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Abstract

The Tao-Perdew-Staroverov-Scuseria (TPSS) meta-generalized-gradient-approximation

(MGGA) and its revised version, the revTPSS, are implemented self-consistently within

the framework of the projector-augmented-wave (PAW) method, using a plane wave basis set.

Both TPSS and revTPSS yield accurate atomization energies for the molecules in the AE6

set, better than those of the standard Perdew-Burke-Ernzerhof (PBE) generalized-gradient-

approximation. For lattice constants and bulk moduli of 20 diverse solids, revTPSS performs

much better than PBE, and on average as well as PBEsol and Armiento-Mattsson (AM05), GGAs

designed for solids. The latter two overestimate the atomization energies for molecules to an

unacceptable degree. However, the revTPSS presents only a slight improvement over PBEsol for

the prediction of cohesive energies for solids, and some deterioration with respect to PBE. We

also study the magnetic properties of Fe, for which both TPSS and revTPSS predict the right

ground-state solid phase, the ferromagnetic body-centered-cubic (bcc) structure, with an accurate

magnetic moment.
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I. INTRODUCTION

In the last decades, Kohn-Sham (KS) density functional theory (DFT)1–3 has proven to be

a very powerful tool in condensed matter physics and quantum chemistry. The key ingredient

within KS-DFT, the exchange-correlation energy Exc as a functional of the electron spin

densities n↑(r) and n↓(r), must be approximated. Semilocal approximations (e.g., Refs.4–7)

of the form

Exc[n↑, n↓] =

∫

d3rnǫxc(n↑, n↓,∇n↑,∇n↓, τ↑, τ↓) (1)

require only a single integral over real space and so are practical even for large molecules or

unit cells. In Eq. (1) n↑ and n↓ are the electron densities of spin ↑ and ↓, respectively, ∇n↑,↓

the local gradients of the spin densities, τ↑,↓ =
∑

k |∇ψk↑,↓|2 /2 the kinetic energy densities of

the occupied KS orbitals ψkσ of spin σ, and ǫxc the approximate exchange-correlation energy

per electron. All equations are in atomic units.

The semilocal approximations include three rungs of the so-called Jacob’s ladder in DFT8:

local spin density approximation (LSDA), generalized gradient approximation (GGA), and

meta-GGA (MGGA). The lowest rung, the LSDA1,4, uses only the densities n↑ and n↓ as

ingredients, is exact for a uniform electron gas, and predicts reasonable but too-short lattice

constants for solids, good surface energies for simple metals (but with substantial error

cancellation between exchange and correlation), and molecular atomization energies that are

unacceptably high. Compared to the LSDA, GGAs with standard5 or diminished9 gradient

dependences include additional semilocal information, the gradients of the spin densities.

With the advent of GGAs5,10–17, density functional theory has become popular not only in

solid state physics, but also in quantum chemistry. However, the accuracy of the commonly

used GGAs is still limited. For example, the nonempirical Perdew-Burke-Ernzerhof (PBE)

GGA5 predicts reasonable but too-long lattice constants, surface energies that are better

than LSDA for exchange alone and correlation alone but worse for their sum, and improved

atomization energies to an error level of about 10 kcal/mol. Since the commonly used GGAs

in general overcorrect the lattice constant with respect to LSDA, recent years have seen the

emergence of ”GGAs for solids” with diminished gradient dependences (e.g., AM0518 and

PBEsol19) which typically predict good lattice constants and surface energies, but rather

poor atomization energies.

The MGGA is a natural way to improve accuracy further by making use of additional
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semilocal information, e.g., the Laplacian of the density ∇2nσ or the kinetic energy densities

τσ. Usually, MGGA functionals include either the Laplacian of the density20–22 or the kinetic

energy density6,7,23–27. Some of them, however, include both ∇2nσ and τσ
17,28,29. There are

two reasons for the inclusion of τσ as an alternative (or additional) inhomogeneity parameter

to ∇2nσ. First, τσ arises naturally in the Taylor expansion of the exact spherically averaged

exchange hole near the electron it surrounds30. Second, the use of τσ provides a simple and

straightforward way to make a correlation functional exactly one-electron self-interaction

free31. By using the kinetic energy density τ as an extra ingredient, MGGAs can distinguish

between single-orbital-shape regions and orbitally-overlapped regions. In a single-orbital-

shape region, z = τw/τ = 1, where τw = |∇n|2/8n is the von Weizsäcker kinetic energy

density, while z = 0 for the uniform electron gas where orbitals are highly overlapped. It

has been proven strictly32 that 0 ≤ z ≤ 1 for all systems. Computationally, MGGAs are not

much more expensive than LSDA or GGA33,34. In computations for molecules containing

transition-metal atoms, the Tao-Perdew-Staroverov-Scuseria (TPSS)6 MGGA is only 30%

slower34 than PBE.

By respecting two paradigms6, the uniform electron gas for condensed matter physics

and the hydrogen atom for quantum chemistry, the nonempirical TPSS MGGA predicts

lattice constants that are only a little shorter and a little more accurate than those of

PBE, good surface energies, and very good atomization energies6,33. Because selfconsistent

implementations were not available in condensed matter codes and perhaps due to its lattice-

constant errors, TPSS has not been so widely adopted. By restoring the second-order

gradient expansion for exchange over a wide range of densities as the PBEsol19 GGA did,

and by respecting the paradigms of both condensed matter physics and quantum chemistry

as the TPSS6 did, the newly proposed revised TPSS (revTPSS)7 unites the advantages of

PBEsol and TPSS, giving good lattice constants, as well as good surface and atomization

energies. revTPSS has already been implemented nonselfconsistently in VASP7, BAND7,

and GPAW35, and selfconsistently in GAUSSIAN7. Although rather accurate MGGA total

energies and energy differences can often be found nonselfconsistently using LSDA or GGA

orbitals, MGGA selfconsistency is needed for accurate and efficient MGGA forces and force-

based geometry optimizations.

We recently applied self-consistent revTPSS to the problem of adsorption of a CO

molecule on transition metal surfaces 36. We found that, unlike all tested GGAs, the revTPSS
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meta-GGA provides a good simultaneous prediction of the bulk lattice constant and surface

energy of the metal, on the one hand, and of the adsorption energy on the other.

There is a second but more empirical and computationally more expensive way to preserve

the good solid-state performance of the PBEsol GGA while improving the description of

atoms and molecules: by hybridizing PBEsol exchange with exact exchange in a global37 or

range-separated38 way. Other GGA’s for solids, such as Ref. 18, could also be hybridized.

Hybrid functionals will not be discussed further here.

This paper is organized as follows. Section II presents the self-consistent implementation

of the TPSS and revTPSS MGGAs within the projector augmented wave (PAW) method.

Section III provides computational details. Results for the atomization energies of the

molecules in the AE6 set, the lattice constants, bulk moduli, and cohesive energies of a test

set of 20 solids, and the magnetic moment of Fe and Ni, are given in Section IV. Virial

stresses as a test of selfconsistency are examined at the beginning of Section IVB. Finally,

conclusions are drawn in Section V.

II. SELF-CONSISTENT IMPLEMENTATION OF MGGA WITHIN THE PRO-

JECTOR AUGMENTED-WAVE (PAW) METHOD

In the Kohn-Sham (KS) auxiliary non-interacting system, electrons move in an effective

potential (where, for the sake of simplicity, spins are suppressed in the expressions):

veff(r) = vext(r) + vH([n]; r) + vxc([n]; r). (2)

Here vext(r) is the external potential,

vH([n]; r) =
δEH[n]

δn(r)
=

∫

d3r′
n(r′)

|r− r′′| (3)

is the Hartree potential, and

vxc([n]; r) =
δExc[n]

δn(r)
(4)

is the exchange-correlation potential. For exchange-correlation functionals which only in-

volve the density n, its gradient ∇n, and its Laplacian ∇2n, evaluation of the exchange-

correlation potential can be easily performed2. However, the problem of deriving a potential

becomes less clearcut for the τ -dependent MGGA, since the kinetic energy density τ is not

known as an explicit functional of the electronic density. In the following, we will only
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focus on the self-consistent implementation of the τ -dependent MGGAs, e.g., TPSS6 and

revTPSS7.

There are two approaches39 to deriving potentials from the MGGA exchange-correlation

energies: (i) the optimized effective potential (OEP) method40,41, which yields a local and

multiplicative exchange-correlation potential (the same for all the orbitals), and (ii) the

ansatz proposed by Neumann et al42. Because of its simplicity and because forces are

readily available, we prefer the latter route. Method (ii) consists of making the total energy

stationary with respect to orbital variations and yields a differential operator rather than

a local, multiplicative KS potential. In this case, the expression vMGGA
xc (r)ψn(r) is replaced

by:

vMGGA
xc (r)ψn(r) =

δEMGGA
xc

δn
ψn

→ [
∂eMGGA

xc

∂n
−∇ · (∂e

MGGA
xc

∂∇n )]ψn −
1

2
∇ · {∂e

MGGA
xc

∂τ
∇ψn}, (5)

where eMGGA
xc = nǫMGGA

xc is the exchange-correlation energy density of a given MGGA. The

resulting differential operator for vMGGA
xc (r) is:

vMGGA
xc (r) → [

∂eMGGA
xc

∂n
−∇ · (∂e

MGGA
xc

∂∇n )]− 1

2
∇ · {∂e

MGGA
xc

∂τ
∇}

= vGGA
xc (r)− 1

2
∇ · {µxc(r)∇}, (6)

where

vGGA
xc (r) = [

∂eMGGA
xc

∂n
−∇ · (∂e

MGGA
xc

∂∇n )], (7)

is of the usual form associated with GGAs2, and

µxc(r) =
∂eMGGA

xc

∂τ
. (8)

is an additional contribution specific to τ -dependent MGGAs. Clearly, to arrive at a self-

consistent implementation of the τ -dependent-MGGAs, it is necessary to derive the func-

tional forms of ∂eMGGA
xc /∂n, ∂eMGGA

xc /∂∇n, and ∂eMGGA
xc /∂τ . (See Appendices A and B for

the TPSS and revTPSS MGGAs).

This approach was first proposed in Ref. 42 for the implementation of the BRx89 exchange

functional28. The approximation of Eq. (5) results in a differential operator that deviates

from the conventional (in real space) multiplicative Kohn-Sham potential (although the
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operator is not fully nonlocal). Nevertheless, total energies obtained by this means are ex-

pected to be close to the proper KS result for most practical purposes. A similar generalized

Kohn-Sham approach is routinely used for hybrid density functionals, where a fraction of

the fully nonlocal Hartree-Fock potential is employed.

In the PAW method of Blöchl43,44, the one-electron wave functions or orbitals are ex-

panded in plane waves that see an ultra-soft pseudopotential, augmented by atom-centered

partial waves. The construction usually begins with a free neutral reference atom for each

element, spherical and spin-unpolarized due to fractional occupation numbers for orbitals

in open subshells. For this reference atom, the Kohn-Sham equation (or rather a scalar-

relativistic version thereof) is solved for a set of all-electron partial waves φi(r), each the

product of a radial function and a spherical harmonic with angular momentum quantum

numbers l, m, and energy quantum number ε. The all-electron partial waves are generated

numerically on a radial grid, for the occupied orbital energies plus some higher energies

chosen to describe scattering states. For each all-electron (AE) partial wave φi(r), an un-

normalized pseudo (PS) partial wave φ̃i(r) is constructed so that it coincides with φi(r)

outside a radius rlc, and is smoothed inside as in Eq. (57) of Ref44. The core radius rlc is

usually chosen to be approximately half the nearest-neighbor distance. Frozen core orbitals

and unfrozen valence orbitals are then selected, where the latter will be allowed to respond

to changes in the configuration or environment of the atom. Furthermore a local pseudopo-

tential is constructed to describe the l quantum numbers that are not accounted for in the

partial wave basis. The pseudopotential is then ”unscreened” to produce a bare electron-ion

pseudopotential, which transfers without modification from one approximation for Exc[n] to

another45.

The AE valence orbital ψn is derived from the pseudo- (PS) orbital ψ̃n by means of a

linear transformation:

|ψn〉 = |ψ̃n〉+
∑

i

(|φi〉 − |φ̃i〉)〈p̃i|ψ̃n〉. (9)

The PS orbitals ψ̃n are the variational quantities of the PAW method and are expanded in

plane waves. The index i is a shorthand for the atomic site R, the angular momentum num-

bers L = l, m, and an additional index ε referring to the reference energy. By construction,

the projector functions p̃i are dual to the PS valence partial waves:

〈p̃i|φ̃j〉 = δij . (10)
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In the PAW method, the expectation value of any semilocal operator Â, e.g., the kinetic

energy −1
2
∇2 and the electron density operator |r〉〈r|, may be written as a plane-wave part

plus a sum of non-plane-wave one-center corrections46:

〈Â〉 =
∑

n

fn〈ψ̃n|Â|ψ̃n〉+
Nc
∑

n=1

〈φ̃c
n|Â|φ̃c

n〉

+
∑

R





∑

i,j∈R

ρij〈φj|Â|φi〉+
Nc,R
∑

n∈R

〈φc
n|Â|φc

n〉





−
∑

R





∑

i,j∈R

ρij〈φ̃j|Â|φ̃i〉+
Nc,R
∑

n∈R

〈φ̃c
n|Â|φ̃c

n〉



 , (11)

where ρij is a one-center density matrix, calculated from the pseudo-orbitals as:

ρij =
∑

n

fn〈ψ̃n|p̃i〉〈p̃j|ψ̃n〉. (12)

In Eq. (11), the fn are the occupations of the valence states, and we have introduced the

frozen core approximation in terms of Nc pseudo core states φ̃c
n, and the corresponding AE

core states φc
n. The PS core states φ̃c

n, together with the PS valence states φ̃, are determined

by the Eq. (57) of Ref. 44. Here, only those parts that are specific to the TPSS and revTPPS

MGGA approximation to the exchange-correlation energy and the Hamiltonian (the parts

that involve the kinetic energy density) will be discussed.

Since the kinetic energy density is a semilocal quantity, it may be decomposed into three

parts (analogously to the charge density in Eq. (18) of Ref. 44)

τ + τc = (τ̃ + τ̃c) + (τ 1 + τ 1c )− (τ̃ 1 + τ̃ 1c ), (13)

where τ̃ =
∑

n fn
1
2
|∇ψ̃n|2 and τ̃c =

∑Nc

n=1
1
2
|∇φ̃c

n|2 are the kinetic energy density of the

valence PS orbitals and the pseudo core kinetic energy density (first line of Eq. 11), re-

spectively. The quantities τ 1, τ 1c , and τ̃
1, τ̃ 1c are the corresponding AE and PS one-center

contributions (second and third line of Eq. (11), respectively). τ̃ and τ̃c are expanded in a

plane wave basis set. All other contributions are represented on atom-centered logarithmic

radial grids. The pseudo core kinetic energy densities τ̃c and τ̃ 1c are equivalent to the AE

kinetic energy density τ 1c outside a matching radius rpc and continue smoothly onto τ 1c just

inside the matching radius.
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Analogously to Ref. 44, the exchange-correlation energy can be written as

Exc = Exc[ñ + n̂+ ñc, τ̃ + τ̃c] + Exc[n1 + n1
c , τ

1 + τ 1c ]− Exc[ñ1 + n̂+ ñ1
c , τ̃

1 + τ̃ 1c ], (14)

where n̂ is the compensation charge introduced to treat the long-range electrostatic in-

teractions correctly, and Exc means that the corresponding quantity is evaluated on the

atom-centered radial logarithmic grids44. The compensation charge n̂ could be omitted in

Eq. (14), since it has almost no effect on the results, but we retain it to make the calculation

technically easier (via charge density mixing).

The expression for the Hamilton operator is similar to Eq. (47) of Ref. 44:

H̃ = −1

2
∇2 + ṽeff + µ̃eff +

∑

(i,j)

|p̃i〉(D̂ij +D1
ij − D̃1

ij)〈p̃j|, (15)

where

D1
ij = 〈φi| −

1

2
∇2 + v1eff + µ1

eff |φj〉

= 〈φi| −
1

2
∇2 + v1eff |φj〉+

1

2
〈∇φi|µ1

xc|∇φj〉, (16)

and

D̃1
ij = 〈φi| −

1

2
∇2 + ṽ1eff |φj〉+

1

2
〈∇φi|µ̃1

xc|∇φj〉. (17)

In the above, the effective potential veff is the sum of the external, Hartree, and vGGA
xc

potentials [see Eqs. (2)–(7)], and the τ -dependent-MGGA specific terms are of the form

µeff = −1

2
∇ · {µxc(r)∇}, (18)

where µxc(r) is given in Eq. (8). Integration by parts has been applied to obtain the last term

in Eqs. (16) and (17). The ṽeff , D̂ij, v
1
eff , and ṽ

1
eff are identical to those defined by Eqs. (43)–

(46) of Ref. 44 [except that vxc is replaced by the vGGA
xc of Eq. (7)]. Thus, compared to

the usual PAW GGA Hamiltonian, three additional terms arise: µ̃xc[ñ + n̂ + ñc, τ̃ + τ̃c],

µ1
xc[n

1 + n1
c , τ

1 + τ 1c ], and µ̃
1
xc[ñ

1 + n̂ + ñ1
c , τ̃

1 + τ̃ 1c ].

Due to the introduction of the compensation density n̂ and the independent constructions

for the partial core density ñc and the partial core kinetic energy density τ̃c in the PAW,

the values of z could be greater than 1 in the first and third terms of Eq. (14), violating the

constraint 0 ≤ z ≤ 132. For a fixed too-large spurious z, derivative discontinuity with respect
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FIG. 1: The difference between z and zreg in the range of 0 ≤ z ≤ 1.

to the reduced density gradient s can be introduced into the revTPSS enhancement factor,

leading to severe convergence problems. Fortunately, thanks to the facts that the formulas

of revTPSS and TPSS do not have singularities for z ≥ 0 and that the effect of the abnormal

z on the total energy is canceled between the first and third terms of Eq. (14) within the

augmentation spheres (exactly, if the partial wave set is complete), we can regularize z by:

zreg =
z

[1 + (z/zinf)m]1/m
, (19)

where we choose zinf = 2 and m = 12. The regularized zreg approaches zinf asymptotically

as z → ∞ and therefore removes the possibility of the discontinuity, while its effect on the

exchange-correlation energy is insignificant since the difference between z and zreg in the

range of 0 ≤ z ≤ 1 is negligible, as shown in Figure 1.

III. COMPUTATIONAL DETAILS

Most calculations presented in this work were performed with a developmental version

of the Vienna ab initio simulation package (VASP), which includes the TPSS and revTPSS

MGGAs. The parameters of the PAW data sets used in our calculations are summarized in

Table I. These PAW files contain information about the kinetic energy density needed by

the MGGA’s.

In order to avoid tedious convergence tests of our results with respect to the kinetic energy

cutoff of the plane wave basis set, all calculations, except for the atomization energies of the

molecules in the AE6 test set, were performed at an energy cutoff of 800 eV. For calculations

involving Li, we increased the energy cutoff to more than 1000 eV (1000 eV for LiCl as

well as LiF and to 1200 eV for Li). The atomization energies for the AE6 molecules were

calculated at an energy cutoff of 1000 eV. We determined the equilibrium lattice constants
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a0 and bulk moduli B0 by calculating the total energy per unit cell at 7-12 points in the

range V0 ± 7% (where V0 is the equilibrium unit cell volume for each exchange-correlation

functional), fitting the data to the stabilized jellium equation of state (SJEOS)47–49. The

cohesive energy, defined as the energy per atom needed to atomize the crystal, is calculated

for each functional from the energies of the crystal at its equilibrium volume and the spin-

polarized symmetry-broken solutions of the constituent atoms (no fractional occupancies)50.

To generate symmetry breaking, atoms and molecules were placed in a large orthorhombic

box with the dimensions 10 × 11 × 12 Å3. For the Li, Na, Mg, Ca, Sr, Ba, and Rh atoms,

the size of the simulation box was increased to 13×14×15 Å3. For polar molecules a dipole

correction was applied, which removes the spurious interactions between repeated dipoles.

All Brillouin zone integrations for solids were performed on (16×16×16) Γ-centered

symmetry reduced Monkhorst-Pack51 k-meshes using the tetrahedron method with Blöchl

correction52. These grids are sure to yield results that are converged with respect to the

k-point sampling density. The k-point sampling for the atoms and molecules was restricted

to the Γ point.

Some calculations were also performed with GAUSSIAN53, for which a selfconsistent

TPSS implementation was converted to revTPSS in Ref 7. All GAUSSIAN calculations

were nonrelativistic. For the VASP calculations, the all-electron PAW partial waves are

solutions of a scalar-relativistic wave equation.

As a test of our numerical implementation of the gradients, we moved along search di-

rections δψ in the orbital space, comparing the direct energy change E[ψ + δψ] − E[ψ] to

the first derivative 〈δψ|H − ǫS|ψ〉 where ǫ = 〈ψ|H|ψ〉 and S is the overlap matrix. Within

numerical precision we found exact agreement between total energy changes and the first

derivatives.
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TABLE I: PAW pseudopotentials used in the present work. In the third column, the atomic orbitals

treated as valence are indicated. For some elements (Li, Mg, Ca, Cu, Sr, Rh, Ag, and Ba), the

local part of the pseudopotential was generated by replacing the all-electron (AE) potential of the

reference atom by a soft potential (Eq. (58) of Ref44) within the cutoff radius rloc (a.u.), which is

provided in the ”local” column. Where this radius is not shown, we show instead the lowest-energy

atomic orbital that sees only the local part of the pseudopotential. Cutoff radii rlc (a.u.) applied

for the generation of the partial waves with angular quantum number l are shown in columns 5-8,

with the number Nl of valence all-electron partial-wave radial functions specified. For Si with l=0,

there are two radial functions with different cutoff radii 1.5 and 1.9. Ecut(eV) is the default energy

cutoff of the plane wave basis set. As described in section III, we have overridden this default with

higher cutoffs.

Name Valence local Nl × rlc(a.u.) Ecut(eV)
s p d f

Li Li−AE−GW 1s2s 1.2 3×1.2 3×1.5 2×1.5 433
C C−GW 2s2p 3d 2×1.2 2×1.5 414
O O−GW 2s2p 3d 2×1.2 2×1.5 414
F F−GW 2s2p 3d 2×1.2 2×1.5 418
Na Na−pv−GW 2p3s 3d 2×2.2 2×2.0 259
Mg Mg−pv−GW 2p3s 1.5 2×2.0 3×1.6 404
Al Al−d−GW 3s3p 4f 2×1.9 2×1.9 2×1.9 241
Si Si−d−GW 3s3p 4f 1.5 1.9 2×1.9 2×1.9 246
Cl Cl 3s3p 3d 2×1.9 2×1.9 262
Ca Ca−pv 3p4s 1.7 2×3.0 2×3.0 2×3.0 120
Cu Cu−GW 3d4s 1.5 2×2.2 2×2.2 2×1.9 417
Ga Ga−d−GW 3d4s4p 4f 2×2.0 3×2.3 3×2.0 370
Ge Ge−d−GW 3d4s4p 4f 2×2.3 2×2.3 2×2.2 310
As As−GW 4s4p 4f 2×2.1 2×2.1 2.1 209
Sr Sr−sv 3s3p4s 2.2 2×2.5 2×2.5 2×2.5 226
Rh Rh−sv−GW 4s4p4d5s 1.6 3×1.5 2×1.8 2×2.15 1 × 2.3 320
Pd Pd−pv 4p4d5s 4f 2×2.4 2×2.1 2×2.4 251
Ag Ag−f−GW 4d5s 1.4 2×2.5 2×2.6 2×2.4 2×2.6 250
Ba Ba−sv 5s5p6s 2.5 2×2.8 2×2.7 2×2.7 187

IV. RESULTS AND DISCUSSIONS

A. Atomization energies of the AE6 set

The atomization energy of a molecule D0(M) is defined as the difference between the

sum of the energies of the constituent atoms ε0(X) and the energy of the molecule ε0(M):

D0(M) =
∑

X

nXε0(X)− ε0(M), (20)
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where nX is the number of constituent atoms X in the molecule M . Following Ref. 54, all

calculations were performed using harder PAW potentials54 instead of those given in Table I,

with an energy cutoff of 1000 eV. These harder PAW’s are needed54 for accurate molecular

atomization energies. The molecular geometries were taken from Ref. 55. For the analysis of

the results, the following statistical quantities will be used: the mean error (ME), the mean

absolute error (MAE), the mean relative error (MRE, in percent), and the mean absolute

relative error (MARE, in percent).

Table II lists the atomization energies of the AE67,55 molecules for different functionals

from VASP and GAUSSIAN. The GAUSSIAN results were calculated using the aug-cc-

pV5Z(-gh) basis set, which reduced the atomization energies of C2H2O2 by about 2 kcal/mol

for PBE, TPSS, and revTPSS, compared to the smaller basis set 6-311+G(3df,2p) used

for the AE6 set in Ref.7. Except for C2H2O2, the basis set effects on the GAUSSIAN

AE6 results are insignificant. With this larger basis set, the agreement between VASP

and GAUSSIAN is excellent, with the largest difference of 1.6 kcal/mol for the revTPSS

atomization energies of C4H8. The excellent agreement is a strong indication that the

two independent implementations of revTPSS in GAUSSIAN and VASP are consistent and

correct. Furthermore, it also demonstrates that the regularization of z [Eq. (19)] introduced

only in VASP does not change the relative energetics. The VASP values in Table II show

that PBEsol overestimates the atomization energies to an unacceptable degree (with an

MAE of 34.3 kcal/mol), which is largely reduced for the PBE GGA to a reasonable value of

14.6 kcal/mol, and further reduced for the TPSS and revTPSS Meta-GGA’s to 5.3 and 6.3

kcal/mol, respectively.

B. Lattice constants, bulk moduli, and cohesive energies of solids

The true force on a nucleus or the true stress on a unit cell is a derivative of the total

energy with respect to a geometry parameter, and is zeroed out by minimization of the total

energy with respect to geometry. By the variational principle, this force is not sensitive to

small deviations of the density from full selfconsistency. The Hellmann-Feynman force on a
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TABLE II: Static-nucleus atomization energies of the AE6 molecules (in kcal/mol) from the PBE

and PBEsol GGA functionals, and the TPSS and revTPSS MGGAs, calculated using ”harder”

PAW potentials54, instead of those given in Table I, at an energy cutoff of 1000 eV, on the standard

geometries55, as in Ref. 7. For comparison, the GAUSSIAN results using the aug-cc-pV5Z(-gh)

basis set are also presented. The mean error (ME), mean absolute error (MAE), mean relative error

(MRE), and mean absolute relative error (MARE) were calculated with respect to the experimental

results55, where vibrational zero-point energy55 and spin-orbit effects56 have been removed. V:

VASP; G: GAUSSIAN. (1 kcal/mol = 0.04336 eV.)

Molecule PBEV PBEG PBEsolV TPSSV TPSSG revTPSSV revTPSSG Expt.

SiH4 313.2 313.5 323.2 333.7 334.0 338.1 338.6 322.8

SiO 195.8 196.3 204.6 186.9 187.0 185.7 185.9 192.7

S2 115.4 114.9 123.9 109.8 108.6 110.3 109.0 102.8

C3H4 720.9 721.1 749.0 707.5 707.8 703.9 704.6 705.1

C2H2O2 662.6 663.1 694.8 633.4 633.8 630.1 630.6 634.0

C4H8 1167.1 1167.7 1217.4 1154.8 1155.8 1152.5 1154.1 1149.4

ME 11.3 11.6 34.3 3.2 3.4 2.3 2.7

MAE 14.6 14.7 34.3 5.3 5.3 6.3 6.2

MRE(%) 3.2 3.2 8.1 1.3 1.2 1.3 1.2

MARE(%) 4.2 4.2 8.1 2.4 2.2 2.8 2.6

nucleus is the electrostatic force due to the charge density of electrons and other nuclei. The

virial stress57 is similarly computed from the orbitals at a single geometry. Pulay corrections

arising from derivatives of the basis functions are to be included when the basis functions

change with the geometry. The Hellmann-Feynman/virial values are much more sensitive

to deviations from full selfconsistency than the true values are. For the small unit-cells

considered here, it is practical to optimize the geometry by minimizing the energy or by

zeroing out the Hellmann-Feynman forces and virial stresses. But for large unit cells the

latter approach is more practical. This is the reason why full selfconsistency is important.

In order to test that the virial stress tensor is correctly implemented for MGGA’s, we used it

to calculate the lattice constants for three solids (Al, C, and MgO) . Table III shows that the

lattice constants obtained this way agree very closely with those found by fitting the energy

13



TABLE III: PBE, TPSS, and revTPSS lattice constants a0 (in Å) of Al, C, and MgO obtained by

fitting the energy-volume data to the stabilized jellium equation of state (EOS), and by relaxing

(REL) the unit cell size and shape to zero out the virial stresses.

EOS−PBE REL−PBE EOS−revTPSS REL−revTPSS EOS−TPSS REL−TPSS

Al 4.035 4.034 4.005 4.005 4.008 4.007

C 3.569 3.569 3.558 3.558 3.568 3.567

MgO 4.261 4.260 4.240 4.237 4.244 4.241

to an equation of state (EOS), for the PBE, TPSS, and revTPSS functionals. Similarly, the

bond lengths of selected diatomic molecules, found by zeroing out the Hellmann-Feynman

forces on the nuclei, were the same as those found by total energy minimization. These tests

confirm that the selfconsistency of MGGA’s has been implemented successfully.

In the rest of this work, we will compute lattice constants by minimizing the total en-

ergy (fitted to an equation of state47–49) with respect to the lattice constant. We will use

selfconsistent densities, although the effect of using say the LSDA density instead of the

selfconsistent one would be small58. Tables IV, V and VI give the lattice constants, bulk

moduli and cohesive energies obtained using the LSDA, GGAs (PBE, PBEsol, and AM05),

and MGGAs (TPSS and revTPSS) for a set of 20 cubic solids. The experimental lattice

constants have been corrected to static-lattice values by subtracting the zero-point anhar-

monic expansion (ZPAE)7,38, and the experimental bulk moduli presented in Table V have

been corrected for the zero-point phonon effects (ZPPE)38,58. We have used the calculated

full quasiharmonic phonon spectrum wherever it was available from Ref.38. Full phonon-

spectrum estimates for about 60 solids will be available soon59. The experimental cohesive

energies were corrected for the zero-point vibration energy38,47.

As usual, the LSDA functional underestimates the lattice constants while PBE overesti-

mates them by roughly the same amount in terms of MAE. revTPSS, among all the con-

sidered functionals, delivers the best lattice constants on average with an MAE of 0.032 Å.

This is slightly better than the performance of PBEsol and AM05, the GGAs designed for

solids. TPSS predicts slightly too long lattice constants with an MAE of 0.043 Å, though

still better than those of PBE.

For the elements of group IA (Li and Na) and group IIA (Ca, Sr, and Ba), revTPSS
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corrects the underestimations of LSDA and PBEsol, and yields lattice constants of similar

quality as PBE and TPSS. The lattice constant of Al does not seem to be very sensitive

to the choice of exchange-correlation functionals. LSDA yields the largest absolute error

(0.035 Å) for Al, while for all other functionals the absolute error is <0.02 Å. For the

elements of group IVA with diamond structure (C, Si, and Ge), the trend previously found

for LSDA, GGAs, and the TPSS MGGA (see Refs.38,60) applies to the revTPSS as well: The

overestimation of the revTPSS lattice constants with respect to experiment increases with

the nuclear charge Z, from 0.005 Å for C, to 0.018 Å for Si, and then to 0.038 Å for Ge. For

the lattice constants of the transition-metal elements, revTPSS is comparable to PBEsol. It

yields good equilibrium lattice constants for 4d and 5d elements with absolute relative errors

smaller than 0.5%, but underestimates the lattice constant for the 3d elemental metal Cu

(with an absolute relative error of 1.0%). For the series of IA-VIIA and IIA-VIA compounds

(LiF, LiCl, NaF, NaCl, and MgO), revTPSS performs slightly better than TPSS, but still

overestimates the lattice constants, by up to 2.1% (for NaF). As observed earlier, the AM05

functional gives too long lattice constants for some of these ionic solids, similar to TPSS

and revTPSS, while PBEsol gives reasonable estimates58.

Errors in the theoretical lattice constant with respect to experiment translate into com-

paratively large discrepancies in the bulk moduli B0. (The calculated bulk moduli are quite

sensitive to the equilbrium volume). As usual an underestimation of the lattice constants

shows a one-to-one correlation with an overestimation of the bulk moduli. Thus LSDA over-

estimates the bulk moduli while PBE underestimates them (see Table V). revTPSS yields

the MAE of 8.664 GPa, slightly larger than 7.942 GPa, the MAE of TPSS. Among all the

considered functionals, PBEsol gives the smallest MARE, 5.69%. Note, however, that the

individual bulk moduli have experimental uncertainties up to 5 or 10 %58.

Table VI shows that LSDA strongly overestimates the cohesive energies. The PBE cohe-

sive energies are underestimated with respect to experiment, but with a reasonable MAE,

0.144 eV. PBEsol, as expected, overestimates the cohesive energies with a MAE of 0.253

eV, i.e., between those of LSDA and PBE. The experimental uncertainty is up to 0.08 eV

(Si)58. revTPSS underestimates the cohesive energies for all the insulators and semiconduc-

tors considered here, while overestimating for all the metals except Li. Unfortunately, the

revTPSS and TPSS do not improve, but actually worsen the cohesive energies compared to

PBE. This is not what one might expect considering the performance of these MGGAs for

15



the atomization energies of the molecules in the AE6 set.

For a given functional, there is generally good agreement between our PAW results and

the full potential linearized augmented plane wave (FLAPW) results of Ref.60, as expected54

for carefully converged calculations.

C. Magnetic moment of solids Fe and Ni

It is well known that the PBE GGA corrects a qualitatively wrong prediction of LSDA

for the solid phase of Fe. LSDA predicts for Fe that the ground state is nonmagnetic

face-centered-cubic instead of the experimentally-observed ferromagnetic body-centered-

cubic62,63. Table VII shows that both TPSS and revTPSS have lower total energies at

each equilibrium lattice constant for bcc Fe than for fcc Fe, and therefore predict the right

ground state. Furthermore, the magnetic moments of TPSS and revTPSS for bcc Fe and

fcc Ni are close to the PBE values and in good agreement with the experimental results.

However, Table VII also shows that the lattice constants from TPSS and revTPSS are too

short while the bulk moduli are too large compared to the experimental results.

In our Table VII, we have also included PBEsol GGA results. We find that PBEsol

correctly makes the magnetic bcc phase of Fe more stable than the nonmagnetic fcc phase.

However, Söderlind and Gonis66 found that it incorrectly makes the nonmagnetic hcp phase

very slightly more stable than the magnetic bcc phase, by about 0.01 eV/atom.

V. CONCLUSIONS

In this work, the TPSS and revTPSS MGGAs were implemented self-consistently within

the framework of the PAWmethod using a plane wave basis set. We assessed the performance

of TPSS and revTPSS MGGAs for the prediction of structural properties of solids (equilib-

rium lattice constants, bulk moduli), and thermochemical properties of solids and molecules
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(cohesive energies, atomization energies). For this purpose, the AE6 set of molecules and a

representative test set of 20 materials comprising ionic, semiconducting, and metallic systems

were chosen.

By restoring the second-order gradient expansion for exchange over a wide range of den-

sities as the PBEsol19 GGA did, and by respecting the paradigms of both condensed matter

physics and quantum chemistry as the TPSS6 did, revTPSS7 predicts lattice constants and

bulk moduli for the 20 solids as good as PBEsol and atomization energies for the molecules

of the AE6 set comparable to TPSS. However, unexpectedly, revTPSS (and TPSS) only

slightly improve the cohesive energies over PBEsol for our 20 solids on average, and are

less accurate than PBE for this property. Another interesting observation is that revTPSS

underestimates the cohesive energies for all the insulators and semiconductors considered

here while overestimating for all the metals except Li. The errors of revTPSS (and PBEsol)

cohesive energies and bulk moduli are especially large for the transition metals Cu, Rh,

and Pd (but not Ag), where PBE typically works better. Both TPSS and revTPSS predict

the correct ground-state solid phase for Fe, the ferromagnetic body-centered-cubic (bcc)

structure, with an accurate magnetic moment.

Neither our meta-GGA cohesive energies nor our conclusions about them are the same

as those of Ref. 7. The revTPSS cohesive energies of Ref. 7 were computed for the met-

als by the all-electron code BAND, and for the insulators by a mix of BAND and older

nonselfconsistent VASP calculations. Some of the BAND cohesive energies of Ref. 7 were

not converged, and the VASP cohesive energies of Ref. 7 were based on an older and less-

complete implementation of revTPSS. In particular, the revTPSS cohesive energies reported

in Ref. 7 were too high for Al, SiC, Si, Ge, LiCl, NaCl, and MgO.

The exact density functional for the exchange-correlation energy is of course fully nonlo-

cal, and fully-nonlocal approximations are known to be needed in certain situations (long-

range van der Waals attraction, and sharing of electrons over stretched bonds). But semilocal

functionals are more computationally efficient. The highest-level semilocal functional, the

meta-GGA, has the potential to treat correctly effects that cannot be so treated in LSDA

or GGA, and probably has sufficient complexity to permit further refinement beyond the

revTPSS form.
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Appendix A: TPSS and revTPSS meta-GGAs for exchange

Although TPSS and revTPSS have been implemented selfconsistently in several codes,

the required derivatives (Appendices A and B) have not been published until now. The

revTPSS exchange functional for a spin-unpolarized system can be written as:

ErevTPSS
x [n] =

∫

d3rerevTPSS
x =

∫

d3reLDA
x F revTPSS

x (p, z), (A1)

where erevTPSS
x is the exchange energy density of revTPSS and eLDA

x = −(3/4π)(3π2)1/3n4/3

is the exchange energy density of a uniform electron gas at density n. The two dimensionless

inhomogeneity parameters are

p = |∇n|2/[4(3π2)2/3n8/3] = s2, (A2)

the square of the reduced gradient s, and

z = τW/τ, (A3)

where

τW = |∇n|2/8n, (A4)

is the von Weizsäcker kinetic energy density and τ =
∑

σ τσ. Here the kinetic energy density

of electrons with spin σ (σ =↑, ↓) is defined, in terms of the occupied Kohn-Sham orbitals

ψkσ(r), as

τσ(r) =

occup
∑

k

1

2
|∇ψkσ(r)|2. (A5)
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The revTPSS enhancement factor for exchange is:

F revTPSS
x (p, z) = 1 + κ− κ/(1 + x/κ), (A6)

with

x = (s1 + s2 + s3 + s4 + s5 + s6)/s7, (A7)

where s1 = [10
81

+ cz3

(1+z2)2
]p, s2 = 146

2025
q̃2b , s3 = − 73

405
q̃b

√

1
2
(3
5
z)2 + 1

2
p2, s4 = 1

κ
(10
81
)2p2, s5 =

2
√
e10
81
(3
5
z)2, s6 = eµp3, and s7 = (1 +

√
ep)2. Here q̃b =

9
20
(α − 1)/[1 + bα(α − 1)]1/2 + 2

3
p

with α = τ−τW

τunif
= 5

3
p(z−1 − 1), where τunif = 3

10
(3π2)2/3n5/3 is the Thomas-Fermi kinetic

energy density. In revTPSS, κ = 0.804, c = 2.35204, e = 2.1677, b = 0.4, and µ = 0.14.

Let y stand for n, |∇n|, or τ . The derivatives of F revTPSS
x with respect to y can be written

as:

∂F revTPSS
x

∂y
= (1 + x/κ)−2∂x

∂y
, (A8)

where
∂x

∂y
=

1

s7
(
∂s1
∂y

+
∂s2
∂y

+
∂s3
∂y

+
∂s4
∂y

+
∂s5
∂y

+
∂s6
∂y

)− x

s7

∂s7
∂y

, (A9)

∂s1
∂y

=
cpz2(3− z2)

(1 + z2)3
∂z

∂y
+ [

10

81
+

cz3

(1 + z2)2
]
∂p

∂y
, (A10)

∂s2
∂y

=
292

2025
q̃b
∂q̃b
∂y

, (A11)

∂s3
∂y

= − 73

405
{
√

1

2
(
3

5
z)2 +

1

2
p2
∂q̃b
∂y

+
q̃b(

9
25
z ∂z
∂y

+ p∂p
∂y
)

2
√

1
2
(3
5
z)2 + 1

2
p2

}, (A12)

∂s4
∂y

=
2

κ
(
10

81
)2p

∂p

∂y
, (A13)

∂s5
∂y

= 4
√
e
10

81
(
3

5
)2z

∂z

∂y
, (A14)

∂s6
∂y

= 3eµp2
∂p

∂y
, (A15)

∂s7
∂y

= 2
√
e(1 +

√
ep)

∂p

∂y
, (A16)

and
∂q̃b
∂y

=
3

4

1 + (α− 1)b/2

[1 + bα(α− 1)]3/2
[(z−1 − 1)

∂p

∂y
− p

z2
∂z

∂y
] +

2

3

∂p

∂y
. (A17)

Here ∂p
∂n

= −8
3
n−1p, ∂p

∂|∇n|
= 2p

|∇n|
, ∂p

∂τ
= 0, ∂z

∂n
= −z/n, ∂z

∂|∇n|
= 2z

|∇n|
, and ∂z

∂τ
= −z/τ .
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Therefore,
∂erevTPSS

x

∂n
= vLDA

x F revTPSS
x + eLDA

x

∂F revTPSS
x

∂n
, (A18)

∂erevTPSS
x

∂∇n = eLDA
x

∂F revTPSS
x

∂|∇n|
∇n
|∇n| , (A19)

and
∂erevTPSS

x

∂τ
= eLDA

x

∂F revTPSS
x

∂τ
, (A20)

where vLDA
x = − 1

π
(3π2n)1/3.

The exchange energy for a spin-polarized system may be evaluated from the exchange

functional for a spin-unpolarized system using the spin-scaling relation67,

Ex[n↑, n↓] = Ex[2n↑]/2 + Ex[2n↓]/2. (A21)

And the derivatives of the exchange energy density of the spin-polarized system with respect

to nσ, |∇nσ|,and τσ can be obtained accordingly.

Compared to revTPSS, the differences of TPSS for exchange are in s1 with s1 = [10
81

+

cz2

(1+z2)2
]p and ∂s1

∂y
= 2cpz(1−z2)

(1+z2)3
∂z
∂y

+ [10
81

+ cz2

(1+z2)2
]∂p
∂y

as well as in the parameters (c = 1.59096,

e = 1.537, and µ = 0.21951).

Appendix B: TPSS and revTPSS meta-GGAs for correlation

The revTPSS correlation functional for a spin-polarized system can be written as:

ErevTPSS
c [n↑, n↓] =

∫

d3rerevTPSS
c =

∫

d3rnǫrevPKZB
c [1 + dǫrevPKZB

c z3], (B1)

where

ǫrevPKZB
c = ǫP̃BE

c [1 + C(ζ, ξ)z2]− [1 + C(ζ, ξ)]z2ǫavec , (B2)

ǫavec =
∑

σ

nσ

n
ǫ̃σc , (B3)

and

ǫ̃σc = max[ǫP̃BE
c (nσ, 0,∇nσ, 0), ǫ

P̃BE
c (n↑, n↓,∇n↑,∇n↓)]. (B4)

ǫP̃BE
c is the PBE correlation energy per electron but with the second-order gradient expan-

sion coefficient in its expression made rs-dependent
7,68, β(rs) = 0.0066725(1 + 0.1rs)/(1 +

0.1778rs), where the seitz radius is rs = (3/4πn)1/3. Its derivatives with respect to nσ

and |∇nσ| can be written as ∂ǫP̃BE
c

∂nσ
= ∂ǫPBE

c

∂nσ
|β=β(rs) +

∂ǫPBE
c

∂β
|β=β(rs)

∂β(rs)
∂rs

∂rs
∂nσ

and ∂ǫP̃BE
c

∂|∇nσ|
=
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∂ǫPBE
c

∂|∇nσ|
|β=β(rs), where

∂β(rs)
∂rs

= −0.0778×0.0066725
(1+0.1778rs)2

and ∂rs
∂nσ

= −rs/3n. The function C(ζ, ξ) has

the expression,

C(ζ, ξ) =
c1 + c2ζ

2 + c3ζ
4 + c4ζ

6

{1 + ξ2[(1 + ζ)−4/3 + (1− ζ)−4/3]/2}4 , (B5)

where the spin-polarization ζ =
n↑−n↓

n↑+n↓
, and ξ = |∇ζ|

2(3π2n)1/3
. Here d = 2.8, c1 = 0.59, c2 =

0.9269, c3 = 0.6225, and c4 = 2.1540.

Let y stand for nσ, |∇nσ|, or τσ. The derivatives of ǫrevPKZB
c with respect to y can be

written as:

∂ǫrevPKZB
c

∂y
= [1 + C(ζ, ξ)z2]

∂ǫP̃BE
c

∂y
− z2[1 + C(ζ, ξ)]

∂ǫavec

∂y
+ z2(ǫP̃BE

c − ǫavec )
∂C(ζ, ξ)

∂y
+

+2z{C(ζ, ξ)ǫP̃BE
c − [1 + C(ζ, ξ)]ǫavec }∂z

∂y
, (B6)

where

∂C(ζ, ξ)

∂y
= { 2c2ζ + 4c3ζ

3 + 6c4ζ
5

c1 + c2ζ2 + c3ζ4 + c4ζ6
+

8ξ2[(1 + ζ)−7/3 − (1− ζ)−7/3]/3

1 + ξ2[(1 + ζ)−4/3 + (1− ζ)−4/3]/2
}C(ζ, ξ)∂ζ

∂y
−

− 4ξ[(1 + ζ)−4/3 + (1− ζ)−4/3]

1 + ξ2[(1 + ζ)−4/3 + (1− ζ)−4/3]/2
C(ζ, ξ)

∂ξ

∂y
. (B7)

For ǫavec , we have
∂ǫavec

∂nσ
=

∑

η

(
δησn− nη

n2
ǫ̃ηc +

nη

n

∂ǫ̃ηc
∂nσ

), (B8)

∂ǫavec

∂|∇nσ|
=

∑

η

nη

n

∂ǫ̃ηc
∂|∇nσ|

. (B9)

and
∂ǫavec

∂τ
= 0, (B10)

with ∂ǫ̃ηc
∂y

= ∂ǫP̃BE
c (nη ,0,∇nη,0)

∂y
δησ if ǫP̃BE

c (nη, 0,∇nη, 0) > ǫP̃BE
c (n↑, n↓,∇n↑,∇n↓) and ∂ǫ̃ηc

∂y
=

∂ǫP̃BE
c (n↑,n↓,∇n↑,∇n↓)

∂y
if ǫP̃BE

c (nη, 0,∇nη, 0) < ǫP̃BE
c (n↑, n↓,∇n↑,∇n↓). Here ∂ζ

∂nσ
=

δσ↑−δσ↓−ζ

n
,

∂ζ
∂|∇nσ|

= ∂ζ
∂τ

= 0, ∂z
∂nσ

= −z/n, ∂z
∂|∇nσ|

= 1
4nτ

[|∇nσ| + ∇n↑·∇n↓

|∇nσ|
], ∂z

∂τσ
= −z/τ ,

∂ξ
∂nσ

= 1
2(3π2n)1/3

{−7
3
|∇ζ|
n

+
4[n↓|∇n↑|

2δσ↓−∇n↑·∇n↓(n↑δσ↓+n↓δσ↑)+n↑|∇n↓|
2δσ↑]

n4|∇ζ|
}, ∂ξ

∂τ
= 0, ∂ξ

∂|∇nσ|
=

2n2

↓
|∇n↑|δσ↑+2n2

↑
|∇n↓|δσ↓−2n↑n↓∇n↑·∇n↓/|∇nσ|

(3π2n)1/3n4|∇ζ|
, and |∇ζ | = 2[n2

↓|∇n↑|2 − 2n↑n↓∇n↑ · ∇n↓ +

n2
↑|∇n↓|2]1/2/n2.

Therefore,

∂erevTPSS
c

∂nσ
= dnǫrevPKZB

c [z3
∂ǫrevPKZB

c

∂nσ
+ 3z2ǫrevPKZB

c

∂z

∂nσ
] +

+(ǫrevPKZB
c + n

∂ǫrevPKZB
c

∂nσ
)[1 + dǫrevPKZB

c z3], (B11)
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∂erevTPSS
c

∂∇nσ
= {dnǫrevPKZB

c [z3
∂ǫrevPKZB

c

∂|∇nσ|
+ 3z2ǫrevPKZB

c

∂z

∂|∇nσ|
] +

+n
∂ǫrevPKZB

c

∂|∇nσ|
[1 + dǫrevPKZB

c z3]} ∇n
|∇n| , (B12)

and

∂erevTPSS
c

∂τσ
= dnǫrevPKZB

c [z3
∂ǫrevPKZB

c

∂τσ
+ 3z2ǫrevPKZB

c

∂z

∂τσ
] +

+n
∂ǫrevPKZB

c

∂τσ
[1 + dǫrevPKZB

c z3]. (B13)

TPSS has the same formula for correlation as revTPSS, but uses the original PBE cor-

relation energy per electron, where β = 0.0066725 is rs-independent. The parameters in

C(ζ, ξ) used in TPSS are c1 = 0.53, c2 = 0.87, c3 = 0.50, and c4 = 2.26.
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46 P.E. Blöchl, C.J. Först, and J. Schimpl, Bull. Mater. Sci, 26, 33 (2003).

47 A.B. Alchagirov, J.P. Perdew, J.C. Boettger, R.C. Albers, and C. Fiolhais, Phys. Rev. B 63,

224115 (2001).

48 A.B. Alchagirov, J.P. Perdew, J.C. Boettger, R.C. Albers, and C. Fiolhais, Phys. Rev. B 67,

026103 (2003).

49 V.N. Staroverov, G.E. Scuseria, J. Tao, and J.P. Perdew, Phys. Rev. B 69, 075102 (2004).

50 F.W. Kutzler and G.S. Painter, Phys. Rev. Lett. 59, 1285 (1987).

51 H.J. Monkhorst and J. Pack, Phys. Rev. B 13, 5188 (1976).
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TABLE IV: Static-lattice lattice constants, a0 (Å), of 20 solids. The experimental values in the

last column are obtained by subtracting the zero-point anharmonic expansion (ZPAE) from the

experimental zero-temperature values. The experimental values of Ca, Sr, and Ba are from Ref. 7,

and the rest from Ref. 38.

solids LSDA PBE PBEsol AM05 TPSS revTPSS Expt.

Li 3.362 3.431 3.426 3.450 3.448 3.440 3.453

Na 4.051 4.198 4.170 4.209 4.239 4.215 4.214

Ca 5.332 5.518 5.448 5.482 5.522 5.504 5.553

Sr 5.791 6.027 5.916 5.972 6.028 6.007 6.045

Ba 4.770 5.030 4.894 4.969 5.009 4.986 4.995

Al 3.983 4.035 4.011 4.001 4.008 4.005 4.018

Cu 3.522 3.633 3.565 3.563 3.580 3.559 3.595

Rh 3.759 3.831 3.781 3.774 3.805 3.785 3.794

Pd 3.844 3.942 3.876 3.870 3.904 3.884 3.876

Ag 4.002 4.145 4.050 4.051 4.086 4.052 4.062

C 3.533 3.569 3.552 3.548 3.568 3.558 3.553

SiC 4.332 4.378 4.355 4.352 4.366 4.357 4.346

Si 5.405 5.468 5.432 5.434 5.453 5.439 5.421

Ge 5.631 5.768 5.680 5.685 5.729 5.682 5.644

GaAs 5.615 5.752 5.665 5.672 5.718 5.680 5.640

LiF 3.913 4.070 4.007 4.039 4.050 4.029 3.972

LiCl 4.968 5.151 5.063 5.119 5.121 5.109 5.070

NaF 4.506 4.705 4.632 4.679 4.710 4.680 4.582

NaCl 5.467 5.695 5.603 5.678 5.701 5.667 5.569

MgO 4.170 4.261 4.223 4.229 4.244 4.240 4.189

ME -0.082 0.051 -0.012 0.009 0.035 0.014

MAE 0.082 0.060 0.035 0.036 0.043 0.032

MRE(%) -1.73 1.10 -0.24 0.19 0.73 0.29

MARE(%) 1.73 1.29 0.73 0.75 0.90 0.68
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TABLE V: Bulk moduli, B0 (GPa), of 20 solids. The experimental values in the last column

are obtained by subtracting the zero-point phonon effects (ZPPE) from the experimental zero-

temperature values. The experimental values of Ca, Sr, and Ba are from Ref. 58, and the rest from

Ref. 38.

solids LSDA PBE PBEsol AM05 TPSS revTPSS Expt.

Li 15.1 13.8 13.7 13.2 13.3 13.4 13.9

Na 9.2 7.8 7.8 7.5 7.3 7.5 7.7

Ca 19.4 17.5 17.9 17.8 17.6 17.9 18.7

Sr 14.5 11.1 12.9 11.7 10.7 10.9 12.5

Ba 10.6 8.8 9.4 8.7 8.4 8.7 9.4

Al 83.7 77.3 81.9 86.0 85.6 85.7 82

Cu 187.4 138.0 166.0 164.0 162.4 173.8 145

Rh 315.6 256.4 295.0 296.5 281.9 296.1 272.1

Pd 226.3 169.4 205.2 203.4 195.4 209.7 198.1

Ag 138.5 90.9 118.9 114.5 110.0 120.5 110.8

C 465.8 433.2 450.2 452.0 430.3 439.5 454.7

SiC 229.5 212.8 221.9 222.1 217.2 221.5 229.1

Si 97.0 90.0 92.8 91.9 92.0 93.0 100.8

Ge 70.5 59.4 65.8 64.5 60.2 65.0 77.3

GaAs 75.1 60.5 69.9 68.3 64.8 66.8 76.7

LiF 86.7 66.9 72.2 66.4 66.2 68.9 76.3

LiCl 41.5 31.7 35.4 31.4 33.4 34.0 38.7

NaF 61.5 45.2 48.8 43.1 42.9 44.0 53.1

NaCl 31.2 23.6 26.0 22.0 22.4 24.1 27.6

MgO 172.1 149.5 157.6 154.3 155.0 155.5 169.8

ME 8.845 -10.514 -0.257 -1.754 -4.867 -0.890

MAE 10.068 10.521 6.209 7.393 7.942 8.664

MRE(%) 9.30 -10.52 -1.93 -5.64 -7.65 -4.26

MARE(%) 10.77 10.61 5.69 8.94 9.65 9.04
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TABLE VI: Static-lattice cohesive energies in eV/atom of 20 solids. For Rh the decrease in the

GGA’s cohesive energies by 0.03-0.04 eV compared to previously published values38,54 is related to

our putting the 4s electrons in the valence and not in the core. The experimental values for Ca, Sr,

and Ba are from Ref. 61, plus a small correction for zero-point vibration energy from Table V of

Ref. 47. The rest of the experimental data, which have also been corrected for zero-point vibration

energy, are from Ref. 38.

solids LSDA PBE PBEsol TPSS revTPSS Expt.

Li 1.810 1.605 1.677 1.631 1.637 1.658

Na 1.256 1.082 1.154 1.135 1.155 1.119

Ca 2.220 1.917 2.117 2.027 2.068 1.86

Sr 1.893 1.609 1.808 1.750 1.822 1.73

Ba 2.246 1.871 2.109 2.017 2.094 1.91

Al 4.038 3.438 3.817 3.478 3.570 3.431

Cu 4.545 3.474 4.027 3.787 4.121 3.524

Rh 7.563 5.688 6.642 5.776 6.155 5.783

Pd 5.016 3.714 4.435 3.981 4.379 3.938

Ag 3.642 2.516 3.078 2.733 3.034 2.985

C 9.011 7.714 8.275 7.246 7.312 7.545

SiC 7.457 6.401 6.876 6.189 6.255 6.478

Si 5.348 4.559 4.940 4.435 4.504 4.685

Ge 4.628 3.716 4.144 3.642 3.783 3.918

GaAs 4.095 3.148 3.555 3.120 3.259 3.337

LiF 4.945 4.322 4.474 4.223 4.228 4.457

LiCl 3.835 3.364 3.518 3.362 3.391 3.586

NaF 4.384 3.826 3.959 3.736 3.740 3.970

NaCl 3.503 3.097 3.223 3.104 3.137 3.337

MgO 5.863 4.973 5.299 4.941 4.930 5.203

ME 0.642 -0.121 0.234 -0.107 0.006

MAE 0.642 0.144 0.253 0.173 0.206

MRE(%) 16.50 -3.68 5.97 -1.99 1.22

MARE(%) 16.50 4.23 6.52 4.70 5.73
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TABLE VII: Lattice constant a0 (in Å), bulk modulus B0 (in GPa), and magnetic moment M0

(in µB) for ferromagnetic bcc Fe, nonmagnetic fcc Fe and ferromagnetic fcc Ni. δE0 (in eV) is the

difference between total energies per atom of fcc Fe and bcc Fe at each equilibrium lattice constant.

A negative δE0 indicates that the ground state is fcc. a: Ref. 44, b: Refs. 64,65, and c: Ref. 61

.

LSDA PBE PBEsol TPSS revTPSS Expt.

Fe (bcc) a0 2.747 2.829 2.782 2.803 2.794 2.853(2.861)a

B0 250.4 178.9 216.7 200.3 204.5 168b

M0 1.97 2.18 2.11 2.19 2.20 2.20b

Fe (fcc) a0 3.359 3.423 3.376 3.410 3.393

δE0 -0.10 0.17 0.07 0.22 0.22

Ni (fcc) a0 3.428 3.520 3.463 3.481 3.465 3.508(3.516)a

B0 254.5 195.6 229.3 222.3 233.4 186 c

M0 0.56 0.62 0.60 0.63 0.65 0.61 a
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