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The electronic, magnetic and orbital structures of KCrF3 in its recently identified crystallographic
phases (tetragonal and cubic) [S. Margadonna and G. Karotsis, J. Am. Chem. Soc. 128, 16436
(2006)] are studied by first principles method. In the tetragonal phase, both the generalized
gradient approximation (GGA) and the GGA+U calculations show that the ground state is the
A-type antiferromagnetic (A-AFM) configuration with G-type orbital ordering pattern. Our
calculations show that the orbital structures and the magnetic configurations can be measured by
the optical conductivity. In the cubic state, the GGA calculations show that the ground state is a
ferromagnetic half metal state, while the GGA+U (Ueff=3.0 eV) calculations show that the A-AFM
insulator phase is the ground state. Our calculations indicate that the electron-electron interac-
tions rather than the electron-phonon interactions are the driving forces behind the orbital ordering.

PACS numbers: 74.25.Ha, 71.18.+y, 71.20.-b

I. INTRODUCTION

The strongly correlated electron systems such as the 3d transition-metal oxides have attracted considerable
attention, where orbital, charge, and spin degrees of freedom play important roles in the electronic, magnetic, and
transport properties. In particular, the orbital degree of freedom and the orbital orderings give rise to very rich
physics properties1–6. The well-known examples for such ordering phenomena are the perovskite-based manganites
La1−xAxMnO3 (A=Ba, Sr, and Ca)7,8. The undoped parent compound LaMnO3 is known5 to be an A-type
antiferromagnetic (AFM) insulator in which the orbital ordering is formed due to the cooperative Jahn-Teller effect.
The electronic configuration of the Mn3+ ions in LaMnO3 is t32ge

1
g, where the three electrons in the t2g orbitals are

localized with a total spin of 3µB, while the itinerary electron in one of eg atomic orbitals is strongly hybridized
with the neighboring O-2p orbitals. This particular orbital ordering is responsible for the A-type antiferromagnetic
structure of LaMnO3. Besides the transition-metal oxides, the transition-metal fluorides also exhibit the intriguing
electronic and magnetic effects. However, compared with the extensive studies of the oxides, the study of the fluorides
is still lacking due to the difficulty of synthesis. KCrF3 is one kind of the perovskite structure fluorides in which
the electronic and structural characteristics are expected to resemble those of LaMnO3 since the orbital degrees of
freedom are activated for Cr2+ (d4), which is isoelectronic analogue of Mn3+ (d4) in LaMnO3. Recently, Margadonna
and Karotsis9 investigated the structural and magnetic properties of KCrF3. Both the structural and magnetic phase
transitions seem to be more complex than expected. The KCrF3 displays not only the large cooperative Jahn-Teller
distortions at room temperature but also a series of temperature induced structural and magnetic transformations.

Although several experimental and theoretical results have been reported about KCrF3
9–13, no one has clearly

seen the orbital ordering. This may be because the direct observation of orbital structure is difficult. However,
several experiments14–19 have been developed to detect the anisotropy induced by the spin and orbital orderings.
Among them, the measurement of anisotropic optical conductivity16–18 using polarized light could provide us with
some useful information. Here, we reported the optical conductivity calculated from first-principles20. Our calculated
optical conductivity indicated that its orbital and magnetic order could be measured in this way.

Typically, the origin of the orbital polarization is believed to be the electron-phonon interaction (the Jahn-Teller
distortion)21 and the electron-electron interaction22,23. To establish the origin of the orbital ordering in KCrF3, we
performed calculations without Jahn-Teller distortion but including electron-electron correlations. The existence of
orbital order indicates that the electron-electron interactions rather than the electron-phonon interactions are the
driving forces behind the orbital ordering.
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II. METHOD AND DETAILS

The calculations were done with the BSTATE24 code, in the ultra-soft pseudopotential plane wave method. All
the lattice constant and the atomic positions adopted in our calculations are borrowed from the experiment9. After
carefully checking the convergence of the calculated results with respect to the cutoff energy and the number of
k-points, we adopted a cutoff energy of 30 Ry and Monkhorst-Pack k-points generated with a 16 × 16 × 12 grid.
In order to determine the true ground state, we have considered four different cases, including the ferromagnetic
(FM), and the three different antiferromagnetic (AFM) spin configurations. The first AFM configuration is the A-
type antiferromagnetic (A-AFM), where the spins of Cr2+ are parallel in the a-b plane and antiparallel along the
c-axis. The second one is the C-type antiferromagnetic (C-AFM), where the spins of Cr2+ are parallel along the
c-axis and antiparallel in the a-b plane. The third one is the G-type antiferromagnetic (G-AFM), where the spins of
Cr2+ are antiparallel to all the nearest neighbors. The various magnetic structures are schematically shown in Fig.1.
As for the exchange-correlation potential, we adopted the generalized gradient approximation (GGA) by using the
Perdew-Burke-Ernzerhof scheme25.
The first-principle calculations based on the density-functional theory have been well developed and widely accepted

as a powerful theoretical tool for explaining and predicting the ground state properties and the electronic structures
of a large amount of materials such as simple metals and band insulators. Nevertheless, the theoretical understanding
has been hindered by the well-known deficiencies26: 1. the nonlocality of the screened exchange interaction is not
taken into account and the electrostatic self-interaction is not entirely compensated; 2. the Kohn-Sham gap is usually
a factor of 2-3 smaller than the fundamental gap of the solid. To overcome the second deficiency, Anisimov developed
the GGA+U corrections27, where the on-site interaction was treated in a static Hartree mean-field manner. It is
suited for strongly correlated systems with long-range ordering, such as the antiferromagnetic ordered insulators.
Recently, a new and powerful method called Hybrid functionals28 has been developed. This method overcomes the
two deficiencies discussed above to a large extend29 and can be used in metals, semiconductors and transition metal
monoxides. Such Hybrid functional ideas can also be used in the DFT+U method, where the U parameter was
replaced with the adjustable Fock exchange30.
As mentioned above, the anisotropic optical conductivity16–18,20 could provide us with some useful information about

orbital ordering. The inter-band optical conductivity is calculated from the converged Kohn-Sham wave functions
|ψnk〉 and eigen values En(k) by using the following Kubo formula20,31 (in Ry units):

σαβ(ω) = −
16

V

∑

kn

ifnk
∑

m

1

ω2
mn − (ω + iδ)2

[

ω + iδ

ωmn

Re(πα
nmπ

β
mn) + iIm(πα

nmπ
β
mn)

]

(1)

where α and β (=x, y, z) are indices for directions, ω is the excitation energy, V is the volume of the unit cell, n
and m are band indices, fnk is the Fermi distribution function, ωmn = Em(k)−En(k) and δ is the lifetime broadening
(δ=0.01Ry in this work), πα

nm = 〈ψnk|(−i∇α)|ψmk〉 are the matrix elements of the momentum operator.

III. RESULTS AND DISCUSSION

A. Electronic structure of the tetragonal phase

The total energies and magnetic moments of the different magnetic states are calculated by using both the GGA
and GGA+U schemes. The calculated results are presented in Table I. It can be seen that the A-AFM phase is the
ground state, which is in good agreement with the neutron diffraction results13 and the calculated results by Xu12

and Giovannetti11. With Ueff=0.0 eV, there exists a small difference in the total energies between the A-AFM and
FM states (0.024 eV/ f.u.), while the energy differences between the A-AFM and the other two AFM configurations,
namely, C-AFM and G-AFM, are about 0.260 and 0.259 meV/ f.u., respectively.
It is recalled that the A-AFM and the FM structures have a ferromagnetic a-b plane but a different stacking along

the c axis, whereas both the C-AFM and G-AFM states are antiferromagnetically ordered in the a-b plane but have
an opposite stacking in the c-axis direction. This reveals that the ferromagnetic exchange interactions in the a-b plane
are more favorable and robust than those along the c-axis direction, indicating a strong two-dimensional character
for KCrF3. In order to calculate the exchange interactions in the a-b plane (Jab) and along the c-axis (Jc), we
approximately decouple the spin degree of freedom and treat it in term of the Heisenberg model, then the exchange
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interaction can be estimated by mapping the calculated total energies for each magnetic state32, E(F), E(A), E(C)
and E(G), to the Heisenberg model. So, the nearest neighboring exchange coupling constants are given by:
Jc = [E(F )− E(G)− E(A) + E(C)]/(4S2)
Jab = [E(F )− E(G) + E(A)− E(C)]/(8S2)
where S=3.5 is the moment of Cr2+. From calculated results, we can see that Jab are much larger than Jc, especially

with smaller Ueff . The difference in total energy between the A-AFM and FM, C-AFM, G-AFM states decreases with
increasing correlation (Ueff ), accompanying decreasing exchange interactions Jab. While the exchange interactions
along the c-axis (Jc) and the moments of the Cr ions are hardly changed with the correlation (Ueff ). The positive
Jab and negative Jc indicate the ferromagnetic coupling in the a-b plane and antiferromagnetic along the c-axis,
respectively.
As mentioned above, the true ground state of KCrF3 is the A-AFM state, so we presented its density of states

(DOS) in Fig.2. The states from -10.0 to -6.0 eV are mostly derived from F-2p, while the DOS around the Fermi
level are mostly derived from up-spin Cr-3d states, leaving the down-spin states empty in the range from 1.5 to 4.0
eV. For the divalent Cr2+ ion, it is in the center of octahedron around by six F atoms. So the Cr-3d states split into
three low energy t2g and two high energy eg states. Our results indicated that the four electrons of the Cr2+ ion
occupied the three t2g states and one orbital of the eg states (t32ge

1
g). That is to say, it is in the high-spin configuration,

which is consistent with the Hund’s rule and with the experimental measurements9,13. From the X-ray and neutron
diffractions10, we know that the system is the cubic perovskite at very high temperature (973K), below which the
high spin Cr2+ ion induces a lattice distortion to a body-centered tetragonal unit cell (space group I4/mcm). In the
tetragonal phase, the CrF6 octahedra are distorted, leading to short Cr-F bonds along the c axis and alternating
long-short Cr-F bonds in the a-b plane, indicative of the presence of a staggered type of orbital ordering. Such orbital
ordering can be clearly seen in Fig.3.
In Fig.3(a), for Cr1 (see Fig.1), three electrons occupy the up-spin t2g states and one electron occupies the up-spin

d3x2−r2 state. The dz2−y2 state lying 0.5 eV above the Fermi level, is empty. For Cr2, all the up-spin t2g states and one
of the eg (d3y2−r2) states are occupied, leaving the up-spin dz2−x2 orbital empty. For Cr3, all the down-spin t2g states
and the d3y2−r2 orbital are occupied. Such orbital ordering is consistent with the Goodenough-Kanamori-Anderson
rules, where the eg- eg exchange interaction within the a-b plane is FM due to a virtual electron hopping between an
occupied and an empty orbital via the intermediate F ligand, while the half-filled orbitals of t2g-t2g exchange through
the medial F atoms between the planes is AFM.
As we mentioned before, the direct observation of the orbital structure is difficult. However, the measurement of the

anisotropic optical conductivity has been proved to be a useful way to measure the orbital structure indirectly. The
calculated optical conductivity (see Fig.3(d)) has a signature that may be referred to the underlying orbital ordering.
In the a-b plane, the optical conductivity σ‖ has two peaks, with α1 at 1.0 eV and α2 at about 8.0 eV, respectively.

The peak α1 is derived from electrons hopping between the occupied d↑
3x2−r2

of Cr1 and the unoccupied d↑
z2−x2 of

Cr2. Along the c-axis, this peak does not exist. If the electron on the occupied d↑
3x2−r2

of Cr1 hop to the d↓
z2−x2 of

Cr3, it has to change its spin direction, which would seldom happen. The peak α2 comes from the electrons hopping
between the F1-2p orbitals and the unoccupied dz2−x2 (or dz2−y2). Along the c-axis, the electron in the 2p state of
F2 (at the apex of the CrF6 octahedron) can also hop to unoccupied dz2−x2 (or dz2−y2), so such optical conductivity
peak also appears in σ⊥ at 9.0 eV (β3). Along the c-axis, besides peak β3, there are two peaks with β1 at 3.3 eV and
β2 at 6.8 eV. From the projected DOS (PDOS), we know that the peak β1 is derived from electrons hoping between

the d↑
3x2−r2

of Cr1 and the t↑2g of Cr3. The peak β2 comes from electrons hoping between the d↑
3x2−r2

of Cr1 and the

d↑
z2−x2 of Cr3.
In order to properly describe the strong electron correlation for the Cr-3d electron of KCrF3, we calculated its

electronic structure with the GGA+U method. We use an effective U parameter of Ueff=3.0 eV (U=4.0 and
J=1.0 eV), which has been proved to be a suitable parameter by previous works12,33–35. We also performed further
calculations with different Ueff values (0.0, 1.0, 2.0, 4.0, and 5.0 eV) and found that both the energy difference and the
exchange constant in the a-b plane (Jab) decrease with the increasing of Ueff (see Table I). The total density of state
and PDOS of KCrF3 calculated with Ueff=3.0 eV are presented in Fig.4, where the states of the occupied Cr-3d are
pushed down (from -4.0 to -2.0 eV), comparing with the GGA results, while the states of the F-2p are hardly changed.

The calculated PDOS and optical conductivity with Ueff=3.0 eV are presented in Fig.5, which are similar to those
in Fig.3, excepting the gap between the occupied d3x2−r2 and the unoccupied dz2−x2 states increased from 0.6 eV to
2.2 eV. At the same time, all the optical conductivity peaks shifted to higher energy. In Fig.5(d), the peak α1 and
peak α2 lie at about 2.7 eV and 9.0 eV, respectively. The peak β1, β2, and β3 are located near 5.5 eV, 7.5 eV, and
9.0 eV, respectively. The correlation is a very complicated concept and beyond the simple Hubbard model correction
of the DFT+U method. However, the optical conductivity can provide the information of the d-d transition band
gap36, which was regard as the electron correlation approximately37.
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To clearly show the existence of the orbital ordering in the tetragonal A-AFM phase, we presented the spin resolved
charge density in Fig.6. Where the x, y and z axis are along the [1 1̄ 0], [110], and [001] directions of the unit cell,
respectively. For the occupied states (Left part of Fig.6), the d3x2−r2 and the d3y2−r2 orbital staggered in the a-b
plane, while along the c-axis the d3x2−r2 of Cr1 is rotated by 90 degree to d3y2−r2 on Cr3. So the G-type orbital
ordering is formed. For the unoccupied states (in the range from 0.0 eV to 2.0 eV), the G-type orbital ordering is
formed by the dz2−x2 and dz2−y2 orbital (Right part of Fig.6).
Generally the magnetic ordering is measured by neutrons, just as Xiao13 who using this method determined

the A-AFM phase as the ground state for KCrF3. However, we find optical that conductivity measurement can
also determine the magnetic ordering. In Fig.7, we show the calculated optical conductivity of different magnetic
phases. In the A-AFM (Fig.7(a)) and the FM (Fig.7(c)) phases, where the ferromagnetic ordering preserves in the

a-b plane, which provides the passageway for the electron hopping from the Cr1 (d↑
3x2−r2

) to the Cr2(d
↑
z2−x2). So

the peak α1 appears in both phases. Along the c-axis, the electron on the Cr1-d
↑
3x2−r2

orbital can not hop to the

Cr3-d
↓
z2−x2 , since the spin directions of two orbitals are antiparallel in the A-AFM phase. However, the two orbitals

are parallel in FM phase, so there is a peak β1 at the same position as peak α1 in Fig.7(c). For the case of the
C-AFM, it is ferromagnetic along the c-axis and antiferromagnetic in the a-b plane. So the electron hopping from

the Cr1-d
↑
3x2−r2

to the Cr3-d
↑
z2−x2 brings about the peak β1 at about 2.8 eV. For C-AFM, it is antiferromagnetism in

the a-b plane, the electron on Cr1-d
↑
3x2−r2

can not hop to Cr2-d
↓
z2−x2 , because of the antiparallel spin direction. The

electron on Cr1-d
↑
3x2−r2

can hop to Cr2-t
↑
2g, which results in the peak α1 at about 5.5 eV. In the G-AFM phase, it is

antiferromagnetic in both the a-b plane and along the c-axis, which prevented the electron hopping from Cr1-d
↑
3x2−r2

to Cr2-d
↓
z2−x2(Cr2-d

↓
z2−y2). So, no peak appears in both the a-b plane and along the c-axis at 2.8 eV. The optical

conductivity peaks appear at about 5.5 eV (α1, and β1) come from electron hopping from Cr1-d
↑
3x2−r2

to Cr2-t
↑
2g

and to Cr3-t
↑
2g. From the above discussion, it shows that we can determine the magnetic ordering and the electron

correlation by measuring the position of optical conductivity peaks.

B. Cubic phase: The Origin of the orbital polarization

The mechanism responsible for the orbital ordering is still being debated in the literature21,22. Some researchers
ascribe the origin of the orbital polarization to the electron-phonon interaction (Jahn-Teller distortion)21, while
other researchers attribute the origin to the electron-electron interaction22. So, it is important to study the
mechanism responsible for the orbital order in KCrF3. When the temperature is higher than 973K, the KCrF3

enters into the cubic phase, where all the Cr-F bonds distance are equal. If the Jahn-Teller distortion is the
origin of the orbital polarization, the orbital ordering would disappear, which was suggested by Margadonna10.
However, some theoretical calculations38 on KCuF3 indicate that the orbital polarization excites even without
Jahn-Teller distortion. This means that the origin of the orbital polarization should be the electron-electron in-
teraction. Therefore, there is a great need to study the orbital polarization and magnetism of KCrF3 in the cubic state.

In Table.II, the total energies (with respect to the A-AFM state) of the FM, C, and G-type antiferromagnetic
states are presented. For the electron correlation of Ueff ≤ 2.0 eV, the FM state is the most stable state, while
the A-AFM state becomes the ground state for Ueff ≥ 3.0 eV . The calculated exchange constants, Jab and Jc, are
positive with Ueff ≤ 2.0 eV, which indicates the ferromagnetic coupling in both the a-b plane and along the c-axis.
For Ueff ≥ 3.0 eV, Jc becomes negative, which means the magnetic coupling along the c-axis is antiferromagnetic.
The values of Jab are three times as that of Jc, which means that the ferromagnetic couplings in the a-b plane are
much stronger than those along the c-axis.

Since the ground state is the A-AFM state with Ueff ≥ 3.0 eV, we present the projected density of states of Cr
in Fig.8. In the GGA formula (Fig.8(a)), the three t2g orbitals are fully occupied, while the two eg orbitals are half
filled. In the cubic phase, the JT distortion disappears, therefore the two eg orbitals, d3z2−r2 and dx2−y2 , are almost
degenerate, without considering the electron correlation. Such electronic structure is consistent with Margadonna’s10

suggestion. However, when the electron correlation is included with Ueff=3.0 eV, KCrF3 enters into the orbital
ordering Mott-insulator phase, as shown in Fig.8(b). The four electrons of Cr2+ filled the three t2g orbitals and the
dx2−y2 orbital. Such result means that, even without the JT distortion, the orbital polarization arises in KCrF3 as
long as the electron correlation is included. So our calculations indicate that the origin of the orbital polarization is
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the electron-electron interaction, which is in agreement with Anisimov’s results on KCuF3
38. From Table.II we can

see that the occupation number of the dx2−y2 orbital increases from 0.5 (U=0.0 eV) to 1.0 (U=4.0 eV), at the same
time, the occupation number of d3z2−r2 orbital decreases from 0.5 to 0.0.

As mentioned above the electron-phonon interaction (Jahn-Teller distortion) can also cause orbital polarization21.
So we show the occupation numbers of dx2−y2 and dx2−y2 with different values of the Jahn-Teller distortion in Fig.9.

The Jahn-Teller distortion ratio is defined as23 δJT=
d1−ds

d1+ds

, where d1 and ds denote the long and short Cr-F bond
distances. From Fig.9, we can see that the occupation number of dx2−y2 increases with δJT increasing, which indicates
that the Jahn-Teller distortion favors orbital polarization. However, the Jahn-Teller distortion is not the determinant
factor on orbital polarization. For Ueff < 2.0 eV, completely orbital polarization does not take place even with Jahn-
Teller distortion δJT as large as 0.14. The insert figure in Fig.9 shows polarization increases with the JT distortion δJT
at different electron correlations (Ueff ). The polarization is defined as Nx2−y2-N3z2−r2 , where Nx2−y2 and N3z2−r2

are the occupation numbers of dx2−y2 and d3z2−r2 orbitals, respectively. From the insert figure of Fig.9, we can see
that complete polarization takes place even without the Jahn-Teller distortion when Ueff ≥ 3.0 eV. Therefore, we
may draw the conclusion that the electron correlation is the origin of the orbital polarization, while the Jahn-Teller
distortion reinforces such polarization.

C. Summary and Conclusion

In summary, by performing first principles calculation, we studied the electronic, magnetic and orbital structures
of the KCrF3 in the tetragonal and cubic phases. In the tetragonal phase, both the GGA and GGA+U calculations
show that the ground state is the A-type AFM configuration with the G-type orbital ordering. Such orbital ordering
can be well understood by the calculated optical conductivity. The calculated exchange constant Jab is about three
times of Jc, which indicates the strong two-dimensional character. In the cubic state, the GGA calculations show that
the ground state is a FM half metallic state, while the GGA+U (Ueff=3.0 eV) calculations show that the A-AFM
state is the ground state. By studying how the orbital polarization changes with the electron correlation and the
Jahn-Teller distortion, we found that the origin of the orbital polarization should be the electron correlation and the
Jahn-Teller distortion can reinforced such polarization. Such results is in accordance with Anisimov’s results on the
KCuF3

38.
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E. Medvedeva, M. A. Korotin, V. I. Anisimov, and A. J. Freeman, Phys. Rev. B 65,172413 (2002).

23 J. E. Medvedeva, M. A. Korotin, V. I. Anisimov, and A. J. Freeman, Phys. Rev. B 65, 172413 (2002); I. Leonov, Dm.
Korotin, N. Binggeli, V. I. Anisimov, and D. Vollhardt, Phys. Rev. B 81,075109 (2010).

24 Z. Fang and K. Terakura, J. Phys.: Condens. Matter 14, 3001 (2002).
25 John P. Perdew and Yue Wang, Phys. Rev. B 45, 13244 (1992).
26 A. Stroppa and G. Kresse, Phys. Rev. B 79, 201201 (2009).
27 V. I. Anisimov, J. Zaanen, and O. K. Anderson, Phys. Rev. B 44, 943 (1991); V. I. Anisimov, I. V. Solovyev, M. A. Korotin,

M. T. Czyzyk and G. A. Sawatzky, Phys. Rev. B 48, 16929 (1993); I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov,
Phys. Rev. B 50, 16861 (1994). A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995); V. I.
Anisimov, F. Aryasetiawan, and A. I. Liechtenstein, J. Phys.: Condens. Matter 9, 767 (1997); H. Sawada, Y. MorikawaK.
Terakura and N. Hamada Phys. Rev. B 56, 12154 (1997).

28 J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 122, 234102 (2005); J. Heyd, J. E. Peralta, G. E. Scuseria,
and R. L. Martin, ibid. 123, 174101 (2005); J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. ángyán,
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Figures
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FIG. 1: (color online) (Right) The tetragonal structure (space group I4/mcm ) of KCrF3. We defined x, y and z axis as the [1
1̄ 0], [110], and [001] direction of the unit cell respectively. (Left) Various magnetic structures are schematically shown.
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FIG. 2: (color online) The density of states of KCrF3 calculated with GGA in the tetragonal A-AFM structure.
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FIG. 3: (color online) The projected density of states of Cr1 (a), Cr2 (b), Cr3 (c) and the calculated optical conductivity (d)
of KCrF3 with GGA in the tetragonal A-AFM structure. Where the σ‖ means optical conductivity in a-b plane, while the σ⊥

means optical conductivity along c-axis.
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FIG. 4: (color online) The density of states of KCrF3 calculated with GGA+U (U=4.0 eV, J=1.0 eV) in the tetragonal A-AFM
structure.
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FIG. 5: (color online) (The projected density of states of Cr1 (a), Cr2 (b), Cr3 (c) and the calculated optical conductivity (d)
of KCrF3 with GGA+U (U=4.0 eV, J=1.0 eV) in the tetragonal A-AFM structure.
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FIG. 6: (color online) Spin resolved charge density at the region extending from -2.0 eV to 0.0 eV (Left) and from 0.0 eV to
2.0 eV (Right), using results of GGA+U (U=4.0 eV, J=1.0 eV) for A-AFM in the tetragonal structure. The x, y and z axis
are along the [1 1̄ 0], [110], and [001] direction of the unit cell, respectively.
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Tables
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TABLE I: The total energy of the FM, C, G-type antiferromagnetism (with respect to A-AFM), the exchange constant in the
a-b plane (Jab) and along the c-axis Jc, the moment of the Cr ion and the band gap of the A-AFM state, varying with the
correlation (Ueff ).

Ueff FM(meV) C(meV) G(meV) Jab(meV) Jc(meV) Moment(µB) gap( eV)
0 24 261 258 5.3 -0.6 3.51 0.57
1 13 178 165 3.6 -0.6 3.54 1.11
2 15 116 108 2.3 -0.5 3.56 1.44
3 14 85 75 1.6 -0.5 3.58 1.70
4 13 66 55 1.2 -0.5 3.60 1.99
5 13 52 42 0.9 -0.5 3.61 2.25
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TABLE II: The total energies of the FM, C, G-type antiferromagnetism states, relative to that of the A-AFM, the exchange
constant in the a-b plane (Jab) and that along the c-axis (Jc); the magnetic moment of Cr ion, the occupation numbers of
d3z2−r2 (Occ-(3z2−r2)) and dx2−y2 (Occ-(x2−y2)) and the band gap (in A-AFM state).

Ueff FM(meV) C(meV) G(meV) Jab(meV) Jc(meV) Cr (µB) Occ-(3z2−r2) Occ-(x2−y2) gap (eV)
0 -76 191 180 4.3 1.3 3.58 0.50 0.50
1 -81 171 161 4.0 1.4 3.60 0.40 0.60
2 -10 109 126 2.4 0.5 3.60 0.15 0.85
3 14 85 70 1.4 -0.6 3.61 0.09 0.91 0.588
4 12 64 52 1.0 -0.5 3.62 0.00 1.00 0.888
5 11 55 43 0.8 -0.4 3.63 0.00 1.00 1.182


