzed in detail including the effects of electrostriction, 

electrochemical coupling, and flexoelectricity. The response demonstrates a strong size effect, 

controlled by the ratio of the film thickness h  to the carriers screening radius dR . The voltage 

dependence has a pronounced crossover from the linear to the quadratic law and then to the sub-

linear. The crossover originates from the cubic nonlinearity in electric polarization field 

dependence, typical for quantum paraelectrics. 

 For the PFM configuration, the electrochemical, flexoelectric, electrostriction and 

Maxwell strain contributions all have different dependencies on film thickness and tip size 

(contact radius). The difference in the responses size dependence originates from the principal 

difference in the physical mechanisms of the response formation: flexoelectric response is linear 

in the polarization gradient, electrostriction is quadratic in polarization and exists in all 

symmetries, and electrochemical concentration-strain contribution is linear in the ions and 

electrons concentration variations. The difference between the electromechanical response 

calculated for the fully coupled case and in the decoupling approximation is significant for thin 

films ( dRh << ), since unphysical divergence happens only in the decoupled case due to the 

electrostriction contribution. Both “coupled” and “decoupled” responses saturate and tend to the 

same value in the limit dRh >> . 

 Finally, we predict that the PFM response of quantum paralectrics has a pronounced non-

monotonic temperature dependence. The maxima position, height and halfwidth, strongly depend 

on the tip effective size (or contact radius). Since the material parameters of quantum 

paraelectrics are relatively well known, the obtained analytical results can help one to make the 

choice regarding the optimal experimental conditions (tip size, voltage window, working 

temperature, etc) to observe the maximal PFM response. 
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Appendix A. 

A1. Derivation of the electrostatic free energy 

The pure electrostatic part of (1b) can be derived from the conventional electrostatic energy 
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Here fσ  is the free charge accommodated at the surface. Note, that we used Gauss theorem in 

the derivation. 

 

A2. Electrostatic potential in Debye approximation  

Derivation of the solution (11) 
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Where 22)( −+= dRkkK . Boundary conditions (5) give the equations for the constants 
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( ) ( ) ( ) 0)(exp)(exp,~
0 =−+−=+ hkKBhkKAkVBA kkkk .                   (A.3b) 

 

A3. Accuracy of decoupling approximation  

To estimate the accuracy of decoupling approximation we studied numerically model 1D case 

when all variables are only z-dependent in the coupled system (2), (3), (7) using Debye 

approximation (10c) for electrostatic potential and regard 00 nNd =+ . 
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Electric field component is zE ∂ϕ∂−=3 .  

Mechanical boundary conditions for 1D systems it means that 033 =σ  everywhere, so the 

strain 33u  calculated from Eq.(6) acquires the form  
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 Within the coupled model we minimize the free energy (1) numerically and analytically 

by direct variational method [73] and then derived approximate analytical solution for electric 

field ( )zE3 , polarization ( )zP3  and strain ( )zu33  distributions. The approximate analytical 

dependence of the displacement (9) on applied voltage has the form: 
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Here bVVU += 0 . Spatial scales 
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Here we introduced coefficient 11
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Estimations for STO parameters gives g~κ ~0.4 nm, dR~ ≤10 nm and α~~g ~1 nm for zero 

voltage. 

However, the difference between α~  and α depends on the applied voltage, since average 

polarization P  depends on the voltage and film thickness via the cubic equation 
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corresponds to low and high voltages respectively.  

 In decoupling approximation (i.e. assuming ( ) ii xP ∂ϕ∂α−≈ −1  as described in subsection 

2.4) the surface displacement has the form: 
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 Note, that coupled equation Eq.(A.6) transfers into decoupled Eq.(A.9) in the limiting 

case 0~ →g  and 0~
11 →α . 

 

Appendix B. Displacement for the well-localized probe potential 

For cubic symmetry the convolution in the right-hand-side of Eq.(12a) 
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has explicit form consisting of three contributions for cubic symmetry: 

(a) concentration-strain contribution  
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(since ijij δΞ=Ξ  and ijij βδ=β  for cubic symmetry); 

(b) electrostriction contribution  
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can be presented as the “hydrostatic” part and shear part. DA is the abbreviation of the 

decoupling approximation. 

(c) Maxwell stress contribution: 

( ) ( )

∫∫∫

∫∫∫

<ξ<

<ξ<

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ξ∂
∂

−
ξ∂

∂
≈

ε+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ δδ
−δδ

ξ∂
ξξ−ξ−∂

−=

h

kk

j

S
ij

lk
k

S
il

lkk
klmj

jlmk
h m

S
ij

MT

EPG
EP

G
d

dEEP
zxxG

u

3

3

0

3

3
0

0

32211

2

2
,,,

ξ

ξ

.     (B.2c) 



 42

Approximate equality in Eq.(B.2c) is valid for (quantum) paraelectrics, since their dielectric 

permittivity 1>>ε . 

(d) flexoelectric contribution  
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where we used that 1122111112122 fff −≡  for the isotropic media. Here the first term corresponds 

to “hydrostatic” part, while the latter is “shear” strains contribution. 

 After x,y-Fourier transformation 
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and using Percival theorem we rewrite Eq.(B.1) as 
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where we used the linear approximation ⎟⎟
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where we used that 1122111112122 fff −≡  for the isotropic media, 22)( −+= dRkkK  

For the electrostriction contribution we used the approximation 
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Appendix C 

Integration of Eq.(19b) with Gaussian potential (20) leads to 



 44

( )( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

π
−β−Ξ

ν−ν+
= +

dd

d
d

B
dCS

R

R
R

R
R
R

R
Tk
eV

N
Y

u
2

erf
2

exp1
2

1
2112

)0( 0
2

2
0

0

0
0   (C.1a) 

Integration of Eq.(19c) with Gaussian potential (20) leads to 
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We derived Pade approximations 
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Integration of Eq.(19d) with Gaussian potential (20) leads to 

(a) ( ) bVkV0
~ ( )MTMT qq 11221111 +  term: 
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(b) ( ) bVkV0
~ ( )MTMT qq 11221111 −  term: 
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( )ξ,, baU  is the confluent hypergeometric function, which has the following integral 
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