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Multiphoton induced nonlinear magnetoresistance oscillations

in a dc-driven two-dimensional electron system irradiated by intense microwaves

X. L. Lei and S. Y. Liu
Department of Physics, Shanghai Jiaotong University, 1954 Huashan Road, Shanghai 200030, China

We examine the nonlinear magnetoresistance oscillations in a dc-biased high-mobility two-
dimensional electron system irradiated by intense microwaves with a current-controlled balance-
equation model for multi-photon-assisted magnetotransport. It is shown that the maxima/minima
positions, particularly the oscillation period of the differential resistance as a function of the ratio of
the microwave frequency ω to the cyclotron frequency ωc, strongly depend on the radiation intensity
under a large bias dc current density. Theoretical predictions well reproduce the recent experimental
findings by Khodas et al. [Phys. Rev. Lett. 104, 206801 (2010)], and support the multiphoton
origin of these unusual magnetoresistance oscillations.

PACS numbers: 73.50.Jt, 73.40.-c, 73.43.Qt, 71.70.Di

I. INTRODUCTION

Microwave induced magnetoresistance oscillation in
high-mobility two-dimensional (2D) electron systems
has been a subject of intensive experimental1–16 and
theoretical17–35 studies over the past decade.

Under the irradiation of a frequency-ω microwave, the
linear magnetoresistivity of a 2D system strongly oscil-
lates as a function of the inverse magnetic field 1/B, fea-
turing the appearance of peak-valley pairs around the
cyclotron resonance and its harmonics: ǫω ≡ ω/ωc =
1, 2, 3... (ωc = eB/m is the cyclotron frequency and m
the electron effective mass), where the photoresistivity
always vanishes. The basic period of the oscillation de-
pends on the frequency of the microwave, irrespective of
its intensity. Enhanced microwave radiation may increase
the oscillation amplitude and produce secondary struc-
tures around fractional ǫω positions, while the cyclotron
resonance and its harmonics are always the node points
of the primary peak-valley pairs of oscillation.3,4,21,33

A dc current flowing through the 2D system alone is
also known to induce substantial oscillation of differential
magnetoresistance as a function of the current density
J = Nsev (Ns and v are the density and drift velocity
of 2D electrons) or of the inverse magnetic field 1/B. It
is controlled by the parameter ǫj ≡ ωj/ωc (ωj ≡ 2kF v,
with kF as the Fermi wavevector), exhibiting a period-
icity ∆ǫj ≈ 1.36–42 Simultaneous application of a finite
dc current and a microwave radiation leads to very inter-
esting and complicated oscillatory behavior of resistance
and differential resistance.43–50 Experimental and theo-
retical studies have so far focused mainly on the oscilla-
tions of magnetoresistance with changing dc current or
changing magnetic field in a system subjected to a given
microwave radiation having modest strength. How the
oscillation of nonlinear magnetoresistance, i.e. the differ-
ential magnetoresistance under a finite bias dc current,
would be affected when enhancing the radiation power of
incident microwave has not yet been carefully explored.

Recently, Khodas et al.
51 investigated the effect of

varying the radiation intensity on nonlinear magnetore-

sistance as a function of inverse magnetic field and re-
ported a new class of magnetoresistance oscillations in
high-mobility 2D electron systems exposed to high-power
microwaves and subjected to a strong dc current. They
are manifested by a series of mutiple maxima and min-
ima of the differential resistivity versus ǫω, occurring in
the proximity of the cyclotron resonance and its har-
monics. The phases of these oscillations appear quite
different from that of linear photoresistivity and change
continuously with changing bias dc current. The max-
ima/minima positions, particularly the periods of oscil-
lations, are strongly dependent on the radiation intensity
for a given frequency microwave under a large bias dc
current density. These unusual oscillation behaviors are
referred to the effect of multiphoton processes.51

Exposed to an intense steady microwave the electrons
are certainly heated even without a dc current passing
through. When the radiation gets strong enough to
induce an observable magnetoresistance oscillation the
electron temperature of the 2D system is generally in or
above the range of a couple of degree kelvin in the regime
of cyclotron resonance and its harmonics, ωc/ω < 1.5,
regardless of the lattice temperature.21 Because of this,
the thermalization time or the inelastic relaxation time
is much shorter than the transport scattering time in
the experimental high-mobility electron systems and the
inelastic mechanism contribution to radiation-induced
magnetoresistance oscillations is negligible in comparison
with that of the displacement mechanism.15,34,52 This en-
ables us to examine this unusual magnetoresistance os-
cillations using a microscopic balance-equation scheme53

for photon-assisted magnetotransport direct controlled
by the current.

It is demonstrated that for given microwave frequency
and polarization, the period of the oscillation is deter-
mined mainly by the intensity of the radiation, almost in-
dependent of the width of the Landau level and the range
of the impurity potential, in spite of their remarkable
influence on the amplitude of the resistance oscillation.
Theoretical predictions well reproduce the experimental
findings,51 and confirm that these unusual magnetoresis-



2

tance oscillations result from multiphoton processes.

II. FORMULATION FOR PHOTO-ASSISTED

NONLINEAR MAGNETOTRANSPOPRT

We deal with an isotropic 2D system of short thermal-
ization time, consisting of Ns electrons in a unit area of
the x-y plane. These electrons, scattered by random im-
purities and by phonons in the lattice, are subjected to a
uniform magnetic field B = (0, 0, B) in the z direction.
When an electromagnetic wave of angular frequency ω
illuminates perpendicularly onto the 2D plane with the
incident electric field

Ei(t) = Eis sin(ωt) +Eic cos(ωt) (1)

at z = 0 and a bias dc current flows within the plane, the
electric field inside the 2D system involves a dc compo-
nent E0 and an ac component E(t).
The steady transport state under the radiation (1) of

strength relevant to magnetoresistance oscillation can be
described by the drift velocity of electron integrative (the
center of mass) motion, consisting of a dc part v and a
stationary time-dependent part of the form

V (t) = v + vs sin(ωt) + vc cos(ωt), (2)

together with an average temperature Te, characterizing
the isotropic thermal distribution of electrons in the ref-
erence frame moving with the center of mass.53 They sat-
isfy the following force and energy balance equations:21

NseE0 +Nse(v ×B) + F = 0, (3)

NseE0 · v + Sp −W = 0. (4)

In this,

F =
∑

q‖

∣

∣U(q‖)
∣

∣

2
∞
∑

n=−∞

q‖J
2
n(ξ)Π 2(q‖, ω0 − nω) (5)

is the time-averaged damping force against the electron
drift motion, Sp is the time-averaged rate of the elec-
tron energy-gain from the ac field, having an expres-
sion obtained from the right-hand-side of above equa-
tion by replacing the q‖ factor with nω. In Eq. (5),
U(q‖) is the effective impurity potential, Π2(q‖,Ω) is
the imaginary part of the electron density-correlation
function at temperature Te in the presence of the mag-
netic field without electric field, ω0 ≡ q‖ · v, and Jn(ξ)
is the Bessel function of order n with the argument
ξ ≡ [(q‖ · vs)

2 + (q‖ · vc)
2]

1

2 /ω. Note that, although con-
tributions of phonon scattering to F and Sp are neglected
in comparison with those of impurity scattering at con-
sidered low lattice temperature, it provides the main
channel for electron energy dissipation to the lattice with
a time-averaged energy-loss rateW , having an expression
as given in Ref. 21.

The ac components vs and vc of electron drift veloc-
ity should be determined selfconsistently from the inci-
dent ac field Ei by the electrodynamic equations con-
necting both sides of the 2D system, taking account of
scattering-related damping forces Fs and Fc.

21 However,
for high-mobility systems at low temperatures, effects of
these scattering-related damping forces are much weaker
in comparison with that of radiative decay32 and thus
negligible, whence vs and vc are in fact directly deter-
mined by the incident fields Eis and Eic based on the
setup of the 2D system in the sample substrate.21

The effect of interparticle Coulomb interaction is in-
cluded in the density-correlation function to the degree
of energy level broadening, in addition to the screening
considered in the effective impurity and phonon poten-
tials. The remaining Π2(q‖,Ω) function in Eq. (5) is that
of a noninteracting 2D electron gas in the magnetic field,
which can be written in the Landau representation as54

Π2(q‖,Ω) =
1

2πl2B

∑

n,n′

Cn,n′(l2Bq
2
‖/2)Π2(n, n

′,Ω), (6)

Π2(n, n
′,Ω) = − 2

π

∫

dε [f(ε)− f(ε+ Ω)]

× ImGn(ε+ Ω) ImGn′(ε), (7)

where lB =
√

1/|eB| is the magnetic length, Cn,n+l(Y ) ≡
n![(n + l)!]−1Y le−Y [Ll

n(Y )]2 with Ll
n(Y ) the associate

Laguerre polynomial, f(ε) = {exp[(ε − µ)/Te] + 1}−1

is the Fermi function at electron temperature Te, and
ImGn(ε) is the density-of-states (DOS) function of the
broadened Landau level n.
The Landau level broadening results from impurity,

phonon and electron-electron scatterings. In the exper-
imental GaAs-based 2D systems having mobility higher
than 103 m2/V s the dominant elastic scatterings, which
come from residual impurities or defects in the back-
ground rather than from remote donors,55 are short-
ranged and phonon and electron-electron scatterings are
generally also not long-ranged because of the screening.
On the other hand, since the magnetoresistance oscilla-
tions occur at low temperatures and low magnetic fields
in high carrier density samples, the cyclotron radius of
electrons involving in transport is generally much larger
than the correlation length or the range of the dominant
scattering potentials. In this case, the level broadening
is expected to be a Gaussian form [εn = (n+ 1

2
)ωc is the

center of the nth Landau level, n = 0, 1, 2, ...],56

ImGn(ε) = −(2π)
1

2Γ
−1 exp[−2(ε− εn)

2/Γ 2] (8)

with a B
1

2 -dependent half width expressed as

Γ = (2ωc/πτs)
1

2 , (9)

in which τs, the single-particle lifetime or quantum scat-
tering time in the zero magnetic field, depends on impu-
rity, phonon and electron-electron scatterings. The total
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DOS (double spins) of a 2D system of unit area in the
magnetic field is

g(ε) = −
∑

n

ImGn(ε)/π
2l2B. (10)

III. NONLINEAR DIFFERENTIAL

RESISTIVITY

For an isotropic system where the frictional force F

is in the opposite direction of the drift velocity v and
the magnitudes of both the frictional force and the
energy-dissipation rate depend only on v ≡ |v|, we can
write F (v) = F (v)v/v and W (v) = W (v). In the
Hall configuration with velocity v in the x direction
v = (v, 0, 0) or the current density Jx = J = Nsev,
and Jy = 0, the longitudinal differential resistivity rxx =
−(∂F (v)/∂v)/(N2

s e
2) at given v derived from Eq. (3), can

be written in the form

rxx = − 1

4π2

∫

dq‖q
3
‖

|U(q‖)|2
N2

s e
2

∫

dθ cos2θ

×
∞
∑

n=−∞

J2
n(ξ)Π

′
2(q‖, q‖v cos θ − nω) (11)

where Π
′
2(q‖,Ω) ≡ ∂Π2(q‖,Ω)/∂Ω .

This expression for nonlinear differential magnetore-
sistivity of an irradiated 2D system in the presence of a
finite drift velocity v results from impurity-induced elec-
tron transitions between Landau levels with the assis-
tance (emission or absorption) of n (n = 0, 1, 2, ...) pho-
tons, together with an energy ω0 = q‖ · v supplied by
the integrative motion of the system to an electron hav-
ing momentum q‖ during its transition. In the case of
low temperature (Te much less than the Fermi energy
εF ) and high Landau-level filling, the density-correlation
function Π

′
2(q‖,Ω) sharply peaks around q‖ ≃ 2kF . As a

result, in the system having drift velocity v the electron
involving in a transition obtains an extra energy

ωj ≡ 2kF v =
√

8π/NsJ/e (12)

in addition to the energy nω or −nω by the absorption
or emission of n photons of the radiation field having
frequency ω. The oscillation of rxx originates from that
of the periodical function Π

′
2(q‖,Ω). A resonance ap-

pears when the energy change of the electron transition
matches the integral Landau-level spacings: ωj ± nω ≈
±lωc (n = 0, 1, 2, ...; l = 0, 1, 2, ...). Therefore, at a fixed
current density the most probable maxima (exhibiting
the shortest oscillation period) of the n-photon-process
contributed rxx component versus ǫω ≡ ω/ωc, are ex-
pected to emerge around

ǫω ≈ l

γj + n
(l = 0, 1, 2, ...), (13)

where γj ≡ ωj/ω.

0

1

2
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FIG. 1: (Color online) Magnetoresistivity rxx vs ǫω = ω/ωc

at bias dc current J = 0.86 A/m or γj = 2.6 under the irradi-
ation of 27-GHz microwaves of several incident strengths for
a system of Ns = 3.7 × 1015 m−2 and µ0 = 1200m2/V s at
T = 1.5K having τs = 16.3 ps. Curves with 0-, 1-, 2-, 3-, 4-,
5- and 6- are separated contributions from zero-, single-, 2-,
3-, 4-, 5- and 6-photon processes.

Figure 1a shows the calculated differential resistivity
rxx and its component parts from 0-, 1-, 2-, 3-, 4-, 5-, and
6-photon processes, as functions of the normalized inverse
magnetic field ǫω ≡ ω/ωc for a GaAs-based quasi-2D sys-
tem of Ns = 3.7× 1015m−2 and µ0 = 1200m2/V s from
a mixture of background and short-range impurity scat-
terings at T = 1.5K, irradiated by a 27GHz x-polarized
microwave [Eis = (Eiω, 0), Eic = (0, 0)] having incident
electric field amplitude Eiω = 3.8V/cm and subjected to
a dc current J = 0.86A/m or γj = 2.6. The Landau
level broadening is taken to be a Gaussian-type (8) hav-
ing single-particle scattering time τs = 16.3ps. Although
the real positions of maxima may be somewhat affected
by the ǫω variation of J2

n(ξ) factor in Eq. (11), the two
closest maxima shown in Fig. 1 for each rxx component
on both sides of ǫω = 1 are indeed around 2/γj ≈ 0.77
and 3/γj ≈ 1.15 for 0-photon process, 3/(γj + 1) ≈ 0.83
and 4/(γj + 1) ≈ 1.11 for 1-photon, 4/(γj + 2) ≈ 0.87
and 5/(γj + 2) ≈ 1.09 for 2-photon, 5/(γj + 3) ≈ 0.89
and 6/(γj + 3) ≈ 1.07 for 3-photon, 6/(γj + 4) ≈ 0.91
and 7/(γj + 4) ≈ 1.06 for 4-photon, 7/(γj + 5) ≈ 1.92
and 8/(γj+5) ≈ 1.05 for 5-photon, and 8/(γj+6) ≈ 0.93
and 9/(γj + 6) ≈ 1.04 for 6-photon process, respectively.
The oscillation period of the n-photon component, which
is quite accurately given by 1/(γj + n), shrinks with in-
creasing n. The total resistivity are the sum of all n-
photon components. As a result, the oscillation period
of the resistivity induced by higher-intensity microwave
would be smaller than that induced by lower-intensity
microwave, because higher-order photon processes play
more important role in rxx in the former. This can
be seen clearly in Fig. 1b, where we show the differen-
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FIG. 2: (Color online) Magnetoresistivity rxx vs ǫω for the
system as described in Fig. 1 but with τs = 9ps, irradiated
by 27GHz microwaves: (a) subjected to a given dc current
of γj = 2.6 but different radiation fields Eiω and (b) exposed
to a given radiation Eiω = 2.4V/cm but at different bias dc
current densities γj . All curves, other than the lowest ones,
are offset upwards.

tial resistivity rxx of the system under the same bias
current density J = 0.86A/m or γj = 2.6, irradiated
by 27GHz microwaves of different incident intensities:
Eiω = 1.5, 1.9, 2.4, 3.0 and 3.8V/cm. Note that although
ǫω = 1 remains the node point at which all curves of
different intensity cross, the phase of the resistivity os-
cillation at this bias current, appear completely different
from that of zero dc bias. The striking feature is that in
this range of radiation intensity, the period of the oscil-
lation decreases significantly with increasing microwave
power, while its amplitude looks only a little difference.
Figure 2 presents differential magnetoresistivity rxx

versus ǫω for the same system described above but with
τs = 9ps irradiated by 27GHz microwaves under a given
dc current of γj = 2.6 but different radiation intensi-
ties Eiω = 1.5, 1.9, 2.4, 3.0 and 3.8V/cm (a), and with a
given radiation strength Eiω = 2.4V/cm but at different
bias dc current densities γj (b). All curves, other than
the lowest ones, are offset upwards for clarity. We see
that the phase of the resistivity oscillation changes con-
tinuously with changing bias current density, while the
oscillation amplitudes remain essentially the same.

IV. ANALYTICAL EXPRESSIONS IN THE

OVERLAPPING LANDAU-LEVEL REGIME

Analytical expressions for rxx can be derived at tem-
perature Te much lower than the Fermi level (Te ≪ εF )
for short-range scattering in the overlapping Landau-level
regime, where the Dingle factor

δ = exp(−π2
Γ

2/2ω2
c) = exp (−π/ωcτs) (14)

is much smaller than 1. Retaining only terms of the low-
est order in δ or of the fundamental harmonic oscillation,

we have the approximate DOS expression for high Lan-
dau levels:

g(ε) ≈ m

π

[

1− 2δ cos (2πε/ωc)
]

. (15)

For circularly polarized incident radiation fields, the
argument ξ of the Bessel function in Eq. (11) is not de-
pendent on θ and the angular integration can be done
exactly. Furthermore, at low temperature and high Lan-
dau level filling the integral of q‖ is able to carried out

in view of the function Cn,n′(l2Bq
2
‖/2) sharply peaking

around q‖ = 2kF . After performing the summation over
n in Eq. (11) we get the following expression for the non-
linear differential resistivity of the 2D system under an
arbitrarymicrowave radiation and subject to an arbitrary
bias dc current (excluding the SdHO part):

rxx = Ri0

{

1 + 2δ2
[

J0
(

2ξb sin(πǫω)
)

G(2πǫj)

−2πǫω cos(πǫω)ξbJ1
(

2ξb sin(πǫω)
)

S(2πǫj)
]

}

, (16)

in which Ri0 = 1/(Nseµ0) is the low-temperature linear
resistivity of the 2D system in the absence of magnetic
field without radiation and µ0 is the linear mobility. In
Eq. (16) the S(z) and G(z) functions are

S(z) = J0(z)− J2(z), (17)

G(z) = S(z)− z

2

[

3J1(z)− J3(z)
]

(18)

(Jk(z) stands for the Bessel function of order k), and the
parameter ξb is defined as

ξ2b = eωη, (19)

where

eω =
e2k2FE

2
ω

m2ω4
(20)

is an effective radiation power index with Eω as the ef-
fective amplitude of the incident radiation field, and η is
a polarization-related dimensionless coefficient including
the effect of radiative damping.21,32 We have

η = η± = 2
c2± + d2±
(a2 + b2)2

(21)

for positive (+) or negative (−) circularly polarized

incident radiation field [Eis = (Eiω/
√
2, 0), Eic =

(0, Eiω/
√
2)] or [Eis = (Eiω/

√
2, 0), Eic = (0,−Eiω/

√
2)].

Here, a = 1 − λ2 + γ2
ω, b = 2λγω, c± = a(1 ± λ) − 2λγ2

ω

and d± = aγω ± 2λ(1 ± λ)γω , with λ ≡ ωc/ω and γω
being a radiative damping factor. The expressions for
Eω and γω depend on the experimental setup of the 2D
system. For 2D electrons contained in a thin sample sus-
pended in vacuum Eω = Eiω and γω = Nse

2/(2mǫ0c ω).
If 2D electrons locate under the surface plane of a semi-
infinite semiconductor having a refractive index ns, Eω =
2Eiω/(1 + ns) and γω = Nse

2/[(1 + ns)mǫ0c ω].
21
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FIG. 3: (Color online) Magnetoresistivity rxx vs ǫω obtained
from (16) for the system with τs = 6.7 ps, irradiated by
27GHz microwaves: (a) under a given dc current γj = 1.5
but different radiation fields Eiω and (b) exposed to a given
radiation Eiω = 3.2V/cm but at different bias dc currents γj .
All curves, other than the lowest ones, are offset upwards.

For linearly polarized radiation fields the resistivity ex-
pressions (16)-(20) are also approximately usable with
the η-coefficient given by

η = ηx ≈ 3a2 + 3c2 + b2 + d2

(a2 + b2)2
(22)

for x-polarized field [Eis = (Eiω, 0), Eic = (0, 0)], and

η = ηy ≈ 3b2 + 3d2 + a2 + c2

(a2 + b2)2
(23)

for y-polarized field [Eis = (0, Eiω), Eic = (0, 0)]. Here
c = (1 + λ2 + γ2

ω)γω and d = (1 − λ2 − γ2
ω)λ.

The rxx expression (16) applies for arbitrary radiation
field and arbitrary bias dc current and is accurate enough
to capture all the features of nonlinear differential mag-
netoresistivity, as long as the DOS of the system is de-
scribed by the form (15) and the electron temperature is
much lower than the Fermi level: Te ≪ εF . The tem-
perature dependence of resistivity resides in the single-
particle scattering rate 1/τs involving in the the δ2 factor.
In the case of weak radiation field, ξ2b ≪ 1, retaining

terms of order of ξ2b in Eq. (16) one gets

rxx = Ri0

{

1 + 2δ2
[

G(2πǫj)− ξ2b
(

sin2(πǫω)G(2πǫj)

+πǫω sin(2πǫω)S(2πǫj)
)]

}

, (24)

which is the expression of nonlinear differential resistivity
resulting from zero- and single-photon processes under an
arbitrary bias dc current.52

In the weak dc current limit (2πǫj → 0), Eq. (16) re-
duces to an expression for linear magnetoresistivity under
the irradiation of an arbitrary microwave:

rxx = Ri0

{

1 + 2δ2
[

J0
(

2ξb sin(πǫω)
)

−2πǫω cos(πǫω)ξbJ1
(

2ξb sin(πǫω)
)]

}

. (25)

In the case of large bias current density 2πǫj ≫ 1, with
the asymptotic expressions of G(z) and S(z) at z ≫ 1,
Eq. (16) can be written as

rxx = Ri0

{

1 + 8δ2ǫ
1

2

j

[

cos
(

2πǫj+
π

4

)

J0
(

2ξb sin(πǫω)
)

− sin
(

2πǫj−
π

4

) ǫω
ǫj

cos(πǫω)ξbJ1
(

2ξb sin(πǫω)
)

]}

. (26)

Figure 3 shows the differential resistivity rxx obtained
from expression (16) for the above-described system
(Ns = 3.7× 1015m−2 and µ0 = 1200m2/V s from short-
range impurity scatterings) with τs = 6.7 ps irradiated
by 27GHz x-polarized microwaves: (a) subjected to a
fixed dc current of γj = 1.5 but different radiation
field strengths Eiω and (b) exposed to a given radia-
tion Eiω = 3.2V/cm but at different bias dc currents
γj . These curves closely follow those numerically calcu-
lated from Eq, (11) at T = 1.5K, confirming the relia-
bility of the approximation used in deriving expression
(16). Theoretical predictions not only well reproduce the
intensity-variation of the oscillation period, but also cap-
ture the peak positions, amplitude and phase of the rxx
oscillation experimentally observed by Khodas et al.51

The rxx expression (26) for 2πǫj ≫ 1, on the other hand,
indicates that the present model gives rise to a rxx-vs-ǫj
behavior different from the result of the theoretical model
in Ref. 51 at large bias current density.

V. SUMMARY

We have carried out numerical and analytical exam-
inations on the nonlinear magnetoresistance oscillation
induced by intense microwaves in a strongly dc-biased
two-dimensional electron system using a photon-assisted
magnetotransport scheme direct controlled by the cur-
rent. The theoretical results presented in Figs. 1 and 2
based on the Gaussian-type DOS (8) and Fig. 3 based
on the cosine-type DOS (15) indicate that under the ir-
radiation of intense microwaves of given frequency and
polarization, the form of Landau-level broadening has
only a slight influence on the behavior of the oscilla-
tion. The amplitude of differential resistance oscillation
depends strongly on the single-particle lifetime τs, as well
as on the range of the impurity scattering potential in
the system, and the phase of the oscillation is governed
by the bias dc current density. The period of the oscil-
lation, on the other hand, is determined almost solely
by the intensity of the microwave radiation at a given
bias current, irrespective of the single-particle lifetime
τs and the range of the impurity scattering potential.
This radiation-intensity-dependent only behavior of the
resistance-oscillation period results from the crucial role
of multiphoton processes under intense radiation and pro-
vides a unique way to determine the strength of the ra-
diation field applying in the system.
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