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Abstract 

An efficient electron spin-relaxation mechanism has been observed in InAs quantum dots 

(QDs) that manifests itself as a sharp drop in the circular polarization of the light emitted 

by Fe spin-light emitting diodes, which incorporate a single layer of InGaAs QDs, for a 

narrow range of magnetic fields around 5 tesla. The underlying mechanism occurs when 

the QDs are occupied by three electron-hole pairs forming a tri-exciton (3X) and is a two 

step process. The first step involves the spin flip of one of the three electrons mediated by 

the spin-orbit interaction; in the second step the 3X relaxes to its ground state via phonon 

emission. 

* electronic mail: gnk@materials.uoc.gr 
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      I. Introduction 

Semiconductor quantum dots (QDs) are potentially important components for 

many spintronic and quantum computing applications such as spin-transistors, spin filters 

and spin memory devices because it is possible to effectively inject, manipulate, and 

read-out spins in these systems1. One particularly enabling property of QDs is enhanced 

spin lifetimes. The zero dimensional character of QDs results in the quantization of the 

electronic orbital states, which significantly suppresses many spin flip mechanisms and 

leads to long spin-relaxation times2. This effect has been seen in several experiments 

including electrical spin injection into self assembled InGaAs QDs using ferromagnetic 

GaMnAs, paramagnetic ZnMnSe and ZnBeMnSe layers, as well as ferromagnetic metal 

contacts3-12. Room temperature electrical spin pumping has also been achieved10 and it 

has been attributed to the suppression of the Dyakonov-Perel spin relaxation mechanism. 

In addition to enhanced spin lifetimes, QDs are useful tools to understand the basic 

physics of spin manipulation in low dimensions. Indeed, we have recently shown that it is 

possible to electrically control the electron population and spin polarization of the QD 

shells with bias current and have experimentally determined values for the s-p and p-d 

exchange energies12. 

In this work we present an efficient magnetic field induced spin relaxation 

mechanism for electrons injected into InGaAs QDs. We use QD spin-light emitting diode 

(LEDs) with an Fe injector as a platform to effectively inject and detect spins, as well as a 

means to investigate spin relaxation in several multi-exciton configurations. The 

magnetic contact acts as the source of spin-polarized electrons while the bias on the diode 

controls the number of excitons present in the dots. We have studied the magnetic field 
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dependence of the circular polarization of the light emitted by the spin-LEDs in the range 

of 5-60K. In a narrow range of magnetic fields around 5 Tesla, there is a dramatic 

decrease in optical polarization superimposed on the saturation polarization. These results 

are interpreted as the optical signature of spin relaxation mediated by the spin-orbit 

interaction; we propose a model that describes a possible efficient electron spin relaxation 

mechanism to interpret our results. 

 

II. Experimental 

 The samples used in this study were grown by molecular beam epitaxy (MBE) in 

interconnected growth chambers on p-GaAs (001) substrates. They are n-i-p structures 

with the following dimensions: 2000 Ǻ p-GaAs buffer/500 Å p-Al0.3Ga0.7As barrier/ 400 

Å undoped GaAs QW /830 Å n-Al0.1Ga0.9As barrier.  A 100 Å thick Fe(001) film was 

then grown in a separate MBE chamber at a substrate temperature below 5 °C to 

minimize potential intermixing at the Fe/Al0.1Ga0.9As interface. The top 150 Å of n-type 

Al0.1Ga0.9As barrier was highly doped (n =1x1019 cm-3) to form a Schottky tunnel contact 

in order to facilitate spin injection from the Fe film13, 14.    

 Different InAs QD layers were embedded at the center of the undoped GaAs QW 

region. Sample 1 was grown at a rate of 0.03 ML/sec with a high QD density (5×1010 cm-

2) and a broad QD size distribution with diameters ranging from 100-250 Å. For sample 2 

on the other hand, the InAs QD layer was grown at a lower rate of 0.001 ML/sec. A much 

lower QD density (7x108/cm2) is obtained by terminating the growth at the onset of dot 

formation. The significantly reduced growth rate also results in a more narrow size 
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distribution (average diameter 400-500 Å).   In both samples the QD height is equal to 35 

Å.  The s-p sub-level spacing in both samples is the same and equal to 45 meV.   

 The samples were processed to form surface emitting LEDs using standard 

photolithography and chemical etching techniques.  Devices were measured in a variable 

temperature optical magnet cryostat, where the magnetic field was applied along the z-

axis perpendicular to the device layers (xy-plane).  The emitted light was collected in the 

Faraday geometry and was dispersed by a single monochromator equipped with a 

multichannel charge coupled device (CCD) detector. The electroluminescence (EL) 

spectra were analyzed into their σ+ (LCP) and σ- (RCP) components using a combination 

of quarter wave plate and linear polarizer placed before the spectrometer entrance slit.   

 

III. Results and Discussion 

 A typical EL spectrum from Sample 1 at I = 5 mA, T = 7 K and zero magnetic 

field is shown as an inset in Fig. 1.  Because of the broad size distribution of sample 1, 

the p-shell is not resolved in the EL spectrum.  However, at higher currents, when the 

spectrum is deconvoluted it clearly contains two features (s- and p-shell) separated by 45 

meV, which is the same as for sample 2.  Also presented in Fig. 1 is the circular 

polarization, Pcirc, for the same sample at T=7K plotted as a function of the magnetic 

field B. Pcirc is defined as Pcirc = [I(σ+)–I(σ–)]/[I(σ+)+I(σ–)], where I(σ±) is the intensity of 

the positive or negative helicity component (measured at the EL intensity maximum).  

The circular polarization increases as function of B tracking the out of plane 

magnetization of the Fe film but instead of saturating after 2.2T13, Pcirc exhibits a sharp 

decrease for a range of magnetic fields centered at ±5T. This “resonance” has a FWHM 
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of ~1 T and a strong temperature dependence.  The bias dependence of the circular 

polarization for sample 1 is shown in Fig. 2a. It is clear that as we increase the bias, the 

observed drop of the polarization degree around 5 T is suppressed. We attribute this to 

the dependence of the spin-orbit interaction Hamiltonian on the p-n junction electric field 

E.  It is strong for low bias voltage, and thus strong E. That would indicate that the spin-

orbit interaction is described by the Rashba Hamiltonian15. The model that we discuss 

below allows for either the Rashba or Dresselhaus Hamiltonian for inhomogeneous QDs. 

Plots of Pcirc vs. B for positive fields are shown in Fig. 2b for T = 7, 15, 30, 45, and 50 K. 

When the sample temperature is raised, the resonance is suppressed and practically 

vanishes by T = 50 K.  These data suggest that, for T < 50 K, there exists an efficient 

magnetic field induced spin relaxation mechanism for electrons injected into the QDs.  

We interpret this behavior as the optical signature of spin relaxation mediated by spin-

orbit interaction. 

 Injection of spin-polarized electrons into the optically active QD layer leads to the 

formation of multiexciton complexes with spin-polarized electrons12, 16. The majority of 

the injected electrons are in the spin-down state, and therefore the emission spectra 

associated with recombination of these electrons with unpolarized holes are 

predominantly left circularly polarized (σ + ). In a system of N electron-hole pairs, 

typically the excited states are spin-polarized, while the ground state has a low-spin 

character, a consequence of the so-called hidden symmetries in the electronic properties 

of exciton systems confined in quantum dots17. Relaxation from the highly polarized, 

excited state to the ground, low polarization ground state requires a spin flip process, and 

therefore cannot be carried out by phonon emission. This is the reason why the polarized 
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states are long-lived, and result in a consistent polarization of emitted photons over a 

wide range of magnetic fields. However, the experiment described in this work 

demonstrates that there exists a narrow range of magnetic fields, where the polarization 

of the emitted light is drastically reduced, suggesting that under these conditions spin-flip 

relaxation process becomes efficient.  

We attribute this polarization loss to an electron spin-flip process mediated by the 

spin-orbit interaction. Since the energy scale of this interaction is typically very small 

(several hundreds of μeV )18, such transition can only occur if  the high and low spin 

multiexciton complex levels have comparable energies.  Such resonance conditions are 

achieved by tuning the energies of the low- and high-spin states by an externally applied 

magnetic field. Once the system undergoes a transition to its low-spin state, it can relax to 

the ground state by emitting a phonon.  

 

IV. Theoretical model 

 

We describe this process by approximating the self-assembled InAs QD by a two-

dimensional harmonic oscillator (HO) potential. The single-particle electron energies in 

this potential, in the presence of the magnetic field  ( )BB ,0,0= , are 
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the electron charge and effective mass, respectively, and c is the speed of light. The 
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single-particle hole energies are expressed analogously, but scaled by the hole oscillator 

energy )(
0
hΩ  and effective mass *

hm  (we only consider the heavy hole subband). In the 

following we express all energies in terms of the effective Rydberg 224* 2/1 εemRy e=  

and all distances in terms of the effective Bohr radius 2*2 /1 ema eB ε=  with ε  being the 

dielectric constant of the QD material.  For InAs 0
* 054.0 mme =  and 4.12=ε ; this gives 

meVRy 78.41 =  and nmaB 2.121 = . For model calculations we take 

meVRye 3532.7)(
0 ==Ω  and meVRyh 5.1766.3)(

0 ==Ω , as determined from the 

experimental inter-shell energy spacings12. The single-particle states σ,, mn  are 

additionally labeled by the spin projection 2/1±=eσ  for electrons (henceforth denoted 

as ↑  and ↓ , respectively) and 2/3±=hσ  for holes (⇑  and ⇓ , respectively). Under the 

symmetry conditions )(
0

*)(
0

* h
h

e
e mm Ω=Ω  the wave functions of an electron and a hole 

labeled by the same indices are identical, and in what follows we assume that 

0
* 108.0 mmh = . The single-particle wave functions are characterized by the electron and 

hole angular momenta ee
e mnl −=)(  and hh

h nml −=)( , respectively.  The total angular 

momentum L of an electron-hole pair is ( ) ( )e hL l l= + . 

We consider single-particle states populated by N  interacting electron-hole pairs. 

The Hamiltonian of such a system, expressed in terms of the electron creation 

(annihilation) operators ( )ii cc+  on state { }eee mni σ,,=  and analogous hole creation 

(annihilation) operators ( )jj hh+  on state { }hhh mnj σ,,=  has the form: 
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The first two terms of this Hamiltonian describe the single-particle energies of the 

carriers. The remaining terms account for the electron-electron, hole-hole, and electron-

hole interactions, respectively17. In the HO basis with the electron-hole symmetry 

discussed above, the matrix elements defined by the same set of indices are equal in 

magnitude and can be expressed by a magnetic-field dependent interaction constant 

)(
0

e
hV Ω= π . 

The spin-orbit interaction Hamiltonian can be expressed as the sum  

)()( R
SO

D
SOSO HHH +=  where ( )D

SOH  is the Dresselhaus Hamiltonian ( )ˆ ˆ ˆ ˆx x y y
β σ π σ π− −  and 

( )R
SOH is the Rashba Hamiltonian ( )ˆ ˆ ˆ ˆx y y x

α σ π σ π− − , with ( )zyx σσσσ ˆ,ˆ,ˆˆ =  being the Pauli 

operators, and A
c
ep −= ˆπ̂  being the generalized momentum in a magnetic field 

described by the vector potential A . The constants α  and β  scaling the above terms are 

typically of the order of several meV ⋅ Å, giving the spin-orbit interaction the energy scale 

of several hundreds of µeV18. Given the energy scale of the single-particle and Coulomb 

interaction Hamiltonians (tens of meV), we treat the spin-orbit interaction as a 

perturbation. 

A detailed analysis of the N electron-hole pair system in the presence of the spin-

orbit interaction involves first computing the properties of the unperturbed exciton 

systems as already outlined in Ref. [16]. To this end we prepare all possible 
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configurations of the electrons and holes with a definite total angular momentum and 

total projection of the electron and hole spins, write the Hamiltonian matrix in the basis 

of these configurations, and diagonalize the Hamiltonian numerically. Once the 

eigenstates of the unperturbed Hamiltonian are known, we account for the spin-orbit 

interaction between states, which for a given magnetic field are very close in energy. 

Details of this procedure, as well as an extensive discussion of the results will be 

presented elsewhere. Here we will give a simplified description that allows us to 

understand the principles of the proposed model. 

We start with a discussion of the three-exciton (3X) complex and assume for 

simplicity that the 3X states can be expressed in terms of single configurations. Starting 

with the 3X system may seem an arbitrary choice but the proposed model considers 

energy configurations close enough for spin-orbit assisted transitions to be effective and 

thus account for the observed decrease of the optical polarization.  In sample 1 we have a 

mixture of occupancies i.e. 1X, 2X, 3X but as will be discussed later, for the 1X and 2X 

complexes, such resonances take place at very high magnetic fields. Thus only the 

resonance associated with the 3X complex falls within the range of fields we have used in 

our experiments. The ground low spin state of such a system in the presence of a 

magnetic field, 0000100000100
+
⇓

+
⇑

+
⇑

+
↓

+
↓

+
↑= hhhcccA , is shown schematically in Fig. 3(a). The 

expectation value AE  of the unperturbed interacting Hamiltonian is equal to 

( ) ( ) ( ) ( )
03 3 3.1875e e h h

h hA H A V− −= Ω + Ω + Ω + Ω − . This state is a low spin state with the 

unpaired electron and hole occupying the p shell. Under the polarized injection 

conditions of our work we expect that the system will be in a long-lived high spin state 

0000100000110
+
⇓

+
⇑

+
⇑

+
↓

+
↓

+
↓= hhhcccB , as is shown schematically in Fig. 3(b). Its energy 
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0
)()()( 375.335 VE hh

h
e

hB −Ω+Ω+Ω= −  contains a larger total kinetic energy than 

configuration A, but is renormalized by a larger negative interaction term due to the fact 

that the electrons are distributed individually across single-particle orbitals and are spin 

polarized.  In our analysis a key role will be played by yet another configuration, 

0000100000101
+
⇓

+
⇑

+
⇑

+
↓

+
↓

+
↑= hhhcccC , schematically shown in Fig. 3(c). Its energy, 

0
)()()()( 9375.2323 VE hh

h
ee

hC −Ω+Ω+Ω+Ω= −− , has a somewhat lower kinetic energy 

component, but it is also renormalized by a less negative interaction term. 

In Fig. 4 we compare the energies of the three states plotted as a function of 

magnetic field. As can be seen, at zero magnetic field configuration B is lower in energy 

than C, but at some field value the energies of these two configurations cross. On the 

other hand, the ground-state configuration A is always at much lower energy than the 

other two. Configuration B is considered due to the fact that spin polarized electrons are 

injected into the QDs, as already discussed above, leading to a definite polarization of the 

emitted light. The central aspect in this analysis is that for the critical magnetic field of 

about 4.75 T, configurations B and C are close enough in energy for a spin-orbit assisted 

transition to occur between these two states. For the range of magnetic fields around 4.75 

T for which the energies of states B and C are near-degenerate, spin-polarized 

configuration B can significantly mix with the spin-unpolarized, excited configuration C. 

After mixing, the system can relax efficiently to the ground-state configuration A. Since 

the 3X system now assumes a low spin state, the photons emitted in radiative 

recombination of carriers are expected to have low average polarization.  At magnetic 

field values above and below 4.75 T the two excited states B and C are farther apart in 
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energy, and their coupling by the spin-orbit interaction decreases. As a result, the spin-

polarized configuration B is stable, resulting in the reappearance of polarized emission. 

Below we analyze the mixing of configurations B and C in more detail.  The 

angular momenta of these two configurations differ by 2=−=Δ CB LLL , and the total 

electronic spin projection difference is 1−=Δ eσ . The spin-orbit interaction can only mix 

states differing by one unit of angular momentum and one unit of spin. Specifically, the 

Rashba term decreases the angular momentum by one unit while raising the spin by one 

(or vice versa). The Dresselhaus term on the other hand increases (or decreases) both the 

angular momentum and spin by one. Therefore for an isotropic quantum dot, 

configurations B and C will not be mixed by the spin-orbit interaction. However, any 

anisotropy in the dots will result in a strong mixing of the two excited single-particle 

states by spin-orbit interaction, since angular momentum is no longer a good quantum 

number. The energy relaxation from state C to state A proceeds via phonon emission. We 

note that in our samples the energy separation between states C and A at 4.75 T is equal 

to 36 meV which is very close to the LO interface phonon mode in InAs QDs embedded 

in GaAs19.  Therefore efficient relaxation from state C to state A can occur by the 

emission of a single phonon. 

We conclude our analysis by considering a similar mechanism for the system of 

two electron-hole pair (2X) and single electron-hole pair (1X) excitons.  The ground state 

A of the 2X system, shown schematically in Fig. 5(a), consists of four carriers occupying 

the lowest single-particle states in a spin-unpolarized configuration. Spin-polarized 

injection of electrons leads to the formation of state B depicted in Fig. 5(b), in which the 

spins of the two electrons are aligned, and one of the electrons is promoted to the p shell. 
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We do not find any candidate low spin excited state which would come to resonance with 

this spin polarized configuration. The only possible spin-orbit assisted transition could 

take place between the unpolarized ground state A and the fully spin-polarized 

configuration C shown in Fig. 5(c). However, such a configuration becomes the ground 

state of the system at magnetic fields in excess of 100 Tesla. Therefore no polarization 

quenching effect is expected for the polarized biexciton 2X for the relatively low 

magnetic field values used in our experiment.   

 In the case of a single electron-hole pair (1X), when the first excited QD state 

crosses the second excited state, a sharp drop in the spin lifetime has been predicted20, 21.   

If we use ( )
0 35e meVΩ = and ( )

0 17.5h meVΩ = the magnetic field required is well above the 

values used in our experiment. Even if we assume a g-factor of 14 (the value for bulk 

InAs)22 the crossing occurs at 23 T.  In reality the g-factors in InAs QDs are smaller23 

which means the resonant field would be even higher.  Thus the single electron-hole pair 

exciton scenario is also excluded.  

 The three electron-hole model is compatible with the temperature dependence of 

the resonance strength shown in Fig.2.  At elevated temperatures the average phonon 

population increases and interferes with the relaxation from state C to state A which 

requires phonon emission.   

 

V. Testing the Model 

 

We have investigated the predictions of the model discussed above by studying 

sample 2, which has a lower QD density and a narrow lateral size distribution.  Unlike  
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sample 1, in sample 2 we can resolve EL features due to recombination among the 

various shells of the QDs, and we can thus determine the average occupancy of the QD 

ensemble.  In this sample we see a gradual filling of the shells as the diode current is 

increased12.   The zero field EL spectrum for sample 2 at average occupancy N = 3 is 

shown in Fig.6 (no detector response correction was applied). Assuming that the 

oscillator strengths of the s- and p-shell recombination channels are approximately equal, 

we adjusted the device current so that the corrected intensity of the p-shell EL feature is 

half that of the s-shell feature. For higher (lower) currents the average occupancy is 

above (below) 3. In Fig.7 (a) we plot the polarization of the s-shell EL feature as function 

of magnetic field B at N > 3. The polarization increases monotonically with field 

following the out-of-plane magnetization, and saturates above 2.5 T.  In Fig.7(b) we 

show the same plot for average occupancy N =3. The Pcirc versus B plot in this case 

exhibits a clear resonance centered around 4.5 T. In Fig.7(c) we have an average 

occupancy N < 3 and the resonance is again not visible. The results from sample 2 shown 

in Fig.7 verify the theoretical model described above.   

 

VI. Summary 

A sharp drop in the circular polarization of light emitted by InAs QD based Fe 

spin-LEDs has been observed for a narrow range of magnetic fields around 5 T. This 

behavior is attributed to the existence of a magnetic-field dependent electron spin- 

relaxation mechanism that operates efficiently for these magnetic field values.   In order 

to understand these results we proposed a model that describes an efficient electron spin-

relaxation mechanism for an average occupation of three electron-hole pairs per QD.  The 
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prediction of the model was verified in a spin-LED in which we can control the average 

occupancy of the QDs by varying the device current.  When the average number of 

electron-hole pairs per QD is equal to three we observe the predicted resonance; for 

average occupancy above and below three no resonance is observed.     
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Figure Captions: 

 
Fig.1: Circular polarization of Sample 1 plotted as function of magnetic field at T = 7 K.   
Inset: Electroluminescence from Sample 1  at I = 5 mA (black line).  The green and  red 
lines represent a deconvolution into two features attributed to the s- and p-shells at 1.222 
and 1.267 eV, respectively.  
 
Fig.2:  
a. Circular polarization of the light emitted by Sample 1 plotted versus magnetic field at  
T = 7 K for I= 0.3, 1 and 5 mA. 
 
b. Circular polarization of the light emitted by Sample 1 plotted versus magnetic field at 
T = 7, 15, 30, 45, and 50 K; I = 1 mA 
 
Fig.3:  
a) Low spin ground state, A, of the 3X system 
b) High spin excited state, B, of the 3X system 
c) Low spin excited state, C, of the 3X system.  
 
Fig.4:  Calculated energies  AE , BE , CE  of the 3X system for states A, B, and C, 

respectively, plotted as function of magnetic field B.   
 
Fig.5:   
a) Low spin ground state, A, of the 2X system 
b) High spin, L = -1 excited state, B, of the 2X system 
c) High spin, L = 0   excited state, C, of the 2X system.  
 
Fig.6:  Electroluminescence from Sample 2, recorded at T = 7 K, B = 0 T with the biasing 
adjusted so that average occupation N of the QDs for electrons and holes is equal to 3.   
 
Fig.7:  Circular polarization of the light emitted by Sample 2 plotted versus magnetic 
field B at T = 7 K.   a) N > 3, b) N = 3, and c) N < 3 
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Fig.5 
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