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We investigate the low-field relaxation of nuclear hyperpolarization in undoped and highly doped
silicon microparticles at room temperature following removal from high field. For nominally undoped
particles, two relaxation time scales are identified for ambient fields above 0.2 mT. The slower, T1,s,
is roughly independent of ambient field; the faster, T1,f , decreases with increasing ambient field. A
model in which nuclear spin relaxation occurs at the particle surface via a two-electron mechanism
is shown to be in good agreement with the experimental data, particularly the field-independence
of T1,s. For boron-doped particles, a single relaxation time scale is observed. This suggests that for
doped particles, mobile carriers and bulk ionized acceptor sites, rather than paramagnetic surface
states, are the dominant relaxation mechanisms. Relaxation times for the undoped particles are not
affected by tumbling in a liquid solution.

I. INTRODUCTION

Silicon has long been a staple of the microelectron-
ics industry and so has been the subject of intense ma-
terials research. In recent years, nanoscale silicon has
attracted attention due to its unique electronic and op-
tical properties,1–3 and as a potential agent for medical
imaging and drug delivery.4–6 Spin phenomena in sili-
con has been investigated using nuclear magnetic res-
onance (NMR) for over a half-century,7–14 while mate-
rial properties and fabrication has continually developed.
For instance, the nuclear spin-lattice relaxation time, T1,
provides information about dopants and impurities.11–13
Notably, the low natural abundance (4.7%) of spin-
1/2 29Si nuclei in a lattice of zero spin nuclei leads to
T1 of many hours6,13 and coherence times up to tens of
seconds14 in undoped bulk crystalline silicon.

These remarkable NMR properties have stimulated in-
terest in silicon as a platform for solid-state quantum
computing,15–17 and as a long-lived imaging agent for hy-
perpolarized magnetic resonance imaging (MRI).6 In par-
ticular, there have been renewed efforts to understand dy-
namic nuclear polarization (DNP), a process where sat-
uration or pumping of paramagnetic impurity states by
microwave fields or optical illumination can lead to nu-
clear spin polarizations orders of magnitude larger than
thermal equilibrium polarizations.18–22 Enhancing polar-
ization by these methods is commonly referred to as hy-
perpolarization.

Application of silicon as a hyperpolarized imaging
agent for MRI requires an understanding nuclear spin
relaxation over a broad range of applied fields, from
high fields where polarization is induced and imaged, to
low fields where the agent is transferred from the po-
larizer and administered. Previous detailed studies have
focussed on low-temperatures, investigating the depen-
dence of T1 on applied magnetic field, doping23–25 and
strain.26 It was found that T1 increased with applied
magnetic field, which was explained in terms of the field
dependence of electron-nuclear dipole-dipole interaction.

The nuclear T1 was also shown to scale inversely with the
concentration of mobile carriers.12,13 In silicon nanopar-
ticles, the observed increase in nuclear T1 with increasing
particle size was attributed to diffusion-mediated relax-
ation via defects at the particle surface.6 Recent mea-
surements have shown that the relaxation and coherence
times of 31P donor-bound electron spin are dramatically
reduced near the silicon surface due to Pb defects, in
comparison to known values in the bulk.27 Studies of
electrically9 and optically10 detected hyperpolarization
of 31P donor nuclear spins near the silicon surface, how-
ever, do not consider effects of the surface on nuclear spin
relaxation.

In this paper, we investigate the decay of hyperpolar-
ization of 29Si nuclei in silicon microparticles at room
temperature and low ambient magnetic fields. The hy-
perpolarization for this experiment was induced by wait-
ing for nuclear spins to fully relax to thermal equilib-
rium in a high-field, room temperature polarizing envi-
ronment, prior to the placement of sample in the low-field
depolarizing environment. Thus the sample was kept at
room temperature at all times, ensuring that the applied
magnetic field, not sample temperature, was responsible
for all measured effects on low-field nuclear spin relax-
ation that are reported here.

We find the decay is bi-exponential, with a slow time
scale that is independent of ambient field, and a fast time
scale that shows only a modest decrease with increasing
ambient field. We develop a model of nuclear spin re-
laxation in silicon particles that takes into account the
heterogeneous makeup of the sample, with direct nuclear
relaxation occurring only near the surface, while nuclei in
the particle core are relaxed indirectly by spin diffusion.
This model extends a previous spin diffusion model,18
which predicts T1 increasing with the square of the par-
ticle diameter. We find that the weak magnetic field de-
pendence observed experimentally is inconsistent with a
simple extended spin-diffusion model based on relaxation
on individual bound electrons. However, by generaliz-
ing the model further to include nuclear spin relaxation
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mediated by pairs of dipolar-coupled electrons, the es-
sentially field-independent relaxation is recovered by the
model.30,33–35 The experimental methods presented here,
as well as the use of magnetic field dependence of nuclear
T1 as a probe for testing the relative importance of these
different model processes, have precedent in a similar in-
vestigation performed on diamond and its 13C nuclear
spin relaxation.30–32

II. SAMPLES AND MEASUREMENTS

Microparticles made from nominally undoped and
boron-doped ball-milled Si wafers were investigated. As
shown previously6, undoped Si microparticles have very
long high-field relaxation times (T1 ∼ 104 s), relevant for
hyperpolarized MRI. Undoped samples were produced
by ball-milling high-resistivity (> 10 kΩ·cm) float-zone
Si wafers (Silicon Quest International) followed by size
separation by centrifugal sedimentation, yielding a mean
particle diameter of 5 µm.6 Boron-doped Si micropar-
ticles with doping density ∼ 5 × 1018 cm−3 have much
faster nuclear spin relaxation, T1 ∼ 102 s at high mag-
netic field. The boron-doped microparticles were pro-
duced by ball-milling Czochralski-grown Si wafers (Vir-
ginia Semiconductor, resistivity 0.01-0.02 Ω·cm) followed
by size separation, yielding a mean particle diameter on
the order of 10 µm. Except where noted, samples con-
sisted of a 0.1 mL teflon tube filled with particles. All
NMR measurements were carried out at B0 = 2.9T using
a custom-built probe and spectrometer.

Polarization at 2.9T following a saturation sequence
of sixteen π/2 pulses was measured as a function of
time, tpol, using a Carr-Purcell-Meiboom-Gill (CPMG)
sequence36–38, (π/2)X − [t/2− (π)Y − t/2− echo]

n with
t = 1 ms and n = 400. After each data point, the sam-
ple was re-saturated and the measurement repeated. As
seen in Figs. 1(a) and 4(a), the build-up of polarization
is well described by a single exponential function of tpol
for both undoped and doped samples.

Depolarization at low ambient fields was measured af-
ter first polarizing at 2.9T for 8 h (∼ 3T1 at 2.9T),
then raising the probe out of the magnet bore to a posi-
tion where ambient (or holding) fields of 0.2 mT, 6 mT,
130 mT, and 300 mT had been previously calibrated us-
ing a Lakeshore 460 gaussmeter. In addition, a nomi-
nal zero-field measurement used a commercial zero-gauss
chamber (Lakeshore 4060) with ambient field below 1 µT.
Following depolarization in ambient field, the sample was
returned to field center (2.9T) and the remaining nuclear
polarization was measured using the CPMG sequence de-
scribed above. The transit time between positions was
∼5 s, fast compared to T1 but slow compared to nuclear
Larmor times. The sample was fully repolarized follow-
ing each data point.

In addition to NMR measurements, room temperature
electron spin resonance (ESR) measurements were car-
ried out to characterize electronic defects and carriers of

the two sample types. The ESR spectrum of the undoped
sample showed a single peak at B = 324 mT measured
at ESR frequency f = 9.099 GHz, corresponding to a
g-factor centered at 2.006, with a linewidth of 0.47 mT.
The ESR spectrum of the boron-doped sample showed
a single peak at B = 336 mT measured at ESR fre-
quency f = 9.444 GHz, again corresponding to a g-factor
of 2.006. A g-factor of 2.006 is consistent with reported
values for Pb defects at the Si-SiO2 interface, and is not
consistent with g-factors of other common dopants or ox-
ide states.39,40

For each sample, an estimate of the electron spin con-
centration on the particle surface was made by taking
ESR spectra with a piece of phosphorus-doped silicon
wafer (0.01 − 0.1 Ω·cm) also inserted in the spectrom-
eter cavity. The addition of the wafer piece resulted in
the appearance of additional ESR signal due to the n-
type doping. Comparing the peak areas and using the
known doping level of the wafer piece yielded an order-of-
magnitude estimate of the mean volume density of defect
spins, which was ∼ 1018 cm−3 in both samples. Assum-
ing a surface-to-volume ratio of 300 nm-radius spheres,
this mean volume density corresponds to a surface defect
concentration of 1013 cm−2. Transmission electron mi-
crographs reveal an oxide layer of 2-3 nm at the surface
of the ball milled particle. The relevant Pb defects pre-
sumably reside at the interface between the Si and this
oxide layer.

A. Undoped Microparticles: Measurements

Polarization and depolarization data for the un-
doped microparticles are shown in Fig. 1. Po-
larization is well described by a simple expo-
nential, P = P0,B0

(
1− e−tpol/T1

)
, with best-fit

value T1 = 8200 ± 600 s, consistent with previ-
ous measurements.6 Equilibrium polarization is small,
P0,B0

= tanh[(~γnB0)/(2kBT )] = 2 × 10−6. Here, kB
is Boltzmann constant, T = 300 K is room temperature,
and γn = 5.31× 107 s−1 T−1 is the nuclear gyromagnetic
ratio for 29Si.

In contrast to the build-up of polarization at 2.9 T,
depolarization at low ambient fields, Bdep, decays with
two distinct time scales, which we characterize using a
bi-exponential form,

P = P0,Bdep
+
(
P0,B0

− P0,Bdep

)
(1)

×
(

(1− α)e−tdep/T1,f + αe−tdep/T1,s

)
,

where T1,f and T1,s are fast and slow relaxation times, and
α is the fraction of spins whose polarization decays slowly.
Best-fit values of α, T1,f and T1,s are shown in Table I.
Note that the slow relaxation time depends very weakly
on Bdep, with T1,s ∼ 1.4 - 1.5× 103 s in all cases. In con-
trast, fast relaxation becomes somewhat faster (shorter
T1,f) with increasing Bdep, while the fraction of slow re-
laxers increases.
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Figure 1: Relaxation of nuclear spin polarization of undoped
silicon particles. (a) Recovery of spin polarization following
saturation at B0 = 2.9 T. (b) Decay of nuclear magnetization
at Bdep = 0.2 mT (circles), 6 mT (open squares), and 300 mT
(triangles), after polarization at 2.9 T, and same data for par-
ticles suspended in methanol at 6 mT (filled squares). Curves
show best fits to Eq. 1. No signal was observed after 1 second
for data taken in the zero-field chamber (< 1µT).

Inside the zero-gauss chamber the residual ambient
magnetic field is specified to be below the few-µT scale,
much weaker than the typical nuclear dipolar field,
Bn,dd ∼ µ0µn/(4πa

3) = 0.08 mT, where a ∼ 4 Å is the
mean separation between randomly distributed 29Si nu-
clei. At such extremely low fields, spin transitions will oc-
cur that are forbidden when B > Bn by the conservation
of nuclear Zeeman energy, and nuclear spin relaxation is
as fast as decoherence.41 As expected, we find that in
the zero-gauss chamber nuclear polarization decays very
quickly, with no visible signal for tdep > 1 s.

To investigate the effect of microparticle tumbling on
depolarization, a fluid mixture of one part Si micropar-
ticles and four parts methanol by weight was compared
to a sample of packed dry powder. Depolarization times
at 6 mT ambient field showed no significant difference in
relaxation times.

B. Undoped Microparticles: Model

We interpret NMR and ESR data for the undoped mi-
croparticles within a model shown schematically in Fig. 2,
comprising nuclear dipolar diffusion in a core region and
relaxation via paramagnetic sites in a shell region near
the Si/SiO2 interface. In undoped silicon, direct cou-

Bdep α T1,f (s) T1,s (s)
300 mT 0.765± 0.027 531± 179 13850± 1030

6 mT 0.593± 0.050 903± 232 15310± 2070

0.2 mT 0.591± 0.120 1124± 544 14910± 5360

< 1 µT < 1

Table I: Exponential weights and relaxation times fitting to
experimental data. T1,f and T1,s are fast and slow relaxation
times with which two additive components of the spin polar-
ization decay. α is the relative amplitude of the component
which decays at T1,s.

pling of 29Si nuclear spins to phonons is weak11,33, and
dipolar coupling to paramagnetic impurities and defects
typically dominates nuclear spin relaxation. Within our
model, the bi-exponential form of Eq. 1 reflects the ex-
istence of two populations of nuclear spins within each
microparticle: a fraction α, located in the core of the
particle, has a long spin relaxation time T1,s mediated
by nuclear spin diffusion; the remaining fraction (1−α),
located within a shell near the Si/SiO2 interface, has a
short relaxation time T1,f mediated by electron-nuclear
spin interaction associated with paramagnetic centers at
the Si-SiO2 interface.

For Bdep > Bn,dd, the nuclear dipolar spin diffusion
rate is independent of magnetic field,22 and is well de-
scribed by a diffusion constant D = Wa2 ∼ a2/(50T2),
where W is the probability of a flip-flop transition be-
tween nuclei due to dipole-dipole interaction, and T2 is
the nuclear decoherence time.33 This is consistent with
our observation that T1,s is roughly independent of Bdep

across a broad range of values.
The thickness of the shell region is set by the nuclear

spin diffusion radius, β = (C/D)1/4, where C is a con-
stant describing the nature of the dipolar interaction oc-

diffusion barrier
SiO2

29Si in Si core region

29Si in Si shell region

paramagnetic centers

direct relaxation

la
tti

ce

nuclear spin diffusion

Figure 2: Model showing the spin reservoirs and relaxation
pathways in undoped silicon particles. Nuclei in the core re-
gion of the particle relax by transferring their magnetization
to the nuclei in the shell region, nearer to the surface, by
spin diffusion. The nuclei near the surface can relax quickly
due to strong dipolar coupling to paramagnetic defects at the
Si/SiO2 interface.
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curring between the nuclei and electrons. Nuclei situated
at a distance r from the electrons at the particle surface
may relax through a dipolar interaction with the elec-
trons at a rate ∝ C/r6.33

We consider two physical mechanisms of relaxation in
shell region, one in which each nuclear spin interacts with
a single electron spin, and the other in which each nuclear
spin interacts with a pair of electron spins. The two-
electron model captures a crucial physical mechanism by
allowing energy matching between electron-spin-pair flip-
flops and nuclear spins flips in a magnetic field, leading
to efficient nuclear relaxation with weak dependence on
magnetic field.

Modeling nuclear spin relaxation as arising from inter-
action with individual paramagetic centers is appropri-
ate for sparsely distributed impurities. This regime has
been studied experimentally, for instance, in diamagnetic
crystals such as LiF42,43 and CaF2.

44 In this case, the
orientation-averaged dipole interaction strength is given
by

C(1e) =
3

10

~2γ2e
T1eB2

dep

, (2)

where γe is the gyromagnetic ratio of the electron and T1e
the electron spin-lattice relaxation time.33 This model
yields a magnetic field dependence of diffusion-limited
relaxation (R � β) at least as strong as T1,s ∝ B

1/2
dep

because the diffusion radius β and relaxation rate ∝
C depend explicitly on field, even when D is field
independent.33,44,45 This prediction is incompatible with
our experimental results, which show a much weaker field
dependence.

In light of this inconsistency, we consider a model of
nuclear relaxation at the particle surface that includes
three-spin processes involving pairs of interacting elec-
trons, which gives

C(2e) =
3

10

~2γ2e
B2

dep

B2
depγ

2
nT2e

1 +B2
depγ

2
nT

2
2e

∫ ∞
−∞

g(ω)g(ω − ωn)

g(0)
dω,

(3)

where T2e is the electron spin-spin coupling and
g(ω) is the normalized electron absorption lineshape
function.30,34 This model has been previously applied to
systems with more concentrated paramagnetic impuri-
ties, including La2Mg3(NO3)12 ·24H2O46,47 and more re-
cently 13C nuclear spin relaxation in diamond.30,31 This
model accounts for flip-flop transitions between nearby
electron pairs, occurring on a time scale T2e � T1e, which
provide the fluctuating magnetic field that can flip nu-
clear spins. That is, when the dipolar coupling of elec-
tron pairs matches the nuclear Zeeman energy, a three-
spin interaction can occur that exchanges the spins of the
two electrons while flipping a nuclear spin.48 This process
depends on the density of transitions between electronic
dipolar energy states that match the nuclear Zeeman en-
ergy. For a Lorentzian electron lineshape, the integral in

Experiment

Single Electron Model

Two Electron Model

T1,s T1,f

T1,s T1,f

T1,s T1,f

Figure 3: Experimental slow (black circle) and fast (black
triangle) relaxation times, T1,s and T1,f , from Table I, for
bi-exponential nuclear spin relaxation, along with simulation
results for a model that includes either one-electron or two-
electron processes.

(3), which describes the probability of finding two elec-
trons within the ESR line differing in frequency by ωn,
can be replaced by 2/(4 + ω2

nT
2
2e). For low Bdep, such

that γnBdep < γeBe,dd ∼ T−12,e , where Be,dd is the elec-
tronic dipole field felt by a typical nucleus, the density of
nuclear-spin-flip transitions will be independent of Bdep,
hence the rate of direct nuclear spin relaxation by this
process will also be independent of Bdep.30,34

We infer an upper bound for Be,dd from the measured
ESR linewidth of 0.47 mT, which gives γ−1n γeBe,dd ∼
1.7 T for the scale of Bdep below which nuclear T1
should be roughly field independent within this three-
spin model. The low end of the field-independent range
is set by the nuclear dipolar field Bn,dd ∼ 0.08 mT.
This range is consistent with the experimental observa-
tion that T1,s is roughly field independent from 0.2 mT to
300 mT. Weak field dependences of T1,f and α are likely
due to the weak field dependence of T1e.

Very close to each paramagnetic impurity, nuclear spin
diffusion is suppressed, creating a barrier to diffusion of
radius b = a(~γ2eBdep/γn2kBT )1/4, due to gradients in
the nuclear Larmor frequency.33 This effect is included
in the simulations (described below), but because β � b
it only weakly affects overall relaxation times.

We have simulated nuclear spin relaxation as a func-
tion of ambient field for a spherical silicon micropar-
ticle with native 29Si concentration and paramagnetic
sites at the surface. For both one and two electron pro-
cesses, the average polarization P (tdep) is approximately
bi-exponential, similar to the experimental data. Fits to
the relaxation curves gave T1,s and T1,f values shown in
Fig. 3. The particle diameter was taken to be 700 nm,
smaller than the actual mean particle size. This com-
pensated the spherical assumption, which gave too small
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of a surface where defects reside. Other parameters in
the model were nuclear T2 of 10 ms (and correspond-
ing nuclear spin diffusion constant 0.3 nm2/s), electron
T1e of 200 ns, and electron T2e of 25 ns. Figure 3 shows
the striking contrast in field dependence between the two
models, and that the three-spin process compares rela-
tively well with experiment.

C. Results for Boron-doped Microparticles

Nuclear polarization and depolarization of boron-
doped Si microparticles are shown in Fig. 4. Both P (tpol)
and P (tdep) are well fit by single-exponential relaxation
curves with time constants T1 that increases with increas-
ing ambient field. The reduction of T1 by 1-2 orders
of magnitude in the doped case reflects the dominant
contribution of nuclear relaxation from mobile carriers,12
as well as from unionized dopants distributed uniformly
through the particle instead of just at the surface (Fig. 5),
both bypassing the relatively slow nuclear spin diffusion
process. The measured T1 in the microparticles is consis-
tent with previous reports of the nuclear relaxation rate
due to mobile holes in bulk p-type silicon doped to similar
concentrations13, and so we therefore conclude that the
dominate nuclear relaxation mechanisms are the same as
in these bulk systems.

The contribution of unionized dopants and mobile car-
riers can be expressed as an additional relaxation rate
that is proportional to the relative strength of each in-
teraction weighted by the relative fractions of ionized and
unionized dopants (∼ 5% ionized at room temperature).
For free carriers this interaction is independent of mag-
netic field,12 while for unionized dopants a magnetic field
dependence will be present due to the paramagnetic na-
ture of the bound hole. However, this dependence will be
small due to the high doping concentration of the sam-
ple. For the specified dopant density, the average dis-
tance between dopants is ∼ 2.5 nm and the Bohr radius
∼ 1.3 nm49, both an order of magnitude less than the
diffusion radius for both single electron and two-electron
processes across the range of ambient fields under study.
It is likely that this is the source of the small magnetic
field dependence seen in Fig. 4(b).

III. CONCLUSION

We have investigated the relaxation of polarization of
natural-abundance 29Si nuclei in undoped and doped sil-
icon microparticle samples as a function of ambient mag-
netic fields at room temperature. In undoped micron-
scale particles, the decay of nuclear polarization from a
hyperpolarized value was measured from microtesla to
0.3 T. For fields stronger than the nuclear dipolar field,
a bi-exponential decay of nuclear magnetization was ob-
served, with a fast component of ∼ 102 s that depends
weakly on field and a slow component of ∼ 104 s that
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Figure 4: Nuclear spin lattice relaxation in boron-doped sil-
icon microparticles. (a) Recovery of spin polarization after
saturation at B0 = 2.9 T. (b) Decay of nuclear magnetization
at Bdep = 6 mT (open square), and 130 mT (triangle), af-
ter polarization at 2.9 T. Error bars in (a) are displayed but
smaller than the data points shown.

29Si nuclei in bulk
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unionized Boron

mobile holes

direct relaxation

paramagnetic centers

Figure 5: Rate model showing dominant nuclear relaxation
pathways of direct relaxation on mobile holes and short dif-
fusion to unionized B (i.e., bound holes) throughout the bulk
of the particle. Long distance spin diffusion to surface impu-
rities is relatively slow and direct coupling of the nuclei to the
lattice is weak.

is roughly field independent. The relative amplitude of
the slowly decaying component increases with the mag-
netic field, but only slightly. Bi-exponential relaxation
suggests the presence of two nuclear spin baths distin-
guished by their proximity to paramagnetic impurities at
the particle surface. The timescales of nuclear spin relax-
ation are largely independent of ambient field Bdep from
0.2 to 300 mT. This independence from Bdep is quantita-
tively consistent with a model of nuclear spin relaxation
dominated by a three-spin mechanism in which flip-flop
transitions of two electrons at the nuclear Larmor fre-
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quency flip a nuclear spin. In highly doped silicon, sim-
ple exponential relaxation with a faster T1 of order a few
hundred seconds is observed.

These results can be compared with similar experi-
ments performed in diamond, another material with di-
lute (1.1 %) spin-1/2 nuclei among a majority of zero-spin
nuclei in an fcc lattice.28–30. Measurement of the nuclear
T1 in natural diamond as a function of magnetic field in-
dicate a contribution of three-spin processes to 13C spin
relaxation.30 Other investigations of nuclear spin relax-
ation in 13C-enriched diamond31 and in nanocrystalline
diamond32 have shown that the relaxation of nuclear
magnetization was not well described by a simple ex-
ponential approach to equilibrium. The NMR studies in
nanocrystalline diamond revealed that the particles con-
sist of a crystalline core and a surrounding shell. All
these observations in diamond are similar to our results
in silicon microparticles.

Finally, we comment that multi-hour and field-
independent nuclear relaxation times for a substantial
fraction of the nuclear spin population, including for
particles in a fluid suspension, is important for for the
use of silicon microparticles as a hyperpolarized MRI
imaging agent.
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