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We investigate the electronic properties of zigzag-terminated graphene nanoribbons in the presence
of a staggered sublattice potential. We show that due to the edge ferromagnetism, spin polarized
dispersive edge modes with well-defined valley indices can appear inside the bulk band gap opened
by the inversion symmetry breaking. These edge modes are helical with respect to their valley
indices, hence are robust against scattering from smooth disorder potentials. We further propose
a concrete system with a zigzag graphene nanoribbon grown on top of a hexagonal Boron-Nitride
substrate to realize such edge modes. These edge states could be utilized as perfect spin filters or
analyzers in spintronics applications.

PACS numbers: 73.20.-r, 73.22.Pr, 75.75.-c

Introduction.— The existence of a set of edge states
is an important and interesting property of the zigzag-
terminated graphene nanoribbons1. Without electron-
electron interaction, the edge states form a completely
flat edge band connecting the two valleys K and K ′ with
a large momentum separation1,2, and their presence is
dictated by the bulk topological charge3. With flat dis-
persion, the edge band cannot be used as conducting
channels. When the electron-electron interaction is taken
into account, due to the singular density of states of the
flat-band, spins on the edge become spontaneously polar-
ized, resulting in the edge ferromagnetism 4–6. The spin
polarized edge states then become dispersive, allowing
them to carry currents. However, without a bulk band
gap, the edge states are still of little use because their
effects would be overwhelmed by the contribution from
the bulk states.

Motivated by the many interests of utilizing these un-
usual edge states for various applications4,10 and particu-
larly the recent advance in fabricating graphene nanorib-
bons with precise edge termination 7–9, we propose to re-
alize in the zigzag-edged graphene nanoribbons the spin
polarized valley helical edge states inside a bulk band gap
opened by a staggered sublattice potential. The sublat-
tice potential can be realized by coupling to a substrate
such as the hexagonal Boron-Nitride11 or the silicon car-
bide12. Our proposition makes the edge states useful as
perfect spin/valley conducting channels. For proper val-
ues of the spin-splitting and the band gap, the edge states
contributing to transport can acquire well-defined valley
indices hence they remain robust against the scattering
from smooth disorder potentials due to the valley pro-
tection. Based on first principles calculations, we point
out a concrete way to realize such edge states by grow-
ing a zigzag terminated graphene nanoribbon on top of
a hexagonal Boron-Nitride substrate. The phenomena
we predict here will not only be of academic interest but
will also be important for spintronics and valleytronics
applications.

Tight-Binding Model.— Figure 1 illustrates the

schematic setup of a zigzag-edged graphene nanoribbon
in the presence of a staggered AB-sublattice potential.
The tight-binding Hamiltonian that incorporates phe-
nomenologically the edge spin-polarization can be writ-
ten as:

H = −t
∑

〈ij〉α

c†iαcjα +M
∑

i=1,N ;α,β

c†iασ
z
αβciβ +

∑

i,α

Uic
†
iαciα

(1)

where c†iα(ciα) is the electron creation (annihilation) op-
erator on site i with spin α, and σz is the z compo-
nent of the real spin Pauli matrices. α and β denote the
real spin indices. The first term describes the nearest-
neighbor hopping with t being the amplitude of the hop-
ping energy. The second term represents the effect of
edge ferromagnetism involving only the outmost bound-
ary atoms (i = 1, N). This term stems microscopically
from the electron-electron interaction, but at this stage
we capture this effect phenomenologically with a mean
field parameter M whose value will be determined later
from the first principles calculations. The last term cor-
responds to the staggered AB-sublattice potential. We
set Ui=∆/2 for sublattice A (◦), and Ui=−∆/2 for sub-
lattice B (•). In the following analysis, we measure the
energy ε, the magnetization M , the potential ∆, and the
disorder strength W in units of the hopping energy t.
We first make a Fourier transform on the Hamiltonian

in Eq.(1) along the edge direction which we take as the
y-axis such that each eigenstate is labeled with a good
quantum number ky. The energy spectrum is obtained by
a subsequent numerical diagonalization and the results
are plotted versus ky in Fig. 2 for different values of the
parameter M . Here the ribbon width is fixed to N = 800
(about 852 Å). When considering the edge magnetism at
both boundaries, there are two possible configurations:
ferromagnetic (M |i=1 = M |i=N ) and anti-ferromagnetic
(M |i=1 = −M |i=N ). It is known that for small size sys-
tems (i.e. N < 32), the anti-ferromagnetic configuration
is the lowest-energy ground state4. When the size be-
comes larger, both configurations can serve as the ground
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FIG. 1: Schematic figure of a zigzag-edged graphene nanorib-
bon along y axis. A (◦) and B (•) sublattices are subjected to
staggered potentials: UA = +∆/2 and UB = −∆/2. The edge
magnetization M is considered only at the outmost boundary
atoms labeled as 1 and N .

state. In the following, we only show the band structures
of the ferromagnetic case. For clarity, we use different
lines to distinguish the edge bands located at the differ-
ent boundaries, i.e. the solid (dashed) lines represent the
states located at the left (right) boundary.
In panel (a), a staggered sublattice potential with

∆ = 0.4 is considered butM is set to be zero, i.e. no edge
ferromagnetism. One can observe that a bulk energy gap
∆ = 0.4 is opened due to the inversion symmetry break-
ing induced by the staggered sublattice potential, and
there are doubly-degenerate flat bands connecting the
two Dirac points K and K ′ at the band edges ε = ±∆/2.
A bulk band gap indicates an insulating state, and the
gap size is only determined by the amplitude of the stag-
gered sublattice potentials. In panels (b)-(d), besides
the fixed sublattice potentials ∆ = 0.4, the edge mag-
netization is switched on by taking M to be 0.6 (b), 1.0
(c), and 1.4 (d), respectively. We find that, due to the
different degrees of localization of the states in the edge
bands3, the magnitude of the energy splitting of the edge
bands is ky-dependent: the spin-up edge band bends up-
ward, while the spin-down edge band bends downward.
This makes the edge band dispersive hence capable of
conducting charge currents. Moreover, along with the
increase of the edge magnetization M from 0.6 [see panel
(b)] to 1.0 [see panel (c)], the spin-down edge band which
is initially located at the conduction band edge gradually
approaches the bulk valence band, and eventually touches
and merges into the bulk valence band (atM0≃1.4). Sim-
ilarly, the spin-up edge band from the valence flat bands
bends upward, and eventually touches the bulk conduc-
tion bands. This creates gapless edge modes tied to each
valley, which is similar to the findings in Ref.3 except
that the edge modes here are spin-polarized.
From the energy dispersion together with the location

of the edge states in Fig. 2(b)-(d), one can easily ob-
tain the edge states propagation directions as shown in
Fig. 3(a). One can observe that the edge states at op-
posite boundaries have opposite spin polarizations, and
their propogation directions are tied to their valley in-
dices. In addition, we also plot the edge states propa-
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FIG. 2: Evolution of the band structure of the zigzag-edged
graphene nanoribbon with a fixed width N = 800. (a) When
the staggered sublattice potential ∆ = 0.4 is applied, an bulk
gap is opened, and the flat-bands are doubly-degenerate; (b)-
(d) The edge magnetism is further switched on with M =
0.6, 1.0, and 1.4, respectively. The flat bands become spin-
split: spin-up edge band bends upwards, while spin-down edge
band bends downwards. The green solid (red dashed) curves
represent the edge states from the left (right) boundary.
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FIG. 3: Schematic plot of the edge states propagation direc-
tions. (a) When the spin polarizations on the two bound-
aries are parallel, spin-up (spin-down) polarized valley he-
lical edge states propagate along the right (left) boundary;
(b) When the spin polarizations on the two boundaries are
anti-parallel, the edge states at each boundary have the same
spin-polarization.

gation for the anti-ferromagnetic configuration in panel
(b). The only difference compared to panel (a) is that
the edge states located at both boundaries have the same
spin polarization. For both cases the system state can be
termed as the spin polarized quantum valley Hall state.
For the normal quantum valley Hall state proposed be-
fore13, there is actually no gapless edge state. In con-
trast, the spin polarized quantum valley Hall state we
find here is characterized by spin polarized gapless edge
states. The situation is similar to that for the gated bi-
layer graphene case14.

Robustness of Spin-Polarized Edge Modes.— From the
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above analysis, we notice that for a fixed bulk gap size,
the spin polarized edge state is gapped for a weak edge
magnetization M , and the edge states become gapless
when M approaches a critical value Mc. These edge
states provide conducting channels for the spin-polarized
transport when the Fermi level goes across them in the
gap. However, to be useful for practical applications,
they need to be robust against impurity scattering. In
the following, we will investigate the robustness of the
edge state in the presence of impurities, and show that
the spin-polarized edge states are robust against impu-
rity scattering due to the large momentum separation
between the valleys K and K ′.
It is known that the impurity scattering in graphene

mainly comes from the long-range Coulomb scatterers15.
We assume that the impurity potential Vi at each site i
takes a Gaussian form16:

Vi =
∑

j

wj × exp(−
|rj − ri|

2

2× ξ2
) (2)

where the summation is over all sites, wj is the local
disorder strength at site j and is uniformly distributed
in the interval [−w/2,w/2]. ξ is the correlation length
in units of the nearest neighbor distance. In our cal-
culation, the disorder term is incorporated into Eq. (1)

as
∑

i,α Vic
†
iασciα, where σ=σ0, σx/y, σz correspond to

scalar, spin-flip, and Zeeman-type disorders17. For the
convenience of comparison, we define an effective on-site
disorder strength W in terms of ξ and w18:

W = w × (4ξ2 + 1) (3)

The numerical simulations are performed within the same
setup of Ref.19 by including only the left and right semi-
infinite leads, i.e. a two terminal configuration for con-
ductance calculation. The two-terminal conductance is
calculated from the Landauer-Büttiker formula20:

G =
e2

h
Tr[ΓRG

rΓLG
a] (4)

where Gr,a are the retarded and advanced Green’s func-
tions of the central disordered region. The quantities
ΓL/R are the line-width functions describing the coupling
between the left/right lead and the scattering region, and

can be obtained from Γp = i(Σr
p −Σa

p). Here, Σ
r/a
p is the

retarded/advanced self-energy of the p-th semi-infinite
lead (p = L,R), and can be numerically evaluated using
the recursive transfer matrix method21.
In Fig. 3 (a), we can see that for the edge state asso-

ciated with valley K and located at the left boundary,
it has two possible backscattering paths: (1) scattered
into states associated with valley K ′ located at the left
boundary; (2) scattered into states associated with the
same valley K located at the right boundary. The pro-
cess via second path is suppressed because the spatial
separation protects the edge state from scattering to the
opposite boundary far way, which is similar to the sit-
uation in quantum Hall effect22. Therefore, the state
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FIG. 4: Average conductance 〈G〉 in units of e2/h ver-
sus the effective disorder strength W for scalar type dis-
orders at ∆=0.4 and M=0.6 for different Fermi energies
ε = −0.1(square), 0(circle), 0.1(triangle), respectively. (a)
For long ranger disorder (ξ=4), the edge states can be exactly
quantized for disorder strength up to W = 0.8; (b) For short
ranger disorder (ξ=0), the conductance quickly decreases as
W increases above 0.1. 20000 ensembles are collected for each
data point in the figure. Note that in this calculation we only
consider the ferromagnetism at one boundary to emphasize
the disorder effect of only one conducting channel.

can only be scattered via the first path into the states
with opposite valley index. Because the states propa-
gating along opposite directions at the same boundary
possess the same spin, the scalar type and Zeeman type
disorders should have similar effects, which has been con-
firmed by our numerical calculations. On the other hand,
the spin-flip disorders cannot couple the states with the
same spin. Therefore, in the following, we will only show
the result for the short range and the long range non-
magnetic (scalar) disorders.
Figure 4 plots the sample averaged two terminal

conductance 〈G〉 as a function of the effective disor-
der strength W for three different Fermi energies ε=-
0.1, 0, 0.1, respectively. For clarity, we only consider
the ferromagnetism at one boundary. The edge magne-
tization is set to be M=0.6. Each data point represents
the average over 20000 sample configurations. Panel (a)
is for the long range disorder case with the correlation
length ξ = 4. We observe that for all the three ener-
gies inside the bulk band gap, the average conductances
〈G〉 are robust against weak disorders, e.g. for W<2.0
the conductance is exactly quantized to be one in units
of e2/h without any fluctuation. When W>2.0, we find
that 〈G〉 at ε=-0.1 decreases, and that at ε=0.1 is the
most robust one. This can be explained from the band
structure as shown in Fig. 2(b). One can see that the
two edge states for a fixed Fermi energy have a large mo-
mentum separation when the Fermi energy is near the
upper band bottom (e.g. at ε=0.1). The separation de-
creases when the Fermi energy is approaching the valence
band top. The large momentum separation (on the scale
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FIG. 5: (Color online) (a) Atomic structure of the hydrogen-
terminated zigzag-edged graphene nanoribbons on top of a
single layer of hexagonal Boron-Nitride. The red square shows
a supercell. Upper: side view; lower: top view. (b) Band
structure of spin anti-parallel configurations (between two
boundaries). In the bulk energy gap (the narrow energy win-
dow of the projected bulk band structure shown in light grey,
∆ around 78meV ), only the spin-up states exist. A very small
gap is appears because the weak interaction between the edges
states on opposite boundaries which is a finite size effect. (c)
Band structure for spin parallel case. Spin-up and spin-down
states coexist in the gap. (d) When a voltage bias of 0.27V is
applied transversely, the upper (lower) edge states are shifted
upwards (downwards), leaving only the spin-down states in
the gap. Bands in red and green color represent the spin-up
and the spin-down edge bands, respectively.

of valley separation) suppresses the long range impurity
scattering hence the states at ε=-0.1 are more robust.
Panel (b) shows the average conductance as a func-

tion of the short range (ξ = 0) nonmagnetic disorders,
with other parameters being the same as that in panel
(a). We find that the edge states are very sensitive
to the short range disorders and are easily destroyed.
This is because the short range disorders can easily mix
the separated valleys thus scatter back the edge states.
Therefore, we conclude that our valley associated spin-
polarized edge modes are robust against smooth disorder
scattering which is known to be dominating in graphene.
First Principles Calculations.— So far, we have inves-

tigated the properties of the edge modes in a zigzag edged
graphene nanoribbon by using a phenomenological tight-
binding model. In the following, from first principles cal-

culations, we confirm the validity of the phenomenolog-
ical approach above and also provide a concrete system
which is of a zigzag-edged graphene nanoribbon grown
on top of a hexagonal Boron-Nitride substrate.

In the calculations, we take the lattice constant to be
a = 2.45Å, and inter-layer distance d = 3.22Å11. Fig-
ure 5.(a) illustrates the schematic configuration of the
system. Here, we use N1 (N2) to label the width of
graphene (Boron-Nitride), and N1<N2. The single layer
graphene and Boron-Nitride are AB stacked with Ni-
trogen atoms on top of the hollow position. All the
outmost boundary atoms are saturated with Hydrogen
atoms. The experimental values of the bond lengths
1.17Å (B-H), 1.01Å (N-H), and 1.09Å (C-H) are used.
The self-consistent ground state calculations were per-
formed within the non-equilibrium Green’s function cou-
pled with the density-functional theory scheme23, and the
local density approximation with exchange-correlation
potential (LDA-PZ81) was used24.

Panels (b)-(d) of Fig.5 show the energy band struc-
tures of system with N1 = 96 and N2 = 112. In panel
(b), the spin-polarization at the two zigzag boundaries
are arranged to be anti-parallel. The grey region repre-
sents the continuum of bulk states (i.e. corresponding
to an system with width approaching infinity). Our cal-
culations show that a bulk band gap around 78 meV is
opened. This is slightly larger than the value 53meV cal-
culated for the system of a single layer graphene placed
on top of several layers of Boron-Nitride11. We find that
only the spin-up polarized edge states lie inside the bulk
gap, which is consistent with the tight-binding model dis-
cussion. Note that a small splitting δ appears inside the
bulk gap. This arises from the weak interaction between
the edges states on opposite boundaries, and will vanish
with the increasing system width. Through external con-
trol methods (e.g. employing ferromagnetic insulators to
control the spin polarization), one can manipulate the
spin-polarization direction at individual boundaries, and
achieve various device functions.

In panel (c), the spin-polarization at the two zigzag
boundaries are set to be parallel. We observe that the
spin-up and spin-down states coexist in the bulk band
gap, which is similar to the scenario in Fig. 2(b). There-
fore by tuning a gate voltage, we can control the spin
and valley indices of the electrons which pass through
the structure. Another way to realize the spin and valley
filtering function is to apply an external transverse bias4.
Panel (d) is obtained from (c) by applying a transverse
bias 0.27 V across the ribbons width. One can see that
the spin-up band is pushed upward outside the bulk gap,
and only the spin-down band is left inside the gap. One
can further notice that the applied bias only affects the
edge states but not the bulk energy spectrum. Since
only the spin-down edge band lies inside the bulk gap,
it is more convenient to be used as a spin-filter or a val-
ley filter. These interesting properties of the spin polar-
ized valley helical edge states show great potentials for
the graphene-based spintronics25 and valleytronics26 de-
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FIG. 6: (Color online) Spin polarization for the carbon atoms
inside a supercell. (a) For the spin-parallel configuration, the
spin polarization is symmetric about the ribbon center; (b)
For the spin anti-parallel configuration, the spin polarization
is anti-symmetric about the ribbon center. Note that the
amplitude of the spin polarization is exponentially decreased
accompanying with oscillations between sublattice sites.

vices. Similar spin-polarized edge modes also appear in
the zigzag edged Boron-Nitride nanoribbons with boron
atoms at the boundaries27.

Finally we want to extract from the first principle cal-
culations the values of the relevant parameters in the
corresponding tight-binding model. From panels (b) and
(c) in Fig. 5, the strength of the edge magnetization
should be M = 0.287eV by taking the spin-splitting
at X point. From the bulk gap, we can get the sub-
strate induced staggered AB sublattice potentials to be
U = ±39meV . In units of the hopping energy t, we
have M = 0.11t and U = 0.02t. The edge magnetization
is intrinsic and independent of the external substrate,
while the staggered potentials depends on the substrate.
In Fig. 6, we exhibit the spin polarization of the carbon
atoms inside a supercell for (a) spin-parallel and (b) spin-
antiparallel configurations. Here the spin polarization is
defined as P = (n↑ − n↓)/(n↑ + n↓), where n↑/↓ repre-
sents the number of charge carriers with spin up/down.
We find that the amplitude of the spin-polarization at
one boundary is exponentially decreased from the out-
most atom towards the center, accompanied with oscil-
lations between A and B sublattices. In panel (a) the
spin polarization are symmetric about the center, while
in panel (b) it is anti-symmetric about the center. In
particular, the amplitude of spin polarization at the out-
most atoms is the much larger than the spin polarization
at other atomic sites. This confirms that our phenomeno-
logical tight-binding model captures the main features of
the physical system.

Conclusion.— We have investigated the edge modes

of zigzag-edged graphene nanoribbons in the presence of
a staggered sublattice potential. We find that the edge
states form spin-polarized valley helical conducting chan-
nels which are robust against smooth impurity potentials.
Using first principles calculation methods, we provide
a specific system which exhibits such interesting edge
modes. The system consists of a zigzag-edged graphene
nanoribbons grown on top of a hexagonal Boron-Nitride
substrate. The realization of such spin polarized valley
helical edge modes will facilitate the application of the
graphene based spintronics and valleytronics devices.
Z.Q. was supported by NSF (DMR0906025) and

Welch Foundation (F-1255). Q.N. was supported by
DOE (DE-FG03-02ER45958, Division of Materials Sci-
ence and Engineering) and Texas Advanced Research
Program. Y.Y. was supported by NSF of China (Grants
No. 10974231) and the MOST Project of China (Grants
No. 2007CB925000, and 2011CBA00100).
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