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We present a modified valence force field model for the structure and energetics of amorphous 

silicon suboxides (a-SiOx, 0 ≤ x ≤ 2).  The parameters are optimized to fit the results from cluster 

and periodic density functional theory (DFT) calculations of various model structures.  The po-

tential model well reproduces the DFT energetics of various a-SiOx systems for all O/Si compo-

sition ratios.  We also examine how the choice of force fields affects the atomic-level description 

of phase separation in a-SiOx and a-Si/a-SiO2 interfaces using a continuous random network 

model-based Monte Carlo approach.  The results highlight the critical role of the relative rigidity 

between Si and SiO2 matrices in determination of the structural properties of the Si/SiO2 compo-

site system, such as interface bond topology, degree of phase separation, and abruptness of the 

interface.   
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I.  INTRODUCTION 

Amorphous silicon-rich oxides (a-SiOx, 0 ≤ x ≤ 2) have garnered great attention not only 

from their unique properties, but also potential technological importance in various electronic, 

optoelectronic, and energy applications.  Amorphous phases lack long range order or well-

defined atomic structure and are thermodynamically less favorable than their corresponding crys-

talline phases.1,2  As a consequence of lattice distortion and variations in composition, a-SiOx 

materials typically have different properties from their crystalline counterparts and also Si/SiO2 

multiphase systems.  The properties of a-SiOx can be controlled by varying Si:O composition 

ratio and incorporating various impurities.  For instance, hydrogenated a-SiOx materials exhibit 

visible room temperature photoluminescence (PL) properties and a higher photosensitivity than 

other materials with comparable optical gaps, making them viable candidates for Si-based optoe-

lectronic applications.3,4  In addition, doping with boron or phosphorous atoms might enable rea-

lization of light-emitting diodes.5   

Si suboxides may undergo phase separation to yield oxide-embedded Si nanoparticles 

during high temperature annealing; the Si nanoparticles (np-Si) can be amorphous or crystalline 

depending on the annealing temperature.6,7  The np-Si/a-SiO2 system emits visible PL with high 

efficiency at room temperature, while luminescence from bulk crystalline Si (c-Si) is negligible 

as a result of its indirect band structure.  The discovery of Si-based luminescence has generated 

considerable interest in its potential application to integrated optoelectronic devices.8-10  In addi-

tion, oxide-embedded Si nanoparticles have been envisioned as possible discrete storage ele-

ments in non-volatile flash memories.11,12  Earlier studies13 have suggested that the performance 

of np-Si based devices would be determined by a complex combination of the following 

attributes: Si particle size, shape, and crystallinity; Si/SiO2 interface structure and strain; and 
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near-interface defects (bonding, chemical, and structural).  It is therefore important to develop a 

detailed understanding of the structure, strain, and composition of a-SiOx materials and their in-

terfaces.   

An atomic level understanding of a-SiOx materials derived from experimental methods 

has thus far remained elusive in part from the limited capabilities of common instrumentation for 

direct characterization.  A complementary computational effort has been made in the develop-

ment of atomistic models of amorphous materials in a variety of systems.  First-principles me-

thods have achieved widespread usage in characterization of the structure and properties of com-

plex materials including multicomponent amorphous alloys.14  Despite the enormous growth in 

computational power, highly disordered materials are often cost-prohibitive to address exclusive-

ly with first-principles calculations because realistic models of their structures typically contain 

complex topologies requiring large numbers of atoms.  As an alternative to first-principles calcu-

lations, computationally less expensive classical force fields have been widely used; various 

types of interatomic potentials have been developed for Si,15-21 SiO2,22-25 and Si/SiO2 compo-

sites.26-29   

The primary liability in application of force fields is their limited transferability.  Even 

for Si, no single force field model could provides an adequate description of the physical and 

chemical properties in all relevant states (from bulk, (crystal, amorphous, liquid), surfaces to 

clusters) of this prototypical semiconductor; consequently, it would be reasonable to conclude 

that generation of a single force field that comprehends all pertinent phenomena is likely an in-

surmountable task.  Therefore, it would be necessary to develop application-specific potentials 

that, for instance, can be robustly-applied to describe the atomic structure and energetics in des-

ignated systems.   
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a-Si1,2,30 and a-SiO2
31,32 are well known to form respective Si and SiO4 tetrahedral net-

works characterized by both long-range disorder and short-range order similar to that of their 

parent crystals.  At Si/SiO2 interfaces, previous experiments33,34 have demonstrated extremely 

low densities (typically between 1010 to 1012 cm-2) of interface defects, suggesting an almost-

perfect bonding network across the interface.  Likewise, a-SiOx-based systems can also be well-

represented by fully-coordinated random networks in which Si and O atoms are four and twofold 

coordinated, respectively.  To generate a structural model of a-SiOx, molecular dynamics (MD) 

or Monte Carlo (MC) methods coupled to various interatomic potentials have been widely used 

as detailed in the following work: (1) ab-initio MD for a-Si, 35 a-SiO2,36 and planar c-Si/a-SiO2
37; 

(2) classical MD for a-Si,21 a-SiO2,25 planar c-Si/a-SiO2,27,29,38,39 and np-Si/a-SiO2
40,41; and (3) 

classical MC for a-Si,16,42 a-SiO2,22 a-SiOx,43 planar c-Si/a-SiO2,26,44,45 and np-Si/a-SiO2.45-47  

Ab-initio MD permits accurate description of atomic arrangements, but its utility is restricted to 

small systems and short time scales because of steep computational requirements.  Classical MD 

permits simulation of relatively large systems, but the same time scale limitations could com-

promise complete structural relaxation.  Classical MC based on a continuous random network 

(CRN) model is a proven approach for the construction of fully-relaxed a-SiOx struc-

tures.26,42,46,48,49  Within the CRN model, an amorphous system is relaxed via a large number of 

bond transpositions using Metropolis Monte Carlo (MMC) sampling,42 where the validity of the 

final structure also strongly depends on application of a reliable force field.  Since this approach 

does not require description of bond formation/scission, simple and computationally less expen-

sive valence force field (VFF) models like the three-body, harmonic Keating-like (KT) potentials 

have been widely used, permitting simulation of larger systems.  Effective VFF models are cur-

rently available for prediction of minimum-energy configurations of fully-coordinated Si- and 
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SiO2-based materials when the bond lengths and angles do not significantly deviate from their 

equilibrium values16,22; however, relatively little effort has been undertaken to assess and im-

prove the accuracy of existing VFF models for a-SiOx-based systems.   

In this paper, we present a valence force field based on a modified Keating model for the 

structure and energetics of amorphous Si rich oxide (a-SiOx, 0 ≤ x ≤ 2) materials.  We optimize 

the parameters to fit the results from cluster and periodic density functional theory (DFT) calcu-

lations of various model structures.  In order to evaluate the reliability of our potential, we pre-

pare model structures for a-SiOx (x = 0, 0.5, 1, 1.5, and 2) using CRN-MMC simulations based 

on the present potential and compare their energetics with the energetics from DFT and earlier 

Keating-like and modified Stillinger-Weber potential calculations.  We also examine how the 

choice of force fields affects the atomic-level description of phase separation in a-SiO2 and a-

Si/a-SiO2 interfaces.  We prepare model structures for oxide-embedded amorphous Si nanopar-

ticles using CRN-MMC simulations based on the present potential and earlier Keating-like po-

tential models and subsequently characterize the structural models in terms of concentration of 

suboxide states (Si1+, Si2+, Si3+), strain energy profiles, and ring-size distributions.  To explain 

the observed structural properties, we use relative rigidities of bulk a-Si and bulk a-SiO2 which 

are obtained by calculating their mechanical properties.  Based on these results, we assess the 

role of strain in determination of the structural properties of the Si/SiO2 composite system, such 

as interface bond topology, degree of phase separation, abruptness of the interface. 

 

II.  CALCULATION METHODS 

A. Valence force field model for a-SiOx (0 ≤ x ≤ 2) 
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Within the VFF model, the relative energies of a-SiOx materials are evaluated in terms of 

the increase of total energy (ΔEtotal) with respect to the Si-Si and Si-O bond energies obtained 

respectively from c-Si and c-SiO2 (β-cristobalite in this work).  The ΔEtotal can be given by the 

sum of the changes in strain energy (ΔEstrain) and suboxide energy (ΔEsubox): 

ΔEtotal = ΔEstrain + ΔEsubox.    (1) 

The suboxide (penalty) energy (ΔEsubox) represents an increase in the Si-Si and Si-O bond ener-

gies arising from the various oxidation states of Si.50  For a given Si-rich suboxide system, 

ΔEsubox can be obtained by adding the suboxide penalties of individual Si atoms with interme-

diate oxidation states (+1, +2, +3).  Using periodic c-SiOx (x = 0.5, 1.0, and 1.5) models (see 

FIG. 2 in 48), our DFT calculations predict the suboxide energies of 0.54, 0.57, and 0.29 eV for 

Si1+, Si2+, and Si3+, respectively, in good agreement with previous DFT results.50-52   

Strain energy (ΔEstrain) arises from lattice distortions involving bond stretching, bond an-

gle distortion, torsion resistance, and non-bonding interactions.  The structure, stability, and pho-

non properties of bulk disordered Si and SiO2 materials have been successfully studied using a 

Keating-like VFF model:   

∑ ∑ −+−=
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where kb (in eV/Å2) and kθ (in eV) refer to the bond-stretching and angle-distortion force con-

stants, respectively, bi and b0 (in Å) are the lengths of the ith bond and the equilibrium (reference) 

bond, respectively, and θij  and θ0 (in degrees) are the angles subtended by the ith and jth bonds 

and the equilibrium bond angle, respectively.  The three-body harmonic potential offers a satis-

factory description of the strain of Si and SiO2 materials particularly when the departure of the 

bond lengths and bond angles from their respective equilibrium values is insignificant.16,22 
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For strain and suboxide energy variations, Keating-like (KT) potentials have been applied 

to examine the network topology and properties of a-Si and a-SiO2.26,44,46  In particular, the KT 

potential parameterized by Tu and Tersoff [referred to as KT(TT), hereafter] has been widely 

employed to determine the atomic structure and energetics of amorphous Si/SiO2 multiphase sys-

tems, including planar c-Si/a-SiO2 interfaces26,53 and np-Si/a-SiO2.46  For the present work, first 

Lee and Hwang optimized KT potential parameters based on the geometries and energies from 

density-functional theory (DFT) calculations [referred to as KT(LH) to distinguish it from 

KT(TT)].  This optimization procedure is detailed in the following section.   

Earlier studies emphasized the importance of kθ for the Si-O-Si bond angle to achieve a 

realistic description of bulk a-SiO2.  The relatively small kθ(Si-O-Si) value in the KT(TT) poten-

tial appears to result in a large discrepancy between experimental and simulation results for the 

Si-O-Si bond angle distribution in the highly-distorted a-SiO2 network, which was corrected by 

making the kθ(Si-O-Si) term stronger 22  Compared to bulk a-SiO2, we expect the SiO2 structure 

near the Si/SiO2 interface to be more distorted due to strain arising from the lattice mismatch be-

tween Si and SiO2.  Therefore, an improved description of Si-O-Si bond angle distortion is likely 

warranted to obtain more realistic structural models and energetics for Si/SiO2 interface systems.  

Likewise, other angle distortion force constants (such as kθ(O-Si-O), kθ(Si-Si-O), and kθ(Si-Si-

Si)) might also require reexamination since bond topologies and strain energies in a-SiOx mate-

rials are mainly governed by three-body contributions.  In addition, the equilibrium Si-Si and Si-

O bond lengths are known to be a function of Si charge state.34,50,51  It is reasonable to infer that 

optimization of b0(Si-Si) and b0(Si-O) values in terms of Si oxidation state might be influential; 

however, we will later show that equilibrium bond length variations are insignificant as well as 

their influence on the suboxide structure.   
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B. Determination of force field parameters 

The potential parameters are determined by fitting VFF total energy data to DFT values 

in the following sequence that corresponds to an increase in the degrees of freedom of each train-

ing set: (1) b0(Si-Si) and b0(Si-O); (2) kb(Si-Si) and kb(Si-O); (3) θ0(Si-Si-Si); θ0(O-Si-O), θ0(Si-

O-Si), and θ0(Si-Si-O); (4) kθ(Si-Si-Si); (5) kθ(Si-O-Si) [and also nθ(Si-O-Si), power of the three-

body term]; (6) kθ(O-Si-O); and (7) kθ(Si-Si-O).  Table I summarizes the force constant values 

for both the KT(LH) and KT(TT) potentials along with other KT potential parameters for bulk a-

SiO2.  Table II likewise summarizes calculated and tabulated b0 values.   

For determination of b0(Sim-Sin) and b0(Sim-O), where m and n indicate the oxidation 

states of respective Si atoms, we used periodic crystalline Si0, Si1+, Si2+, Si3+, and Si4+ lattice 

models (see Fig. 2 in Ref. 52) as well as cluster models for all oxidation states (see Figure 1).  

When m = n, the b0 values can be obtained from periodic calculations.  Assuming that the varia-

tion of b0 with Si oxidation state is identical for the periodic and cluster calculations, we tabu-

lated the b0 values when m ≠ n based on the cluster calculation results:   
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where b0 and B0 refer to the equilibrium bond lengths from our periodic and cluster calculation 

results, respectively.  The b0(Sim-O) value decreases with increasing m, possibly attributed to a 

reduction in the contribution of covalency, consistent with previous ab initio calculations.34,50,51  

We observe the contribution of oxidation state to insignificantly affect the resultant a-SiOx bond 

topology as corroborated by minor perturbations (substantially less than 0.1 Å) in average Sim-

Sin and Sim-O bond lengths. 
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For kb(Si0-Si0) and kb(Si4+-O) parameters, we calculated variations in the total energies of 

c-Si (with 8 atoms) and c-SiO2 (β-cristobalite with 8 SiO2 units) by varying their respective lat-

tice constants from -5% to 5%.  For DFT calculations, a Monkhorst-Pack (8×8×8) k-point mesh 

was used for Brillouin-zone sampling.  Optimized values of kb(Si0-Si0) = 9.08 eV/Å2 and kb(Si4+-

O) = 31.90 eV/Å2 are close to corresponding KT(TT) values as shown in Table I.  For c-Si and c-

SiO2, the variation of ΔE computed by KT(LH), KT(TT), and DFT calculations is shown in Figs. 

2(a) and 2(b), respectively, as a function of the magnitude of bond strain.  For both model sys-

tems, the VFF values are in good agreement with DFT values near equilibrium.  The potential 

dependence of kb on Si oxidation state was also examined using cluster model calculations.  

From our results, kb appears inversely proportional to b0; however, the magnitude of kb variation 

is sufficiently small, so we can safely disregard the oxidation effect.    

With the equilibrium bond angle of θ0(Si-Si-Si) = 109.5°, we optimized the force con-

stant kθ(Si-Si-Si) using four independent 64-atom a-Si supercells.  The optimal value was ob-

tained through minimization of the cross-validation error (ξ) which is given by:   

∑
=

−=
N

n

n
FF

n
DFT EE

N 1

2)()(2 )(1ξ ,      (4) 

where )(n
DFTE  and )(n

FFE  refer to the DFT and FF energies, respectively, of the nth of N total a-Si 

models in the training set; in this case, the energies were evaluated based on fully-relaxed struc-

tures (with the same network) from each calculation.  The same procedure was applied in opti-

mization of other kθ values, unless stated otherwise.  Our optimized kθ(Si-Si-Si) value of 1.795 

eV is only half of the corresponding KT(TT) value of 3.58 eV.  This is not surprising considering 

that a-Si is softer than c-Si, while the KT(TT) value well reproduces the crystalline Si properties.   

 For the remaining three-body force constants, equilibrium bond angles were set at θ0(O-

Si-O) = 109.5°, θ0(Si-Si-O) = 109.5°, and θ0(Si-O-Si) = 180°, which are well-established for the 
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Si-O system.  Given that both Si-O-Si and O-Si-O bond angle distortions contribute to the ener-

getics of a-SiO2, we first determined kθ(Si-O-Si) using a cluster model structure [see Figure 3 

inset], then computed kθ(O-Si-O) using four independent, periodic a-SiO2 model structures (each 

containing 64-SiO2 units).   

From our DFT cluster calculations [see Figure 3], the total energy only slightly changes 

as θ(Si-O-Si) is reduced from 180° to 150°, but rapidly increases for θ(Si-O-Si) < 120°.  The 

KT(TT) values of kθ(Si-O-Si) = 0.75 eV and nθ(Si-O-Si) = 2 (power of the corresponding three-

body term) show reasonable agreement with DFT results for 150o < θ(Si-O-Si) ≤ 180 o, yet exhi-

bit significant underestimation for θ(Si-O-Si) < 150o.  Many previous studies54-56 have demon-

strated that the amorphous silica structure has a wide Si-O-Si angle distribution that may vary 

from 120° to 180°.  Note that θ(Si-O-Si) can be around 130° and 160°, respectively, in three- and 

four-membered rings in a-SiO2.  To more rigorously describe the strain energy variation asso-

ciated with the wide distribution of the O-subtended bond angle, we adjusted not only kθ(Si-O-

Si), but also nθ(Si-O-Si), in the three-body term, θθθθ
nk )cos(cos 0− .  By fitting VFF total ener-

gies to DFT values from the cluster and subsequent periodic calculations, we obtained kθ(Si-O-

Si) = 2.62 eV and nθ(Si-O-Si) = 2.2.   Note that these parameters are comparable to kθ(Si-O-Si) = 

2.0 eV with nθ(Si-O-Si) = 2 from a careful reoptimization for a-SiO2 bulk phases by Alfthan et 

al.22  Concomitantly, we obtained kθ(O-Si-O) = 10.25 eV, which is also much larger than 4.32 

eV from KT(TT), using four independent periodic a-SiO2 model structures.  We also adjusted 

kθ(Si-O-Si) and kθ(O-Si-O) simultaneously using four independent, periodic a-SiO2 model struc-

tures, but found that the optimized values were essentially unchanged.  Finally, we determined 

kθ(Si-Si-O) = 4.165 eV using four independent, periodic a-SiO models comprised of 64 Si-O 

units, which is close to the KT(TT) value of 3.93 eV.   
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C.  Metropolis Monte Carlo simulations 

All a-SiOx structures we present were generated by CRN-MMC simulations (in the iso-

thermal and isochoric ensemble) combined with either KT(LH) or KT(TT) potentials.  The atom-

ic structure of each model system evolves toward thermodynamic equilibrium though MC bond-

switching moves,42 which we implemented using the extended WWW (Wooten-Winer-Weaire) 

bond transposition scheme.16  A bond switching move involves two bonds, A-B and C-D, across 

four unique atoms (A, B, C, and D) and forms two new bonds B-D and A-C by severing bonds A-

B and C-D.  A sampling process selects one of five different combinations of four distinct atoms 

(A, B, C, and D): Si(A)-Si(B)-Si(C)-Si(D); O(A)-Si(B)-O-Si(C)-O(D); Si(A)-Si(B)-Si(C)-O(D); 

Si(A)-Si(B)-O(C)-Si(D); and O(A)-Si(B)-Si(C)-O(D), where atoms A and C, as well as atoms B 

and D, must not be directly connected by a bond prior to the switching maneuver.  For O(A)-

Si(B)-O-Si(C)-O(D), the O atom between atom B and atom C is first selected randomly, then the 

remaining atoms are randomly identified.  For the remaining combinations, either atom B or C is 

first selected randomly, then the remaining atoms are randomly identified.  The acceptance or 

rejection of each bond-switching move is determined using probability P = min[1, exp(-ΔE/kBT)], 

where ΔE is the change in ΔEtotal resulting from the bond-switching move.  Before and after each 

bond-switching move, the system is relaxed by Polak and Ribiere’s conjugate-gradient method.57  

During the MMC simulation, we included an additional repulsive term (Er) in ΔEtotal to 

effectively prevent nonbonded atoms from interacting.16,26  Inclusion of Er is particularly impor-

tant in a-SiOx topological determination, likely because the flexible Si-O-Si linkages permit 

much more structural degrees of freedom than fourfold-coordinated a-Si.  The repulsive contri-

bution is given by: 

     ∑ −=
mn

mnr rdE 3
2 )(γ ,       (6) 



 12

where m and n denote atoms which are neither 1st nor 2nd neighbors in the network, rmn is the dis-

tance between two atoms (evaluated only for rmn < d2), and d2 is a cutoff distance.  We used the 

following parameters: d2(Si-Si) = 3.84 Å, d2(Si-O) = 3.2 Å, d2(O-O) = 2.61 Å, and γ = 0.5 eV/Å3, 

referring to Ref. 16 and 22.  The Er term becomes negligible for the well-relaxed a-SiOx models 

presented in this paper.   

The following procedure was used for construction of each a-SiOx (0 ≤ x ≤ 2) structure 

model.  First, we began with a randomized Si configuration in a periodic supercell with volume 

(V) given by V = VSi×NSi, where NSi denotes the number of Si atoms and VSi is the unit volume of 

a-Si.  The randomized Si configuration was sequentially relaxed at temperatures of 5000, 4000, 

3000, 2000, and 1000 K with approximately 1000×NSi trials for each temperature.  Next, NO (= 

xNSi) O atoms were randomly incorporated into Si-Si bonds in the a-Si model, resulting in an in-

termediate a-SiOx model with volume (V) given by V = VSi×(NSi – NO/2) + VSiO2×NO/2, where 

VSiO2 denotes the unit volume of a-SiO2.  VSi and VSiO2 were extracted from corresponding expe-

rimental densities of 2.28 g/cm3 and 2.2 g/cm3, respectively.30,58  This intermediate configuration 

was further relaxed in a thermal sequence of 5000, 4000, 3000, 2000 and 1000 K with approx-

imately 200(NSi + NO) trials for each temperature.  Each time the simulation temperature was de-

cremented, the lowest-energy configuration from the completed temperature step was selected as 

the initial configuration for the ensuing simulation step.  The MC simulations were conducted in 

a canonical ensemble (NVT); after the initial (highly distorted or nearly random) structures were 

relaxed, we also conducted the simulations allowing volume relaxation in all three directions, but 

the key structural properties from the isobaric simulations were nearly indistinguishable from the 

isochoric cases.   

D.  Density-functional theory calculations 
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All DFT calculations herein were performed using the well-established planewave pro-

gram, VASP,59 within the generalized gradient approximation of Perdew and Wang (GGA-

PW91).60  Vanderbilt-type ultrasoft pseudopotentials61 were adopted to describe the interaction 

between ion cores and valence electrons.  Valence electron wave-functions were expanded using 

a planewave basis set with a kinetic-energy cut-off of 400 eV.  For Brillouin zone sampling, we 

used a (2×2×2) Monkhorst-Pack k-point mesh for all periodic a-SiOx supercell models with 64 Si 

and 64x O atoms (sufficient for disordered systems) and Γ-point sampling for cluster models, 

unless noted otherwise.  All structures were fully-relaxed using the conjugate gradient method 

until residual forces on constituent atoms became smaller than 5×10-2 eV/Å.  

 

III.  RESULTS AND DISCUSSION 

A.  Energetics of amorphous SiOx: Comparisons between force field models and DFT  

We evaluated the reliability of the force fields considered in this work for the energetics 

of a-SiOx materials by comparison with DFT results.  Besides KT(LH) and KT(TT), we also 

looked at extended Stillinger-Weber (SW) potentials without and with considering the suboxide 

penalty as proposed by Watanabe et al.27,28; for convenience, the former and latter are referred to 

as WT1 and WT2, hereafter.    

First, we prepared model structures for a-SiOx (x = 0, 0.5, 1, 1.5, and 2) using MC simu-

lations based on the KT(LH) potential without including ΔEsubox to avoid suboxide phase separa-

tion into Si and SiO2.  For x = 0.5, 1, and 1.5, the prevailing Si oxidation states are +1, +2, and 

+3, respectively, as listed in Table III; in the model structures, O atoms are almost evenly distri-

buted.  For each x, we considered four independent structures each of which contains 64 Si atoms 

with 64x O atoms.    
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Figure 4 shows the variations of ΔÊtotal (= ΔEtotal per Si atom) with x from DFT, KT(LH), 

KT(TT), WT1, and WT2 calculations.  The DFT result (distribution) in Fig. 4 resembles a para-

bola with maximum at x ≈ 1, driven mainly by suboxide penalty contribution (later demonstrated 

in Fig. 5).  Among the four classical potentials, KT(LH) exhibits the best agreement with DFT 

for all a-SiOx models.  KT(TT) tends to overestimate and underestimate the total energies of a-Si 

and a-SiO2, respectively.  As expected, WT1 (with no suboxide penalty contribution) yields no 

significant variation in ΔÊtotal with x, while WT2 (whose pair-like interaction term was modified 

in order to describe the suboxide penalty28,62) significantly overestimates the suboxide contribu-

tion.  In addition, compared to DFT, both WT1 and WT2 are likely to underestimate ΔÊtotal in a-

Si, while showing relatively good agreement in a-SiO2.    

Figure 5(a) presents the average strain energies per Si (ΔÊstrain) from KT(LH), KT(TT), 

and DFT calculations, which were obtained by subtracting the average suboxide penalty energies 

(in the inset) from the average total energies (in Fig. 4).  For each x, average values represent 

four independent structures considered.  Overall, KT(LH) and DFT are in good agreement.  

Compared to KT(LH) and DFT, KT(TT) yields a noticeably larger ΔÊstrain value in a-Si, where 

ΔÊstrain monotonically decreases with increasing O content and becomes smallest in a-SiO2.  The 

ΔEstrain overestimation of KT(TT) for a-Si is mainly attributed to the larger kθ(Si-Si-Si) value of 

3.58 eV relative to 1.795 eV in KT(LH), while the underestimated ΔEstrain in a-SiO2 is due to the 

smaller kθ(Si-O-Si) and kθ(O-Si-O) values of 0.75 eV and 4.32 eV relative to the respective val-

ues of 2.62 eV (with nθ = 2.2) and 10.25 eV in KT(LH).  Note that the two-body force constants, 

kb(Si-Si) and kb(Si-O), are comparable for KT(TT) and KT(LH). 

We repeated the above procedure using model structures with partial phase separation 

which were obtained from MC simulations including ΔEsubox in KT(LH).  For each x, four inde-
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pendent structures were considered.  As summarized in Table IV, the Si oxidation state statistics 

clearly indicate the formation of Si and SiO2 phases in the suboxide systems.  Figure 5(b) shows 

the variations of ΔÊstrain (and ΔÊsubox in the inset) as a function of Si:O ratio (x) from KT(LH), 

KT(TT), and DFT calculations.  For the suboxide systems, KT(LH) shows excellent agreement 

with DFT, but the KT(TT) values significantly deviate from the DFT and KT(LH) values.   

It is worth noting that ΔEstrain increases while ΔEsubox drops in the phase separation of 

suboxides, as seen from the separation-induced changes of ΔÊstrain and ΔÊsubox [Figure 5(a) vs. 

Figure 5(b)].  For instance, the phase separation results in an increase in ΔÊstrain from 0.127 to 

0.225 eV/Si when x = 1 (i.e., a-SiO), while ΔÊsubox reduces by 0.227 eV/Si.  These results sug-

gest that the role of strain might be important in determining the atomic configurations, particu-

larly in the Si/SiO2 interface region, although the phase separation is mainly driven by the reduc-

tion of suboxide penalty energy.52   

 

B.  Phase separation:  a-Si cluster embedded in a-SiO2 matrix 

In this section, we examine how the atomic-level description of phase separation in a-

SiO2 is affected by the choice of force fields.  In particular, based on the KT(LH) and KT(TT) 

potentials, we attempt to assess the role of strain in determination of the atomic configuration 

near the Si/SiO2 interface.  For both KT(LH) and KT(TT) potentials, we constructed five inde-

pendent phase-separated model structures using CRN-MMC simulations.  The structure genera-

tion procedure adopted the following steps for each model: (i) construction of a 480-atom a-Si 

supercell; (ii) insertion of 720 O atoms into Si-Si bonds from the supercell perimeter inward with 

concurrent volume compensation (following V = VSi×(NSi – NO/2) + VSiO2×NO/2 from Sec. II C); 

(iii) execution of O atom hopping moves at 100 K over 200(NSi + NO) trials to induce further 
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phase separation (only ΔEsubox was considered, not ΔEstrain, to expedite phase separation); (iv) 

implementation of bond-switching moves within the oxide phase through a thermal sequence of 

5000, 4000, 3000, 2000, and 1000K over approximately 200(NSi + NO) trials for each tempera-

ture; and (v) completion of bond-switching maneuvers throughout the supercell (both phases) in 

consecutive thermal stages of 3000, 2000, and 1000K over approximately 200(NSi + NO) trials for 

each temperature.  Each time the simulation temperature changed, the lowest-energy configura-

tion from the prior simulation was adopted as the initial configuration for the subsequent simula-

tion stage.  This extensive approach provides a thorough description of phase separation in the a-

SiO1.5 suboxide that leads to the formation of an a-Si cluster embedded in a a-SiO2 matrix.  Ex-

ample configurations from our simulations are presented in Fig. 6.  

Comparing the phase-separated structures from KT(LH) and KT(TT) potential-based si-

mulations (referred to as KT(LH) and KT(TT) models, hereafter), we find important discrepan-

cies in the degree of phase separation (identifiable by the distribution of intermediate Si oxida-

tion states) as well as the distribution of ring sizes.  In Table V, we summarize the relative con-

centrations of Si oxidation states for the KT(LH) and KT(TT) models.  While Si3+ is the domi-

nant suboxide state in both models because of its low suboxide energy (0.29 eV) relative to those 

of Si1+ (0.54 eV) and Si2+ (0.57 eV), the overall concentration of suboxide states (Si1+, Si2+, Si3+) 

is higher in the KT(LH) model than the KT(TT) model.  In addition, Table V shows that each 

suboxide state is more abundant in the KT(LH) model relative to the KT(TT) model.  To provide 

some quantification of the abruptness of the phase transition interface regions, we calculated ra-

tios of Si/SiO2 states (Si0, Si4+) to suboxide states (Si1+, Si2+, Si3+) as 0.78 and 0.81 for the 

KT(LH) and KT(TT) models, respectively.  These results suggest that the KT(LH) model should 
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yield more graded Si/SiO2 interface profiles with smaller a-Si cluster phases than KT(TT) mod-

els.  

To further characterize the suboxide transition interface, we provide energy and Si sub-

oxide distribution profiles in Figs. 7 and 8, respectively, along radial directions from the a-Si 

cluster centers for both models.  As shown in Fig. 7, the a-SiO2 region in the KT(TT) model ex-

hibits much higher ΔÊstrain values, but less Si suboxide penalty contributions, than the KT(LH) 

model; however, the KT(TT) model a-Si region exhibits lower ΔÊstrain values than observed in 

the KT(LH) model.  We also observe that both a-Si and a-SiO2 regions in the proximity of the 

Si/SiO2 interfaces yield higher strain energies than bulk a-Si and a-SiO2.   

In Fig. 8, the radial profiles of Si suboxide distribution clarify the inferences about phase 

transition abruptness extracted from the suboxide distribution results compiled in Table V.  For 

each model, we define a nominal interface radius, r0, that effectively defines a reference for the 

Si/SiO2 interface, 

)()(
)()(

21

21

0 ++

++

+
+

= ∑∑
SinSin

SirSir
r ,     (7) 

where )( mSir  is the distance of a Si atom with oxidation state m from the cluster center, )( mSin  

is the number of Sim, and the summations are conducted over all four independent samples stu-

died.  The Si1+ and Si2+ states can be interpreted as perimeter Si atoms of the a-Si phase with one 

and two O neighbors, respectively.  For the Si3+ oxidation state, the increased spread in radial 

distribution of the KT(LH) model over the KT(TT) model is readily apparent in Fig. 8.  For both 

models, we observe a prominent peak in the Si3+ oxidation state just outside of r0.  The KT(LH) 

Si3+ distribution also exhibits a more graded phase transition interface since the KT(LH) model 

has both a lower peak and a more significant distribution tail on the a-SiO2 side (r – r0 > 5Å) 

when contrasted to the KT(TT) distribution. 
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In Fig. 9, we present ring-size distributions for the (a) total, (b) a-Si, and (c) a-SiO2 com-

ponents of the KT(LH) and KT(TT) model structures.  For the a-Si and a-SiO2 cases, the paths 

comprised solely of Si0 and Si4+ atoms are counted as rings, respectively; for comparison, the 

ring-size distributions of bulk a-Si and a-SiO2 are also provided.  For a-Si, the embedded phase 

contains more five-membered rings in both models, rather than the energetically-favored six-

membered rings that are most frequently observed in bulk a-Si.  Likewise, the a-SiO2 phase in 

the two-phase system yields broader ring size distributions than in bulk a-SiO2 for both models.  

This indicates that the phase-separated Si and SiO2 structures are more strained than their bulk 

counterparts.  We also notice in the a-Si phase that the KT(LH) model structures tend to contain 

more five-membered rings than the KT(TT) model structures; on the other hand, the latter gener-

ally exhibit broader ring size distributions than the former in the a-SiO2 phase.  This is not sur-

prising considering that the KT(LH) potential over- and underestimates lattice strain in a-SiO2 

and a-Si, respectively, compared to the KT(TT) potential.   

 

C.  Mechanical Properties 

Our calculations suggest that the relative rigidity between Si and SiO2 matrices is critical 

in determination of the Si/SiO2 interface structure.  Elastic (or Young’s) modulus (Y) and bulk 

modulus (B) are important metrics of the rigidity of an elastic response.  For various a-SiOx 

compositions, these two moduli were successfully evaluated by first-principles calculations using 

a statistical approach in our previous work63 and the endpoint cases (x = 0 and 2) have been well-

characterized through experimental measurements.64-69  Additional mechanical properties, such 

as the Poisson ratio (ν) and shear modulus (G), can be calculated once Y and B are known be-

cause only two of these four quantities are independent in isotropic materials.63  We apply our 
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previously reported moduli calculation method to VFF total energy data to evaluate Y and B 

based on both KT(LH) and KT(TT) potentials for a-Si and a-SiO2 in order to quantify the degree 

of rigidity in respective a-Si and a-SiO2 matrices.   

The elastic (or Young’s) modulus (Y) was calculated by computing forces and stresses 

from VFF total energy (E) data using the following relationships:  

      
ε=∂

∂
=

x

x
x x

EF      (8) 
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Forces along a given direction (Fx) were calculated for each strain condition (ε) using second or-

der numerical derivatives in Eq. (8), normal stresses (σxx) were subsequently evaluated with Eq. 

(9) (A represents the supercell face area in the x direction), and ultimately Young’s modulus is 

obtained from Eq. (10) as the ratio of stress to strain in the x direction.  To provide adequate sta-

tistical sampling of Y for each structure sample, Y was evaluated at each condition for -5% ≤ ε ≤ 

5% at 0.5% intervals, and an average Y is obtained.   

 The bulk modulus (B), which is the 3-D analog of Y, can be calculated from total energy 

data as  
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where Vo is the equilibrium cell volume, εv=∆V/Vo is an arbitrary volumetric strain, and Vi
 is the 

cell volume at an arbitrary εv.  Similar to our treatment of Y, B was evaluated at each condition 

for -5% ≤ εv ≤ 5% at 0.5% intervals, and an average B is obtained. 

Table VI provides a summary of our mechanical property calculations along with rele-

vant experimental data for comparison.  The KT(LH) and KT(TT) potential-based calculations 

exhibit significant differences in Y and B values for both a-Si and a-SiO2, where the former pro-

vides better agreement with experimental data than the latter.  The similar B values for a-Si from 

KT(LH) and KT(TT) calculations can be attributed to nearly identical kb values for the two po-

tentials, suggesting that the bulk modulus is nearly unaffected by bond angle (Si-Si-Si) distor-

tions.  The remaining disparities for Y and B values in both a-Si and a-SiO2 between KT(LH) 

and KT(TT) potentials can be clearly explained by the aforementioned differences in kb and kθ.   

Considering the disparate nature of a-Si and a-SiO2 in the local proximity of a Si/SiO2 in-

terface, the relative rigidity of SiO2 to Si should be an important factor in structural determina-

tion of these interfaces.  Since both bond (Si-Si and Si-O) stretching and angle (Si-Si-Si, O-Si-O, 

and Si-O-Si) distortion contribute to Young’s modulus for a-Si and a-SiO2, we attempted to 

quantify the relative rigidity between a-Si and a-SiO2 using Y, rather than B.  We evaluate the 

following dimensionless number, γ, as a measure of relative rigidity: 

Sia

SiOa

Y
Y

−

−= 2γ ,      (12)  

where Ya-Si and Ya-SiO2 are the Young’s moduli for bulk a-Si and bulk a-SiO2, respectively.  Our 

calculations show that a-Si (Y = 158.4 GPa) from KT(TT) is slightly more rigid than a-Si (Y = 

124.3 GPa) from KT(LH), while a-SiO2 (Y = 46.3 GPa) from KT(TT) is far less rigid than a-

SiO2 (Y = 98.9 GPa) from KT(LH).  From these Y values, we obtain γKT(LH) = 0.8 and γKT(TT) = 
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0.3 for the KT(LH) and KT(TT) potentials, respectively.  This indicates that the relative rigidity 

of SiO2 to Si is significantly underestimated by KT(TT).  The smaller γKT(TT) implies that appli-

cation of the KT(TT) potential will likely lead to structural rearrangement in the a-SiO2 phase 

driven by minimization of strain exerted on the a-Si phase, ultimately resulting in excess distor-

tion in the a-SiO2 structure.  In contrast, the larger γKT(LH) implies that a similar driving force for 

a-SiO2 structural distortion is significantly reduced for the KT(LH) potential.  This provides a 

plausible explanation for the contrasting strain energy profiles of the KT(LH) and KT(TT) poten-

tials as depicted in Fig. 7(a).   

The occurrence of relatively more graded (abrupt) Si/SiO2 interfaces for the KT(LH) 

(KT(TT)) model structures can be explained by the difference in rigidity between a-Si and a-

SiO2 phases.  Phase separation of a-SiOx into Si and SiO2 phases is driven by minimization of 

the suboxide energy, but it concurrently creates additional distortion from lattice mismatch be-

tween Si and SiO2; as a result, the increase of strain energy from lattice mismatch tends to tem-

per the formation of abrupt boundaries.  In application of the KT(TT) potential, the excessively 

pliable a-SiO2 phase permits disproportionate lattice distortion on the a-SiO2 side of the interface 

which leads the system to form relatively abrupt Si/SiO2 interfaces.  In contrast, in application of 

the KT(LH) potential, the relatively more rigid a-SiO2 side of the interface is more resistive to 

accommodation of lattice distortion, so formation of relatively graded Si/SiO2 interfaces is fa-

vored (see Fig. 8). 

The CRN-MMC approach with a simple VFF model can provide a reasonable description 

of the defect free, minimum energy configurations of various Si/SiO2 composite systems, which 

will further allow thorough studies of their optical and electrical properties and also the nature 

and behavior of defects and impurities in the complex system.  However, the Si/SiO2 interface 
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structure would also be influenced by process conditions; for instance, a significant amount of 

compressibility can be found in the SiO2 region near the interface during oxidation of Si nano-

wires, when the rate of oxidation is greater than the rate of structural relaxation.70  In those cases, 

not only thermodynamic equilibrium but also kinetics might need to be considered.  Moreover, 

the Si/SiO2 interface often contains a non-negligible amount of coordination defects due largely 

to lattice-mismatch-induced strains.  To take into account the kinetic effect, it would be neces-

sary to use more advanced methods such as molecular dynamics with a more sophisticated po-

tential model. 29,71-73 

 

IV.  SUMMARY 

We present a valence force field based on a modified Keating model for the structure and 

energetics of amorphous Si rich oxide (a-SiOx, 0 ≤ x ≤ 2) materials.  The potential parameters for 

the strain energy contribution were optimized to fit DFT results for various cluster and periodic 

model structures.  Suboxide energies were determined using DFT calculations of periodic c-SiOx 

(x = 0.5, 1.0, and 1.5) models, which are 0.54, 0.57, and 0.29 eV for Si1+, Si2+, and Si3+, respec-

tively.  We particularly focused on precise optimization of bond angle force constants such as 

kθ(Si-O-Si), kθ(O-Si-O), kθ(Si-Si-O), kθ(Si-Si-Si) since bond topologies and strain energies in a-

SiOx are mainly governed by the three-body contributions.  In this work, to more rigorously de-

scribe the strain energy variation associated with a wide Si-O-Si angle distribution (particularly 

in a highly strained Si/SiO2 composite system), we adjusted not only kθ(Si-O-Si) but also nθ(Si-

O-Si) in the three-body term, θθθθ
nk )cos(cos 0− .  We also considered variations in the equili-

brium bond lengths such as b0(Si-Si) and b0(Si-O) in terms of Si oxidation state, but the contribu-

tion of oxidation state turns out to insignificantly affect the resultant a-SiOx bond topology.  For 
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the energetics of various a-SiOx (0 ≤ x ≤ 2) systems, the present potential model agrees well with 

DFT for all O/Si composition ratios, while earlier Keating-like and modified Stillinger-Weber 

potential models exhibit significant deviations from the present model and DFT.  These results 

emphasize the importance of correctly describing the wide Si-O-Si angle distribution by making 

the corresponding bond-bending term stronger as well as softening of the Si lattice in the 

amorphous phase by making Si-Si-Si bond-bending term weaker.  We also find that phase sepa-

ration in a-SiOx results in an increase in the strain energy while the suboxide penalty decreases.  

Although the phase separation is mainly driven by the reduction of suboxide energy, our calcula-

tions demonstrate that the role of strain is important in determining the atomic configurations 

particularly in the highly strained Si/SiO2 interface region.  Our study also suggests that the rela-

tive rigidity between Si and SiO2 matrices is critical in determination of the Si/SiO2 interface 

structure.  As such, as a measure of relative rigidity we introduced and evaluated a dimensionless 

number SiaSiOa YY −−= /2γ , where Ya-Si and Ya-SiO2 are the Young’s moduli for bulk a-Si and bulk a-

SiO2, respectively.  From the present potential model, the value of γ is estimated to be 0.8 in the 

a-Si/a-SiO2 system, and decreases in the c-Si/a-SiO2 case.  A smaller γ implies larger structural 

rearrangement in the SiO2 part driven by minimization of strain exerted on the Si part, ultimately 

resulting in more distortion in the a-SiO2 structure with a broader ring size distribution as well as 

a less graded Si/SiO2 interface layer with a lower concentration of suboxide states (Si1+, Si2+, 

Si3+).  The present potential model coupled with the CRN-MMC method can be used to create 

structural models (free of coordination defects) for complex a-SiOx-based materials, which will 

further allow thorough studies of the optical and electrical properties of these materials and also 

the nature and behavior of defects and impurities in the a-SiOx system.  The VFF model could 

further be improved by taking into account additional penalty energy terms associated with poss-
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ible coordination defects (such as divalent/trivalent Si and monovalent O defects) to address their 

effects on the structural properties and energetics.  Moreover, by reoptimizing the force parame-

ters the simple valence bond model can be applied to study the mechanical, thermal and vibra-

tional properties of various a-SiOx systems.    

While the CRN-MMC approach with a simple VFF model is designed to determine ther-

modynamically-equilibrated configurations, the structure of Si/SiO2 composites can be often a 

function of process condition, for instance, during Si oxidation and SiO2 deposition on Si; in 

those cases, not only thermodynamic equilibrium but also kinetics might need to be considered.  

To take into account the kinetic effect, it would be necessary to use more advanced methods such 

as molecular dynamics with a more sophisticated potential model. 
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Table I.  Optimized Keating-like potential force constants for the present work (referred to as 

KT(LH)) together with the optimized parameters of Ref. 26 (KT(TT)).  The kb are expressed in 

eV/Å2 and the kθ are in eV.   
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Table II.  Calculated Si-Si and Si-O equilibrium bond distances from bulk structures with 

corresponding cluster values given in ().  When m ≠ n, b0(Sim-Sin) values for bulk structures are 

calculated based on the cluster calculation results using Eq. (3) (see the text).  The b0 are given in 

Å and the θ0 are in degrees.    
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Table III.  Si suboxide statistics for a-SiO0.5 (64 Si and 32 O atoms), a-SiO1.0 (64 Si and 64 O 

atoms), and a-SiO1.5 (64 Si and 96 O atoms) structures used in Figs. 4 and 5(a).  These structures 

were constructed from CRN-MMC simulations based on the KT(LH) potential excluding 

suboxide penalty energies.  All values provided represent sampling over four independent 

structures in percentages (mean ± standard deviation).  
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Table IV.  Si suboxide statistics for a-SiO0.5 (64 Si and 32 O atoms), a-SiO1.0 (64 Si and 64 O 

atoms), and a-SiO1.5 (64 Si and 96 O atoms) structures used in Fig. 5(b).  These structures were 

constructed from CRN-MMC simulations based on the KT(LH) potential including suboxide 

penalty energies.   All values provided represent sampling over four independent structures in 

percentages (mean ± standard deviation).   
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Table V.  Si suboxide statistics sampled over five independent KT(LH) and KT(TT) models of 

np-Si/a-SiO2 (480 Si and 720 O atoms) with quantities expressed as percentages (mean ± 

standard deviation).  
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Table VI.  Computed average mechanical properties based on KT(LH) and KT(TT)26 potentials 

for ten independent a-Si (216 Si atoms) and a-SiO2 (216 Si and 432 O atoms) structures.  Strain 

was applied during mechanical property calculations using the same KT(LH) and KT(TT) poten-

tials used during the initial CRN-MMC simulations.  Relevant experimental data is also 

summarized for comparison.     
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FIGURE CAPTIONS  
 

Figure 1.  Representative cluster models used for calculating Si-Si and Si-O bond lengths.  Clus-

ter models for other oxidation states (see Table II) are obtained by adjusting the number of O 

atoms from these models.  For calculating Si-O bond lengths, the two Si atoms neighboring the 

central O atom retain the same oxidation state.   

Figure 2.  Variations (ΔE) in total energies (from DFT, present work optimization (KT(LH)), and 

optimization of Ref. 26 (KT(TT))) per bond of (a) c-Si (with 8 atoms) and (b) c-SiO2 (β-

cristobalite with 8 SiO2 units) as a function of the ratio (L/L0) of the strained lattice constant (L) 

to the equilibrium lattice constant (L0).   

Figure 3.  Variations (ΔE) in total energies (from DFT, present work optimization (KT(LH)), and 

optimization of Ref. 26 (KT(TT))) of the cluster model (inset) as a function of Si-O-Si bond an-

gle (θ).   

Figure 4.  Relative total energies per Si atom (ΔÊtotal) (from DFT, present work optimization 

(KT(LH)), optimization of Ref. 26 (KT(TT)), and extended Stillinger-Weber potentials proposed 

without (WT1) and with (WT2) suboxide penalties in Refs. 27 and 28) for a-SiOx (x = 0, 0.5, 1.0, 

1.5, and 2.0) (64 Si and 64x O atoms) structures.  All structures were constructed from CRN-

MMC simulations based on the KT(LH) potential without suboxide penalty energies.  For each x, 

four independent structures are represented.  For x = 0.5, 1.0, and 1.5, the distributions of Si 

oxidation states are summarized in Table III.  

Figure 5.  Average relative strain (ΔÊstrain) and suboxide (ΔÊsubox, insets) energies per Si based on 

KT(LH), KT(TT), and DFT calculations for a-SiOx (x = 0, 0.5, 1.0, 1.5, and 2.0) models 

constructed from CRN-MMC simulations based on the KT(LH) potential (a) excluding and (b) 

including suboxide penalty energies.  For each x, four independent structures are represented.  

For x = 0.5, 1.0, and 1.5, the distributions of Si oxidation states for (a) and (b) are summarized in 

Tables III and IV, respectively.   

Figure 6.  (Color online) Atomic configurations for (a) KT(LH) and (b) KT(TT) models for the 

a-Si cluster embedded in a-SiO2 matrix (np-Si/a-SiO2).  Grey wireframe represents O atoms and 

Si4+ states  that comprise the a-SiO2 phase.  Yellow, blue, red, and grey balls represent Si0, Si1+, 

Si2+, and Si3+ states, respectively.   
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Figure 7.  Profiles of (a) strain (ΔÊstrain) and (b) suboxide (ΔÊsubox) energies per Si along radial 

directions from cluster centers of KT(LH) and KT(TT) models for np-Si/a-SiO2 (480 Si and 720 

O atoms).  The cluster center is defined as the center of mass of Si0 atoms.  The nominal inter-

face radius, r0, is defined in the text.  Each data point represents the average value within a given 

concentric spherical shell (2 Å thick) sampled over four independent structures.  The two solid, 

horizontal lines depict the calculated strain energies for bulk a-Si and a-SiO2 with 216 Si and 

SiO2 units, respectively.  All energies are calculated with the KT(LH) potential.   

Figure 8.  Profiles of (a) Si1+, (b) Si2+, and (c) Si3+ oxidation state distributions along radial direc-

tions from cluster centers of KT(LH) and KT(TT) models of np-Si/a-SiO2 (480 Si and 720 O 

atoms).  The cluster center is defined as the center of mass of Si0 atoms.  The nominal interface 

radius, r0, is defined in the text.  Each data point represents the average value within a given con-

centric spherical shell (2 Å thick) sampled over four independent structures.   

Figure 9.  Ring-size distributions for the (a) a-Si and (b) a-SiO2 regions of KT(LH) and KT(TT) 

models of np-Si/a-SiO2 (480 Si and 720 O atoms) together with the ring-size distributions for 

bulk (a) a-Si and (b) a-SiO2 with 216 Si and SiO2 units, respectively.   

 




















