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Electrons in double-layer semiconductor heterostructures experience a special type of spin-orbit
interaction which arises in each layer from the perpendicular component of the Coulomb electric
field created by electron density fluctuations in the other layer. We show that this interaction, acting
in combination with the usual spin-orbit interaction, can generate a spin current in one layer when
a charge current is driven in the other. This effect is symmetry-wise distinct from the spin Hall
drag. The spin current is not, in general, perpendicular to the drive current.
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Spin-orbit interactions in semiconductors are traditionally studied within a one-electron picture, but there are
instances in which electron-electron interactions latch onto spin-orbit interactions to produce intriguing effects, which
may lead to the creation of radically new spin-based electronic devices1–3. Of particular interest is the generation
of spin currents and spin accumulation by an electric current, through the so-called spin Hall effect4. Recently, a
special type of spin Hall effect was predicted to occur in double-layer heterostructures, i.e., two parallel quantum
wells separated by an essentially impenetrable potential barrier, with a quasi-two dimensional electron gas in each
layer. This effect, called “spin Hall drag”6, consists of the generation of transverse spin accumulation in one layer
by an electric current flowing along the other layer and is caused by the component of the Coulomb electric field
parallel to the two layers. In this paper we study a different and novel effect, which is driven by the component of the
Coulomb electric field perpendicular to the layers. This perpendicular field creates an inhomogeneous Rashba spin-
orbit interaction, with spatial variation in the plane of the layer7. We refer to this interaction as the “Coulomb-Rashba
interaction”.

The system under study is shown in Fig. 1. A steady electric current is driven in the active layer 2. We show that the
interplay of the Coulomb-Rashba interaction with the ordinary cubic Dresselhaus spin-orbit interaction (characteristic
of semiconductors of the zincblende structure), provides a new mechanism for the generation of a spin current in the
passive layer 1. This is particularly remarkable in view of the fact that ordinary spin Hall effect and spin Hall drag
are suppressed by spin precession. But, in this case the presence of spin precession is absolutely essential to the effect.

Figure 1. Scheme of the device under study: an electric field, E, is applied to the active layer (2), a spin current is generated in
the passive layer (1). Blue circles depict electrons, and the wavy line shows the inter-layer Coulomb interaction. Arrows marked
k1, k2 and p1, p2 are the wave vectors in the initial and final states. The vertical arrow emphasizes the relevant component of
the interlayer Coulomb field.

The spin current generation can be understood as a two-stage process, which is schematically described in Fig. 210.
In the first stage, the steady current of electrons in layer 2 induces a quadrupolar spin distribution in layer 1. To
understand qualitatively how this comes about, observe that Coulomb collisions between electrons in the two layers
take place on average with a positive momentum transfer from layer 2 to layer 1 along the x axis. Moreover, due to
the spin-dependent terms in the scattering rate (see Eq. 1 below), the scattering efficiency depends on the relative
orientations of electron spin and its initial and final wavevectors, denoted by k and p respectively. Consider electrons
with spins parallel or antiparallel to the y axis: sy > 0 and sy < 0 respectively. For sy > 0 the scattering rate is
maximal for kx + px > 0 and minimal for kx + px < 0. For sy < 0 the situation is reversed: the scattering rate
is maximal for kx + px < 0 and minimal for kx + px > 0. The strongest transitions are marked by solid arrows in
Fig. 2(a). As a result, states with large values of |ky| (|ky| ∼ kF ) become depleted of sy > 0 electrons and filled with
sy < 0 electrons. At the same time, states with large values of |kx| (|kx| ∼ kF ) are depleted of sy < 0 electrons and
filled with sy > 0 electrons. Hence, a quadrupolar spin distribution is formed, as shown in Fig. 2(b).

The second stage of the spin current generation is related to the spin precession in the cubic Dresselhaus field.
This is also illustrated in Fig. 2(b), where the green arrows show the direction of the spin precession induced by
the cubic Dresselhaus field, Ωk, (see Eq. 4 below). The field tilts the spins out of the x − y plane, thus creating a
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Figure 2. Schematic illustration of the spin current generation in the passive layer10. The circle is the Fermi surface, the
arrows are the electron spins. Panel (a) shows the scattering stage of the process: top part shows electrons with spin parallel
to the y axis, bottom part shows electrons with spin antiparallel to the y axis. The arrows show the spin-dependent scattering
process: solid arrows indicate the stronger transitions, having kx + px > 0 for sy > 0 and kx + px < 0 for sy < 0, while dashed
arrows indicate the weaker transitions. Scattering processes that increase the x component of the wave vector (i.e. with qx > 0)
dominate due to the current flowing in the active layer. (b) Precession stage of the process. The resulting spin distribution after
the scattering contains second angular harmonics. Green arrows demonstrate the spin precession caused by the Dresselhaus
field Ωk, Eq. (4). Electron spins with opposite wave vectors precess in opposite directions. The resulting dipolar distribution
of electron spins is presented in the panel (c).

dipolar distribution of the z-component of the spin as shown in Fig. 2(c). As a result, a z-spin current is formed.
The characteristic C2v symmetry of systems with both Rashba and Dresselhaus interactions causes the spin current
to be parallel to the driving electric field E, when E is along one of the cubic [100] or [010] axes. Notice that this is
completely different from the spin Hall drag current, which is always perpendicular to the electric field. However, the
spin current can also be made perpendicular to E, by orienting E is along one of the principal axes [110] or [1̄10].

In the rest of the paper we present some details of our theoretical analysis, and provide a numerical estimate for the
size of the effect. The salient conclusions are as follows: (i) The spin transresistivity is proportional to (T/EF )2 which
is characteristic of Coulomb drag phenomena6,12,13 (ii) It is inversely proportional to the fourth power of the interlayer
separation and (iii) It is parametrically stronger than the spin Hall drag6 in the clean limit since the transresistivity
is proportional to Ωτ , whereas the T 2 contribution to the spin-Hall drag is independent of τ .

Theory – The part of the “spin-orbit dressed” Coulomb interaction which is relevant to the effect described in this
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paper has matrix elements8,14,15

M(k1s1,k2s2 → p1s
′
1,p2s

′
2) = {Vq −

λ2

2
Vq(q + qs)

〈χs′1
χs′2
|[σ̂1 × (p1 + k1)]z − [σ̂2 × (p2 + k2)]z|χs1χs2〉}

δk1+k2,p1+p2
, (1)

where the subscripts 1 and 2 refer to electrons in layers 1 and 2, respectively, σ̂1 and σ̂2 are the spin operators of the
first and second electron acting on spinors |χs1〉,|χs′1

〉 and |χs2〉,|χs′2
〉, respectively. The normalization area is set to

unity. Here q = p− k is the transferred wave vector,

Vq =
2πe2

κ

qe−qL

(q + qs)2 − q2
se−2qL

is the Fourier transform of the screened Coulomb interaction between the layers, L is the distance between the layers,
κ is a background dielectric constant and qs is the screening wave vector. The strength of the spin-orbit interaction
is controlled by the “effective Compton wavelength” λ for the semiconductor:

λ2 = −P
2

3

∆(2Eg + ∆)

E2
g(Eg + ∆)2

, (2)

where P is the Kane parameter16 and Eg and ∆ are the band-gap and the spin-orbit splitting of the valence band.

In GaAs λ2 ≈ 5 Å2. Notice that, in writing Eq. (1) we have taken into account only the Rashba-like contribution
arising from the component of the Coulomb field perpendicular to the layers. The additional term coming from the
component of the Coulomb field parallel to the layers was discussed in Refs. 6, 17, and 18 and is not shown in Eq. (1).

As discussed in the introduction and in the caption of Fig. 2, a steady current driven in the active layer (2) produces,
via the “spin-orbit dressed” Coulomb interaction, a quadrupolar distribution of spin in the passive layer. The spin
generation rate in the passive layer can be calculated by means of the Fermi golden rule with the matrix element of
interlayer electron-electron interaction given by Eq. (1)19,20. To first order in λ2 this gives

gk =
4πh̄eτ

mkBT

∑
k′pp′

δk+k′, p+p′δ(Ek + Ek′ − Ep − Ep′)×

Uk−p[(p+ k)× ẑ](E · (p− k))fkfk′(1− fp)(1− fp′) , (3)

where Uq ≡ λ2(q+ qs)|Vq|2, E is the electric field acting on the carriers in the active layer, m is the effective electron

mass, kBT is the temperature measured in the energy units, Ek = h̄2k2/(2m) is the electron dispersion, fk is the
Fermi-Dirac distribution function and ẑ is the unit vector normal to the layers. We have also assumed that equilibrium
densities, effective masses and Fermi energies are the same in the two layers. In deriving Eq. (3) we took into account
only linear-in-E nonequilibrium correction to the distribution function. It is easy to show that, due to the presence
of the two factors E · (p−k) and (p+k)× ẑ, the angular dependence of gk is an angular harmonic of order 2, i.e. we
have gx,k ∝ sin 2ϕk and gy,k ∝ − cos 2ϕk, where ϕk is the angle of k with the x axis: this is the quadrupolar pattern
of spin generation mentioned in the introduction and described in Fig. 2.

The spin dynamics in the passive layer is governed by the spin-orbit splitting of the energy spectrum. Since
the first harmonic components of the spin splitting (arising from linear-in-k-terms) do not result in a dc spin Hall
current11,21,22, we only take into account the third angular harmonics of the k3 Dresselhaus term which is inevitable
in any zincblende structure. In cubic axes with x ‖ [100] and y ‖ [010] these have the form

Ωx,k = −Ω3 cos 3ϕk, Ωy,k = −Ω3 sin 3ϕk, (4)

where Ω3 = γck
3/(2h̄), γc is the bulk Dresselhaus constant. The electron spin distribution function, sk, is determined

by a kinetic equation, which in the steady state takes the form11

sk ×Ωk +
sk
τ

= gk . (5)

Here we have assumed that all spin-independent scattering processes can be characterized by a single relaxation time
τ . The solution of Eq. (5) is

sz,k =
(Ωk × gk)z
Ω2

k + 1/τ2
. (6)
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We note that such a simple form of the solution results from keeping only the third angular harmonics in Ωk. The
solution in the general case can be constructed following Refs. 11 and 23: in such a case the overall spin will be
smaller due to faster spin relaxation caused by the linear-in-k Dresselhaus term, and the spin distribution may have
more complicated form due to the anisotropy of the spin splitting.

By definition, the current density of spin z component is

Jz =
∑
k

sz,kvk , (7)

where vk = h̄k/m is the electron velocity. Substituting the expression for gk, obtained from Eq. (3), into Eq. (6) for
sz,k, and then sz,k in Eq. (7), we arrive at our main result

Jz = −2πh̄eτ3

mkBT

∑
kk′pp′

vk δk+k′, p+p′δ(Ek + Ek′ − Ep − Ep′)

2Uk−p[Ωk · (p+ k)][E · (p− k)]

fkfk′(1− fp)(1− fp′). (8)

Equation (8) can be recast in the standard form:

Jz
i = GijEj , (9)

where Gij is the spin drag conductivity. Our system is characterized by the C2v point symmetry group because we take
into account (i) the Dresselhaus field, and (ii) the Rashba-like interaction associated with the perpendicular-to-plane
component of the Coulomb field. In the basis of the principal axes x1 ‖ [11̄0] and y1 ‖ [110] Eq. (9) can be written in
terms of two independent constants G and G1 as

Jz
x1

= (G+G1)Ey1
, Jz

y1
= (G−G1)Ex1

. (10)

Equation (10) gives the full phenomenological picture of the spin drag in the presence of the spin-orbit interaction.
The drag mechanism described here produces G 6= 0 and G1 = 0. This rather peculiar situation implies that the spin
current flows parallel to the electric field if the latter is applied along the [100] or [010] directions, but, in general, it
has both a parallel and a perpendicular component. It is only when the electric field is along one of the principal axes
that we get a pure transverse current, but even in this case it is in a sharp contrast with the spin Hall drag, namely
an electric field along x1 produces a spin current along y1, but an electric field along y1 produces a spin current along
x1, rather than −x1. These unique symmetry-related features will help distinguishing the predicted new effect.

We now come to the quantitative evaluation of G. The expression (8) for the spin current density is similar to the
expression encountered in the calculation of the ordinary drag current13. The main difference is that the integrand
depends not only on the momentum transfer q = p− k, but also on the sum of the initial and final momenta, p+ k.
For simplicity we focus here on the case of well separated layers, kFL� 1, where the momentum transfer is typically
small (q ∼ L−1 � kF ), and therefore one can replace k + p ≈ 2kF , making an error of order q/kF . With this
approximation, the standard method of evaluation can be applied, and, after converting the wave vector sums into
integrals, and for low enough temperatures kBT � EF , we obtain

G = − h̄
3eΩ3kF τ

3

2πm2kBT

∫
dq

(2π)2

∫ +∞

−∞
dω

Im[χ0(q, ω)]2

sinh2
(

h̄ω
2kBT

)Uqq
2 , (11)

where χ0(q, ω) is the non-interacting density-density response function of the two-dimensional electron gas24. Inte-
grating over frequency we get

G = −λ
2Ω3e

5k4
F τ

3

4π2κ2h̄2

(
kBT

EF

)2

I2(qsL) (12)

with

I2(x) =
2π2

3kFL

∫ ∞
0

y3(y + x)e−2y

[(x+ y)2 − x2e−2y]2
dy , (13)

for kFL� 1. For qsL� 1 the integral Eq. (13) is evaluated to be I2(qsL) ≈ 2.96/(kF q
3
sL

4), as a result G ∝ 1/L4 as
in the ordinary drag effect12,13.
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Results and discussion – It is instructive to estimate the drag resistivity which controls the observable spin accumu-
lation. This is determined as follows. First, we express the external field E via the current density generated by this
field in the active layer, j = σE, where σ = ne2τ/m is the Drude conductivity of the electrons and n is their density.
Then, we observe that the spin current is associated with some effective electric “spin” field Es

2e

h̄
Jz = σEs,

As a result we obtain

Es =
2eJz

h̄σ
=

2eG

h̄σ2
j = ρsj.

Hence, the drag resistivity is given by

ρs = −2h̄

e2
(λkF )2Ω3τ

(
kBT

EF

)2(
e2

κh̄vF

)2

I2(qsL), (14)

where vF is the Fermi velocity. Notice that, at variance with the (side-jump) spin Hall drag resistivity, the present
result is proportional to the momentum relaxation time τ and therefore it is parametrically dominant in the “clean”
limit, τ →∞.

For the following values of the parameters: electron density n = 2 × 1011 cm−2, τ = 40 ps (which corresponds
to a mobility µ = 106 cm2/Vs in a GaAs quantum well with m = 0.067m0), bulk Dresselhaus splitting constant
γc = 20 eV Å3, λ2 = 5 Å2, and κ = 13, we obtain (λkF )2 ≈ 6 × 10−4, Ω3τ ≈ 0.9, and e2/κh̄vF ≈ 1. Thus, taking

I2 ∼ 1, we have ρs ∼ 4
(

kBT
EF

)2

Ohm, which for (kBT/EF ) = 0.1 is 0.04 Ohm, i.e., about two times larger than the

conservative estimate for the spin Hall drag resistivity from side jump given in Ref. 6. In InAs based structures the
spin-orbit coupling parameter λ2 is about an an order of magnitude higher than in GaAs and Ω3 is also larger. This
makes narrow-band semiconductor bi-layers particularly suitable for the observation of the spin current injection.

In conclusion, we have described a new coupling mechanism, partly Coulomb and partly spin-orbit, through which a
spin current can be injected, or a spin accumulation induced, in an electron layer by a regular electric current flowing
in an adjacent layer. The new coupling can play a role in the design of circuits in which an electric current must be
converted into a spin current and viceversa.
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