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We study the coupled dynamical evolution of composition and morphology of a two-component
alloy quantum dot in a faceted three-dimensional geometry. Using SiGe/Si as a model system,
we perform simulations on the facet evolution and transition from a pyramidal to a domed shape,
coupled with compositional evolution at different growth rates. We find that the composition profile
in the quantum dot is growth history-dependent, and the growth rate can significantly influence the
distribution of Ge atoms, indicating the importance of growth kinetics. In addition, we find that
the aspect ratio of the quantum dot is affected by the composition distribution, highlighting the
importance of the coupling between morphology and composition. Our present work may be useful
in controlling the composition and morphology of quantum dots for applications in high-performance
electronic devices.

PACS numbers: 81.10.Aj,68.55.A-,61.46.Hk,61.66.Dk,68.35.Md

During the growth of quantum dots in alloy semicon-
ductor systems, such as SiGe/Si and InGaAs/GaAs, the
coupled evolution of morphology and composition leads
to a complex growth dynamics. As a consequence, the
composition within the quantum dots may become highly
non-uniform, and their shapes and sizes may change due
to the coupling. It is well-known that the composition,
shape and size of quantum dots greatly influence their
electronic properties such as the band-gap alignment, the
energy gap separation, and the position of confinement of
electrons and holes1. Therefore, it is essential to develop
an in-depth understanding of the growth dynamics of al-
loy quantum dots, which will aid in the fabrication of high
performance quantum dot-based electronic devices, such
as strained-gate field effect transistors2, new-generation
lasers3, and spintronic devices4.

Tremendous efforts have been devoted to study the epi-
taxial growth of semiconductor quantum dots. In a previ-
ous paper5, a three-dimensional model was introduced to
study the dynamical evolution of one-component nanos-
tructures. This model was able to reproduce the for-
mation of three-dimensional quantum dots over a sub-
strate, and account for the processes of self-assembling
and coarsening of quantum dots. A two-dimensional
study was carried out to study the unfaceted growth of
SiGe/Si heteroepitaxy 67. These numerical simulations
were able to describe the coupled evolution of morphol-
ogy and composition during growth6. Alloying together
with the three-dimensional faceted nature of a quantum
dot was considered by minimizing the total energy of the
crystal under the constraint of a constant average com-
position. This work predicted a composition distribution
that was in qualitative agreement with experiments8,9,
and was recently extended to include the presence of dis-
locations10,11.

To our knowledge, none of those previous studies have
simultaneously considered all the following features, im-
portant to the growth of alloying quantum dots: three-
dimensional geometry, composition segregation, surface

facets and dynamical evolution. Recently, the equations
that govern the evolution of composition and morphol-
ogy, and account for the faceted nature of a crystal,
have been derived from first-principles thermodynam-
ics12 (for comparison with the case of unfaceted surfaces,
see for example7,13,14). These equations provide a the-
oretical framework to simulate the growth dynamics of
alloy quantum dots. In the present work, we employ this
framework to study the coupled evolution of shape, size
and composition of a faceted three-dimensional quantum
dot upon growth. We focus on the morphological evolu-
tion and compositional patterning of the quantum dots.

I. MODEL FORMULATION

The governing equations for the growth of a three-
dimensional fully-faceted crystal have been recently de-
rived from first-principles thermodynamics12; here, we
formulate these equations for the case of a quantum dot
and implement them in our numerical calculations.
Consider a three-dimensional alloy crystal made of

two elements A and B, as schematically represented in
Fig. 1(a), immersed in a mixed vapor phase of A and
B, and let ζ be the composition of B in the AB al-
loy. In general, A and B are completely specified by
the value of their lattice parameters, stable crystallo-
graphic facets, and surface energies of their respective
pure crystals. Growth is modeled in the Surface Attach-
ment Limited Kinetics (SALK) regime, where material
is exchanged between the solid and the vapor through
attachment-detachment kinetics. The choice of this lim-
iting regime, as opposed to the Diffusion Limited (DL)
kinetics regime, is motivated by the fact that crystalline
growth from vapour phase requires high temperatures
(600-700◦ C). At these temperatures, growth should not
be limited by surface diffusion.
In the SALK regime, surface evolution is governed by

the difference in chemical potential between the solid and
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FIG. 1. (color online) (a) Illustration of a typical dot shape
(dome island in Ge/Si heteroepitaxy) showing how the change
of one facet surface energy, κj , relates to the surface energies
of that facet and its surrounding ones. When a facet shares
an edge with the substrate, the surface energy of the sub-
strate needs to be considered, to calculate the weighted mean
curvature κj of facet j, which also depends on the surface
energies of the neighboring facets γ1, γ2, and γ3. For each
facet, the normal velocity vi (positive or negative) is calcu-
lated at each time step, and the position of all the facets in the
three-dimensional crystal shape is then updated (light red).
(b) Three-dimensional grid used in the numerical calculation.
Crystal shape is reconstructed using a set of points evolving
with time. The grid has a regular spacing across the surface,
except for the points at the edges and at the boundary, which
track the facets and the boundary between the crystal and
the substrate, respectively.

the vapor phase. If the crystal is fully faceted during
evolution, the chemical potentials for A and B at the
crystal’s surfaces are12

µAi(x, t) = αi(x, t)− ζ(x, t)βi(x, t)

µBi(x, t) = αi(x, t) + (1− ζ(x, t))βi(x, t), (1)

with

αi(x, t) = Ub +
1

2
σijεij + κi,

βi(x, t) =
1

δ

∂γi
∂ζ

+ ε0σkk. (2)

where Ub is the internal energy, which includes the bind-
ing energy and the entropy15, σij and εij are the stress
and strain tensors, respectively, and κi is the weighted
mean curvature of facet i. The last term quantifies the
change in the total surface energy corresponding to a
small movement of facet i in the direction pointing out-
wards the crystal surface. For the case of a quantum dot,
we consider

κi =
1

Si

∑

j 6=i

(δjγBj − cijγBi) lij
√

1− c2ij

, (3)

where the sum is over all the facets neighboring to facet
i, γBj is the surface energy density of facet j, Si is the
surface area exposed by facet i, lij is the length of the
edge shared between facets i and j, and cij = ni ·nj is the
scalar product between the unit normals of facets i and
j, respectively. The parameter δj accounts for the fact
that, for the facets sharing an edge with the substrate,
the interface energy between the crystal and substrate
needs to be considered. Therefore, δj equals +1 if j is a
regular facet, and −1 if j is the substrate. The form (3)
accounts for the surface segregation effect by assuming
the surfaces pure in the component B. This assumption
is justified by the fact that the time scale for local atom
exchange between the surface and the region immediately
below is much faster than that for the deposition from
the vapor phase. The expression (3) is consistent with
the form derived by Carter et al.13 for the case of one-
component fully faceted crystals.
Following the attachment (or detachment) of atoms at

the surfaces, the facets move with a given velocity. Evo-
lution consistent with the decrease of Gibbs free energy
requires that the individual-component facet velocities
take the form12

vAi(x, t) = MA

(

µ0
A − µAi

)

+ 1
4
(MA +MB)

(

βi(x, t)− βi

)

vBi(x, t) = MB

(

µ0
B − µBi

)

− 1
4
(MA +MB)

(

βi(x, t) − βi

)

,(4)

where µAi and µBi are the averages of µAi and µBi over
facet i, respectively. The above form of the velocities en-
sure that the sum of vAi(x, t) and vBi(x, t), which is the
velocity of facet i, is rigorously constant across the facet,
ensuring that the facet does not “break up”12. The pa-
rameters MA and MB are the attachment rates of species
A and B, respectively. Although the attachment rates
may be different on each facet12, here, for simplicity, we
assume them to be independent of crystalline orientation.
We now consider the vapor phase surrounding the crys-

tal. Under the SALK regime, material incorporates at a
constant rate (volume per unit time) RA and RB for each
species independently. The composition of the deposit-
ing material, therefore, is RB

RA+RB
. For attachment rates

independent of facet orientation, the chemical potentials
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for A and B are obtained from the general expression12

as

µ0
A =

1

STOT

(

N
∑

i=1

SiµAi +
RA

MA

)

µ0
B =

1

STOT

(

N
∑

i=1

SiµBi +
RB

MB

)

, (5)

where STOT is the total surface area exposed by the crys-
tal.
To model the evolution of composition with time, we

assume that material intermixing only occurs within a
thin surface layer of thickness δ7 that rigidly follows the
geometrical surfaces of the crystal. If the surface is ad-
vancing, the composition evolves as

δ
∂ζ

∂t
= vBi(x, t)− ζ(x, t)vi(t) (6)

while ζ assumes the value of the bulk if the surface is
receding. Here, vi(t) = vA(x, t) + vB(x, t) is the total
velocity of facet i.
The set of Eqs. 1-6 represent the governing equations

that are used in the present work. Our aim is to de-
velop a numerical scheme, which is able to solve this set
of coupled equations, and to illustrate the crystal growth
dynamics. The numerical scheme is described in the fol-
lowing Section.

II. NUMERICAL SCHEME

SALK dynamics was implemented in the following
steps. A discrete grid of points was introduced to track
the crystal surface at all times. To accurately describe
the evolution of shape and composition, and track the po-
sition and evolution of facets’ edges with time, the grid
was refined in correspondence to the crystal’s edges, and
to the boundary of the crystal with the substrate. A
typical realization of the grid is shown in Fig. 1(b). A
learn-on-the-fly algorithm was implemented to keep track
of the changes in shape (moves of the edges), and to ac-
count for the possibility that, during the shape evolution,
a new facet may be nucleated at a point on the grid.
Variables specifying stress, strain, surface energy, chemi-
cal potential and composition were assigned at each grid
point.
In our scheme, dynamics is completely described with

N+5 parameters, where N is the number of all the possi-
ble stable facets of the A-B system (note that the number
of facets present on the crystal at time t may be a subset
of N , see Sec. II A). These are N values of the surface
energy densities γBi, i = 1, ..., N of facets of pure B.
Then, another two parameters are the attachment rates
MA and MB for A and B, respectively. Another parame-
ter is the lattice mismatch between A and B; finally, the

last two parameters are deposition rates RA and RB for
each species.
Crystal growth was simulated in the following way.

The starting point is represented by an arbitrary choice of
crystal shape and composition. At each loop of computa-
tion, the possibility that a facet can nucleate or disappear
(if its size is small enough) is evaluated; the criterion used
to determine the nucleation of a new facet is discussed
in Sec. II A. After the shape is established, strain and
stress tensors are computed at each point of the grid us-
ing the method described in Sec. II B. The chemical po-
tentials of the two atomic species are computed for both
the solid and its surrounding vapor phase following Eq. 1
and Eq. 5. Then, the velocity of each facet is evaluated
using Eq. 4. Once the velocities are known at time t,
the positions of the facets at time t + dt are derived by
integrating the velocities over time. Starting from the
position of the crystallographic planes at time t + dt, in
turn, the three-dimensional crystal shape is calculated as
the convex hull of the planes at time t + dt. The varia-
tions of composition during the time step are calculated
using Eq. 6. The code performing the set of operations
described above was written in-house using C language.

A. Nucleation and disappearance of facets

During growth, new facets may nucleate, or small
facets may disappear due to the variations in surface
chemical potential. We will first consider the case of facet
nucleation, and then describe the case of facet disappear-
ance.
If surface motion is governed only by surface energy,

nucleation of a new facet follows a local criterion, asso-
ciated only with the facet under consideration13. In this
case, if a small facet with zero chemical potential is added
onto the crystal without changing the total chemical po-
tential, the incorporation is allowed. For the case of a
crystal under strain, however, a local criterion is insuffi-
cient. In this case, the presence of a new facet at a given
position can alter the total energy of the crystal. There-
fore, a global criterion has to be established. A new facet
can be added in the crystal if the change in total energy
arising from the addition of the new facet,

N+1
∑

i=1

∫

Si

[((1− ζ)µAi + ζµBi] dSi, (7)

is lower than that of the crystal without the new facet,

N
∑

i=1

∫

Si

[((1− ζ)µAi + ζµBi] dSi, (8)

where the comparison is made between crystals of the
same volume.
The nucleation of new facets was implemented in the

following way. At a constant interval (for example, every
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100 time steps), a shape containing a small new facet in
an otherwise identical crystal shape was produced. Then,
the nucleation criterion established by Eq. 7 - 8 was
evaluated. If the nucleation of a new facet is allowed, the
facet is then incorporated into the crystal.
When a facet advances faster than the neighboring

ones, its corresponding size decreases because the shape
of the crystal is convex. Ultimately, this facet may shrink
to zero size, and is simply removed from the crystal
shape. Therefore, the treatment of facet disappearance is
straightforward, and does not require any criterion based
on the evaluation of chemical potentials.

B. Calculation of surface strain and stress

Evaluation of the chemical potentials, Eq. 1, requires
detailed knowledge of the stress and strain tensors at the
surface. This calculation is performed using the method
of Xiang et al.16, and proceeds in the following manner.
The three-dimensional surface profile is first decomposed
in its Fourier components. Then, the stress and strain
tensors are evaluated for each component. Finally, in-
verse Fourier transform is performed to obtain the stress
and strain tensors at each point on the surface. For this
task, the same grid of points introduced earlier in this
Section (see Fig. 1) is used. Here, it is worth mention-
ing that for an N x N grid, the computational cost of
the calculation scales with N2, and therefore a balance
between accuracy and performance has to be sought.

III. RESULTS AND DISCUSSION

The numerical scheme proposed in the preceding Sec-
tion is general and, in principle, can be applied to any
two-component system. Here, we use the SiGe/Si as a
model system to show the predictive capability of the
method. The reason that we use this model system is
because the measurements of the composition profiles,
as well as the shape of the nanocrystals, have been re-
cently performed17–19. Therefore, let us begin by setting
A = Si, B = Ge.
A small pyramid with base size 5nm and {105} facets

was chosen the initial state. The Ge composition was
set uniform initially, at a value of 0.5. Two other facets,
namely the {113} and the {15 3 23}, which are both
known to be stable facets for Ge20,21 were also included.
To account for the surface segregation effect (see Sec. I),
the composition of the surfaces was assumed to be 100%
Ge, and therefore the values of surface energies used were
the ones for pure Ge. From the detailed ab initio calcula-
tions carried out for these facets20–22, and recent insights
gained on the stability of the {15 3 23} facet23, the fol-
lowing values of surface energy were used: γ105 = 61.5
meV/Å2, γ113 = 62 meV/Å2, and γ15323 = 68 meV/Å2.
The choice made for the surface energy of the {105}
facet reflects the stabilization effect due to compressive

strain22,24. Following Haynes et al.25, the ratio of attach-
ment rates between Ge and Si was set toMGe/MSi = 104.
While this value was extracted for the case of Solid Phase
Epitaxy (SPE) growth of SiGe alloy, we assume that a
similar value holds for the case of crystallization from
vapor phase.

Representative snapshots of the resulting dynamics are
shown in Fig. 2. Starting from the initial state, (see the
arrow in Fig. 2(a)), the initial incorporation of material
produces a very fast growth, because material is attach-
ing on a very small island at constant rate. As volume
increases, nucleation of {113} and {15 3 23} then fol-
lows in an absolutely natural fashion. The precise time
and volume at which they are inserted are given exclu-
sively by the criterion established in Sec. II A. Insertion
of new facets is thermodynamically favored because they
are more effective in relieving strain than the shallow
{105} facets.

Snapshots (c-e) in Fig. 2 represent the shape evolution
and transition from the pyramid to the dome, a typical
process observed in the Ge/Si system26. In the present
work, the introduction of facets was observed first for
{113} facets (see 2 (c)), and then followed by {15 3 23}
facets (see 2 (d)). The shape transition from pyramids
to domes were reported by Ross et al.27 using Scanning
Tunneling Microscopy (STM). They showed the initial
incorporation of {113} facets and then also followed by
{15 3 23} facets. Our calculation results are consistent
with their experimental observations.

After each of the steep facets are incorporated and the
dome shape is established, dynamics proceeds as shown
in panels (f)-(h) of Fig. 2. In particular, it is possible to
appreciate the coupling between the evolution of shape
and composition: The shallow facets, progressively, re-
duce their size at the gain of the steep ones, which grow.
Simultaneously, segregation of the species with the larger
lattice parameter (Ge) occurs at the top of the islands
and along the edges. At the same time, the species with
the smaller lattice parameter (Si) locates at the lower
corners and base of the island. This redistribution allows
for a lowering of the elastic energy of the crystal, and is
consistent with the results shown in other works8,9,11.

With further growth, it comes natural to ask what is
the ultimate shape of the crystal. With increasing vol-
ume, nucleation of defects will eventually represent the
optimal way to release elastic energy. If the nucleation of
defects is suppressed, our calculations indicate that the
final shape of the evolution is a pure {15 3 23} pyramid
(not shown) with both the {105} and the {113} facets
completely disappeared. However, such steep pyramid
has never been observed experimentally, indicating that
the critical volume for defect incorporation is smaller
than that for the formation of the steep {15 3 23} pyra-
mid.
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FIG. 2. (color online) Crystal growth predicted for the SiGe/Si system. Starting from the initial state, represented by a small
{105} pyramid of 0.5 uniform Ge composition (a) and with increasing time t, the shape grows (b) and subsequently incorporates
the set of {113} (c) and {15 3 23} (d) facets. Evolution continues with a progressive reduction in size of shallow facets in favor
of the steep ones (e), coupled with segregation of Ge at the island top, and of Si at the island base (f-g). Evolution proceeds
towards the typical shape of a dome of GeSi heteroepitaxy (g), ultimately showing a strong composition segregation and the
shrinkage of {113} facets. Color scale represents the composition of Ge atoms. In (d), the vertical plane shows the location of
the cross section used to calculate Ge composition profile. Notice that the plane is fixed, while the crystal is growing. Lengths
are in nm.

FIG. 3. (color online) Cross-sectional composition profile ex-
tracted from the evolution of Fig. 2, along the direction shown
in Fig. 2(d). Segregation of Ge occurs at the top of the island,
while Si is located at the bottom region. Clearly the compo-
sition profile shows the growth history-dependent: the inner
parts of the composition profile represent the initial stages
of growth, while the near surface region represents the later
stages of growth. Therefore, a cross-sectional profile indeed
traces the history of evolution of the crystal.

A. Cross-sectional composition profiles

The cross-sectional composition profile taken along the
[100] direction and corresponding to Fig. 2(h) is shown
in Fig. 3. The segregation of Ge at the top of the island,
as well as of Si at the corners and base, is evident.

At this stage, it is worth comparing the profile obtained
here with experimental results. It has been demon-
strated that reciprocal space mapping method from X-
ray diffraction17,19 and composition-selective chemical
etching18 are both techniques capable of reconstruct-
ing composition profiles in cross-section. The measure-

ments17–19 showed that Ge atoms accumulate at the top
of the island and silicon atoms prefer to stay at the bot-
tom. The composition at the central part of the island
appears to be relatively uniform with a composition close
to the average between the top and bottom of the is-
lands. Overall, their composition profiles are in quali-
tative agreement with that obtained here as shown in
Fig. 3.
Besides the comparison with experimental measure-

ments, our dynamic approach allows for a different inter-
pretation of the composition profiles. During the growth,
the crystal evolves in both composition and morphology.
Therefore, the composition map in cross-sections reveals
the growth history of the crystal, from the past (the inner
bulk) to the present (the surfaces).

B. Effect of growth rate on composition

distribution

We study the effect of the growth rate on the com-
position and shape evolution of the crystal by keeping
all the other parameters (specifically, the surface ener-
gies, attachment rates and initial conditions) unchanged.
In the previous case, the growth rate was taken as
RGe = RSi = Rref = 10.0 · 102 nm3/sec. Here two more
growth rates are used: one is Rlow = 7.5 · 102 nm3/sec,
which is lower than the previous one, and the other is
Rhigh = 20 · 102 nm3/sec, which is higher. These values
were chosen such that, considering the size of the simula-
tion cell of 150x150 nm, they give rise to a linear growth
rate of the order of 1 Å/sec, which is a typical value
in experiments. For each evolution, the cross-sectional
composition profile along the (100) cut was extracted,
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FIG. 4. (color online) Vertical cross sectional composition
distribution as a result of different growth rates, namely R1

(a) and R2 (c). For each profile, the corresponding shape and
surface composition are shown in panels (b) and (d), respec-
tively. By comparing the panels, the effect of growth rate is
evident: composition distribution becomes more uniform at
higher growth rates. Due to the coupling among shape, strain
and composition, the final shape is also affected by the growth
rate: panels (b) and (d) show that the size of the {15 3 23}
facets is smaller at a lower growth rate, while is larger at a
higher growth rate (d).

and the comparison is shown in Fig. 4.

Careful comparison of the composition profile in panels
(a) and (c) in Fig. 4, and the profile in Fig. 3, shows
that the effect of increasing growth rate is primarily to
increase the uniformity of composition distribution: The
amount of segregation in panel (c), where the growth rate
is higher, is clearly much lower than that in panel (a),
where growth is slower. Obviously, at very high growth
rates, the minor segregation occurs only at the corners,
leaving behind “trails” of segregated material into the
bulk, as shown in panel (c) of Fig. 4.

The increase in composition uniformity at high growth
rates can be understood in terms of the time scales in-
volved in the growth dynamics. At high growth rates,
material does not have the time to segregate because the
surface layer is quickly covered by new materials and be-
come part of bulk. As a result, the overall composition
redistribution is quite uniform. On the other hand, at low
growth rates material is allowed to have sufficient time to
redistribute across the surface, and therefore segregation
dominates. In fact, the composition profile at low growth
rates as shown in Fig. 4 (a) is very similar to that ob-
tained by minimizing the elastic energy8,9,11, indicating
that the growth at a lower deposition rate is a process
closer to the thermodynamic equilibrium.

Due to the coupling to the evolution of composition,
crystal shape is also affected by the growth rate. Fig. 4(b)
and (d) depict the three-dimensional shape and compo-
sition corresponding to the growth at Rlow and Rhigh

given above. It is seen that at the low growth rate, the
surface area exposed by the steep facets {15 3 23} is
smaller than that at the high growth rate. This find-
ing can be explained on the following basis: At a low
growth rate, as we have seen, material mixing is more
pronounced. Therefore, there is less need to incorpo-

rate steep facets, which represent an alternative route
towards the relaxation of elastic energy. On the other
hand, when the growth rate is high and material redistri-
bution is quenched, the only remaining path allowed for
strain energy relaxation is the incorporation and growth
of steep facets, as shown in Fig. 4(d).
As evident from panel (b) of Fig. 4 and panel (g) of

Fig. 2, facets of different sizes have an average composi-
tion significantly different from each other. For example,
the largest facets {113} in Fig. 4 (b) are the ones richest
in Si, and the largest facets {15 3 23} in (Fig. 2(g)) are
also richest in Si. We interpret this feature as a conse-
quence of the coupled evolution among shape, size and
composition during growth. When the facet area is large,
the presence of Ge atoms is not favorable to relax the
strain energy due to its atomic size. Therefore, a large
facet tries to remove Ge atoms and put them either on
the island top or at the facet edges. Indeed, recent ex-
perimental work28 based on X-ray analysis of the three-
dimensional composition profile has shown that different
facets have an average composition unambiguously dif-
ferent from each other.
Our calculation results clearly show a high growth rate

leads to the uniform composition profile within the is-
land. Therefore, the assumption of a uniform material
distribution at sufficiently high growth rate is valid 29.

C. Effect of growth rate on aspect ratio

Given a three-dimensional convex crystal on a sub-
strate surface, define its aspect ratio α as

α =
h√
Sb

(9)

where h is the crystal height and Sb is its island base
area. By computing α with respect to time, we obtain
the plot shown in Fig. 5. In this figure, the aspect ratios
corresponding to the growth rates at Rlow, and Rhigh

are shown as a function of the crystal volume, i.e. the
product Rt. Since the growth rates are different, it is
necessary to use volume as the variable rather than time.
Figure 5 shows the evolution of aspect ratio from the

value of 0.1, typical of the {105} pyramid, to values
around 0.2, typical of the dome-shaped islands. Two
main features can be identified: the first for the early
stage of the evolution, and the second at the later stage
of growth.
Comparing the curve for a low (red curve) and that

for a high (blue curve in Fig. 5) growth rate, the critical
volume for the nucleation of steep facets is smaller at a
higher growth rate (see the inset in Fig. 5). This find-
ing is consistent with the comments made previously in
Sec. III B, where differences in crystal shape were related
to different growth rates. Two paths are available for
elastic-energy release: segregation, and/or incorporation
of steep facets. At a low growth rate, when segregation
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FIG. 5. (color online) Evolution of island aspect ratio as a
function of the volume of material deposited, for two values
of growth rate : Rlow (red solid line), and Rhigh (blue solid
line). With increasing time, the aspect ratio increases from
0.1 (the value of {105} pyramid) to ≈ 0.2, i.e. the typical
value of a dome-shaped island. An increase in aspect ratio
occurs at a smaller critical volume at a high growth rate,
because the incorporation of steep facets is the only possible
path to relieve elastic energy, as opposed to segregation, which
is the dominant mechanism at a low growth rate. Because
segregation lowers the elastic energy of the system at a lower
growth rates, the incorporation of steep facets is retarded,
compared to the evolution at a higher growth rate (see the
inset). At large island volumes, the increase in aspect ratio
is more pronounced at a low growth rate because segregation
is increasing the velocity of the top facets, and therefore, the
resulting shape has a high aspect ratio.

is the dominant mechanism, the need for incorporation
of steep facets is less severe. Therefore, the aspect ratio
starts to increase at a larger volume compared to that at
a high growth rate, where segregation is quenched and
therefore incorporation of steep facets is the only path
available to relieve elastic energy (Fig. 5).
At the later stages of growth (Fig. 5, right), it is seen

that an island reaching the highest aspect ratio is the
one grown at the lowest growth rate, and vice versa. Ob-
viously, the aspect ratio may increase for two reasons:
increase in the island height, or decrease in the island
base. At a low growth rate where segregation is domi-
nant, the velocity of the {105} facets is high due to the
high Ge composition. Therefore, the increase in aspect
ratio is sharp compared to the growth at a high growth
rate, where the quenched segregation results in a lower
velocity of the {105} facets.

IV. CONCLUSIONS

In conclusion, we have developed a numerical method
to study the growth of fully faceted three-dimensional
crystals in the surface attachment limited kinetics

regime. Using SiGe/Si as a model system, we have stud-
ied the influence of growth rate on composition evolution,
and shown that a high growth rate promotes the unifor-
mity of the alloy inside the crystal, while a low growth
rate results in a significantly non-uniform alloy redistri-
bution. We have also investigated the coupling between
shape and composition evolution, and shown the impor-
tant role of growth rate in dictating the island shape.
This understanding might be useful in controlling the
morphology and composition of quantum dots for appli-
cations in high-performance devices.
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