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We investigate a model of elasticity-driven polaron pattern formation on a 2-dimensional lattice
at finite temperatures. We show that at high densities, polaron stripes (glass like) form when the gas
is cooled. These stripes melt to a polaron gas upon heating. We attribute the emergent behavior
to the role of the long-range, directional elastic interactions that favor a minimum in energy for
polaron stripe formation.
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I. INTRODUCTION

Ceramic materials such as cuprates and mangan-
ites (and other transition metal oxides) exhibit novel
properties of high temperature superconductivity, colos-
sal magnetoresistance, ferro- and antiferro-magnetism
as well as multiferrocity1–11. In many of these ma-
terials, the competition between long and short range
forces, leads to the formation of long range ordered
charge, spin and lattice structures such as stripes
and domain walls2,3, as well as self-organized and
emergent properties often mediated via the lattice1.
Stripes have been observed in ferromagnetic12,13,
ferroelectric14, superconducting2,3,15,16, as well as hybrid
superconducting-anti-ferromagnetic materials17 and nar-
row band semiconductors18,19. It has been suggested
that long range correlations and resulting stripes in the
electronic charge- or spin-density influences the response
of the material to external controlling affecting the su-
perconducting state2,3, colossal magnetoresistance8,20, or
the colossal stressoresistance9.

We have previously proposed21 an approach to de-
scribe the formation of polarons in which the electronic
charge couples to the elastic fields to create an effec-
tive long range and directional interaction between po-
larons. At low polaron density and zero temperature,
the ground state of the system is a polaron stripe. When
these stripes are brought in contact with a heat bath,
the stripe survives up to temperatures comparable to
the pairing energies of the polarons; for large temper-
atures, the kinetic energy of the polarons is greater than
the binding energy and the system behaves as a polaron
gas; at much higher temperatures the individual polarons
melt. We can also expect an intermediate temperature
regime, where we have small stripe segments and free po-
larons constantly moving and reorganizing, with a liquid
like behavior. To describe the interaction with the ther-
mal bath, we use here a hybrid adiabatic method, where
we update the position of the polarons using standard
Monte-Carlo (MC) techniques22. The electron density
and the elastic fields are calculated self consistently (with
the Newton method introduced in21) for every Monte-
Carlo step. For large densities, as the self consistent
calculation of the electronic densities is very slow, we

treat the density of each polaron as a delta function (∆-
model) and only recalculate the updated elastic fields ev-
ery Monte-Carlo step.
The paper is organized as follows. In the next sec-

tion we describe the Ginzburg-Landau free energy and
compatibility conditions for the description of the elastic
medium, and the Holstein coupling of the elastic fields
with the polaron wave functions. Next we present the
self-consistent Monte-Carlo method and the numerical
results we obtained for the dynamics of the multipolaron
system at finite temperatures. We conclude with a dis-
cussion of the different behaviors we observe (stripe, liq-
uid and gas) for polarons at different temperatures, and
the formation of polaron-stripe glass upon rapid cooling.
We also discuss the short and long range correlations re-
flected in the distribution of polaron cluster sizes, and
their pair distribution function. Our approach should
be viewed as complementary to phenomenological long-
range Coulomb fields introduced into polaron ordering
discussions (eg.23) in that we self-consistently deduce the
form of long-range elastic fields from lattice compatibility
conditions in the presence of polarons.

II. STRAIN DESCRIPTION OF POLARONS IN

AN ELASTIC MEDIUM

For the description of the elastic substrate in two di-
mensions (2D) on a square lattice, we use symmetry
adapted principal strains

e1 =
1√
2
(ǫxx+ǫyy); e2 =

1√
2
(ǫxx−ǫyy); e3 = ǫxy = ǫyx,

(1)
where e1 is the compressional (or dilatational) strain, e2
the deviatoric strain and e3 the simple shear strain as-
sociated with a unit cell. Restricting ourselves to small

strains, ǫij = 1
2
( ∂ui

∂xj
+

∂uj

∂xi
) are the Lagrangian strains.

The three strains in 2D are not independent but are
related by the integrability or St. Venant compatibil-
ity constraint, which in terms of the symmetry adapted
strains becomes

G = (∂2
x + ∂2

y)e1 − (∂2
x − ∂2

y)e2 −
√
8∂x∂ye3 = 0



2

(this is true only if there are no dislocations or broken
bones in the lattice24).
The elastic energy density for a homogeneous medium

is given by

Fel =
A1

2
e1

2 +
A2

2
e2

2 +
A3

2
e3

2

with A1, A2 and A3 the elastic moduli and the three
strains independent. (For details about the elastic fields
and the Ginzburg-Landau energy see25,26).
The charged particles are coupled to the elastic de-

formations of the lattice. For the interactions with the
elastic fields, as well as the interaction between polarons,
we use an extension of the semi-classical Holstein po-
laron model with an additional hard core repulsion (the
model as well as details of the numerical method for the
calculation of the stripes, are given in21 and references
therein). The interaction is modeled by the Hamiltonian
interaction density

Hint = χ
∑

i

|Ψi|2e1, (2)

where Ψi = Ψi(r) is the wave function of the particle i

and e1 is the isotropic, dilatational strain mode, and the
hard core interaction between the polarons is described
by the Hamiltonian

Hc =
∑

i6=j

U0|Ψi|2|Ψj|2, (3)

with the parameter U0 determining the strength of a con-
tact interaction. The Schrödinger equation describing
the polarons in the presence of the elastic field can be
written as

i
dΨi

dt
= −V∇2Ψi + χ e1 Ψi + U0

∑

j

|Ψj |2Ψi, (4)

where we choose the Planck constant, h̄ = 1 to rescale
time, and set kB = 1, so that energy and temperatures
are measured in units of the overlap integral V . The
elastic fields and the electron wavefunctions have been
calculated self consistently using the method in21 for pre-
defined positions of the electron, and the arrangement in
a single stripe corresponds to the minimum of the energy
for the system. Here we perform the same calculation,
but we use a Monte-Carlo updating method to change
the positions of the centers of the polarons, to account
for the interaction with a thermal bath.

III. NUMERICAL SIMULATIONS

In our previous work21, we showed that the wave func-
tion of the polaron is very localized, whereas the elastic
fields extend anisotropically to much longer range. Due
to this sharp localization of the wave-function, in addi-
tion to the self consistent calculation of the polarons we

introduce a simplified calculation (∆-model), in which we
assume that the wave function of each polaron is a delta
function, and we only calculate the elastic fields for each
MC step. We have performed the MC simulation with
the self consistent calculation of the polarons, as well
as the ∆-model, and find the same qualitative behavior
– the difference we obtain in the average enery (for the
same temperature and after a long MC simulation) is less
than 5%. The advantage of the ∆-model is that we avoid
the computationally expensive self consistent calculation
of the polarons. The calculations presented in this paper
are performed using the ∆-model on a 55 × 55 lattice,
but they are qualitative the same as our calculations on
smaller lattices and for small numbers of polarons using
the full self consistent calculation. For the Monte-Carlo
simulations we typically start at zero temperature with
the polarons arranged in stripes, and we increase the tem-
perature in small steps. For every temperature increment
we perform 30 to 100 thousand Monte-Carlo steps. We
smooth the fluctuations of the energy curves by taking
the average of the energy over 50 realizations. The en-
ergy as a function of temperature for different numbers
of polarons is plotted in Fig. 1.
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FIG. 1: Monte-Carlo results of the elastic energy with Np

polarons on a 55× 55 lattice as a function of temperature for
Np = 2, 5, 16, 30, 50.

As we see in Fig. 1, there is a transition interval in
the energy as we increase the temperature from zero to
0.6. For two polarons, the low temperature limit corre-
sponds to a stable bound state, while the high temper-
ature limit corresponds to uncorrelated polaron motion.
In the transition interval we observe the formation of un-
stable bound states, with a lifetime that decreases as the
temperature increases.

Similar behavior is observed in systems with larger
numbers of polarons, as we see in Figs. 1 and 2. At low
temperature we have a stable stripe. There is a transition
at intermediate temperatures, and at high temperatures
we have almost independent polaron motion. We iden-
tify three regimes: (A) below the transition temperature,
we have stable stripes; (B) in the transition regime the
stripe becomes unstable and breaks into smaller stripes
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FIG. 2: The strain e1 strain for 50 polarons on a 55×55 lattice,
and for different temperatures. (a) Stripe of polarons at zero
temperature. (b) Low temperature transition regime T=0.38.
The long stripe becomes unstable and a small number of po-
larons escape, moving alone or forming smaller stripes. (c) In-
termediate temperature transition regime with T=0.42. The
long stripe is almost completely destroyed. Individual po-
larons move on the lattice and form smaller stripes with a
finite lifetime. (d) High temperature regime with T=0.6. All
polarons move independently: Small stripes are formed but
their life time is very short.

and freely moving polarons, which continuously recom-
bine to form other finite lifetime stripe segments; in this
temperature range, the polarons exhibit liquid like be-
havior; (C) at high temperatures we have almost uncor-
related, gas-like polaron dynamics. In Fig. 2 we plot the
e1 strain for a system of 50 polaron on a 55× 55 lattice.

As we can see in Fig. 2(b), at the beginning of the
transition, a small number of polarons thermally escape
from the large stripe. The number of polarons that es-
cape increases as the temperature increases. These freed
polarons can either move independently or they form
smaller stripes with finite lifetime. This formation of
small transient stripes, as well as the free polarons, can
be seen in Fig. 2 (b and c). The behavior of the polarons
resembles that of liquids, where there is a short range
order with a finite lifetime. For high temperatures, the
formation of transient stripes becomes rare, and their life
time shrinks to few MC steps, as for a gas.

In Fig. 3 we plot the energy of the system with 50 po-
larons on a 55× 55 lattice, when we slowly decrease the
temperature (the temperature step is 0.001− 0.005, and
we perform 50-100 thousand Monte-Carlo steps for ev-
ery T) starting from the high temperature polaron gas
(Fig. 4c). For comparison, we also plot the average
energy when we heat, starting from the stripe ground
state. When we decrease the temperature, depending on
the cooling rate and the number of polarons, the sys-
tem cannot easily reach the ground state to form single
stripe. This can only happen when the number of po-
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FIG. 3: Hysteresis loop when a system of 55 polarons is
cooled, starting with a thermalized polaron gas at high tem-
peratures. The upper line is the energy when cooled from
the polaron gas, while the lower line corresponds to the av-
erage energy upon heating the system starting with a stripe
at T = 0. When the system is cooled, it freezes into a higher
energy glassy state with many smaller stripes. The dashed
line is the average energy obtained by re-heating the system
starting from the frozen, many stripes glassy state obtained
upon cooling.
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FIG. 4: The strain field e1 obtained from cooling an initially
thermalized polaron gas at high T. (a) The frozen glassy state
with many stripes (T = 0). (b) Intermediate temperature
T = 0.34 where the glassy state is almost formed. (c) The
initial high temperature polaron gas for T = 0.6.

larons is small (of the order of 10-15) and the cooling rate
is slow (100 thousand Monte-Carlo steps for each tem-
perature step, with very small temperature steps). The
energy landscape exhibits many local minima, each cor-
responding to a different stripe configu- ration, separated
by energy barriers. The height of these barriers increases
with the number of po- larons. For small number of po-
larons, the tem- perature fluctuations can overcome the
barriers and the system relaxes to the absolute ground
state faster. For a large number of polarons, or fast cool-
ing rates, there is a hysteretic formation of many small
stripes (Fig. 4b). As the temperature decreases, the life-
time of these stripes increases and, as a result, the po-
larons are trapped into this meta-stable state (Fig. 4a).
As we see in Fig. 3, the energy of this meta-stable state
is higher than the ground state, but the energy barrier
separating it from the ground state is very large, limiting
transitions between them.
From Figs. 2 and 4 we see that there is a formation
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FIG. 5: Pair distribution function density plot as a function
of temperature for Np = 30 on a 55 × 55 lattice. A regu-
lar arrangement of delta-function peaks with zero background
fluctuations is seen for small temperatures, but as the temper-
ature increases the long range correlation becomes weaker and
the corresponding peaks are replaced by a background fluc-
tuation. At even higher temperatures, even the short range
correlations disappear and the pair distribution becomes al-
most uniform.

of polaron clusters and the distribution of cluster sizes
changes with temperature (see also movies in supplemen-
tary materials27). The distribution of cluster sizes is a
robust delta function at low and high temperatures (cen-
tered around Np and 1, respectively). For intermediate
temperatures the system exhibits a broad distribution of
cluster sizes and associated time scales. Multi-time scale
responses are likely but beyond the statistics of our small
system sizes.

We also calculate the pair distribution function for the
polarons, and follow its changes with temperature. We
start heating the system with the polarons arranged in
the ground state of a single stripe for T = 0. At this tem-
perature the pair distribution function consists of well
defined delta-function peaks. These peaks are seen in
Fig. 5 as lines in the density plots. As the temperature
increases, the long range correlations disappear, and the
peaks corresponding to large separation between the po-
larons decrease, while the background of the pair distri-
bution function becomes more uniform. At higher tem-
peratures, all the peaks disappear, and the pair distribu-
tion function becomes uniform (to the degree permitted
by the discretization of our simulation box). As we see
from Fig. 5, the correlation length of the stripe decreases
as we increase the temperature, from the total length of
the stripe at T = 0 to zero at high temperatures. In the
transition region the pair distribution function confirms
that we have liquid like behavior; there is no long range
correlation, but we do have short range correlation, and
the formation of smaller stripes. This is typical behavior
of the pair distribution function for liquids.

IV. CONCLUSION

We have used a classical Monte-Carlo method to study
the variations with temperature of a many polaron sys-
tem coupled adiabatically through an elastic substrate.
The ground state of the system corresponds to the for-
mation of an extended stripe, with all the polarons ar-
ranged parallel to the < 11 > direction of the underly-
ing square lattice. When the temperature is increased,
the system undergoes a transition from a single stable
stripe to smaller meta-stable stripes with liquid like be-
havior, and finally, at higher temperatures, to a weakly
correlated polaron gas. When cooling this polaron gas,
we observe the formation of a hysteretic glassy meta-
stable state with many stripe segments at low temper-
ature. There is a high energy barrier that does not al-
low the polarons to evolve from this glassy state, to the
single stripe ground state. The formation of the glassy
state depends on the cooling rate and the density of po-
larons. We also calculate the pair distribution function
for the polarons, and find that at intermediate tempera-
tures there is a short range correlation but the long range
correlation is lost, consistent with a liquid-like phase. At
higher temperatures, even the short range correlation is
lost, and the system behaves like a polaron gas.
This research was carried out under the auspices of the
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