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The single-site dynamical mean-field approximation is used to solve a model of high-Tc cuprate
superconductors which includes both dx2

−y2 and d3z2−r2 orbitals on the Cu as well as the relevant
oxygen states. Both T (with apical oxygen) and T ′ (without apical oxygen) crystal structures
are considered. In both phases, inclusion of the d3z2−r2 orbital is found to broaden the range of
stability of the charge-transfer insulating phase. For equal charge-transfer energies and interaction
strengths, the T ′ phase is found to be less strongly correlated than the T phase. For both structures,
d-d excitons are found within the charge-transfer gap. However, for all physically relevant dopings
the Fermi surface is found to have only one sheet and the admixture of d3z2−r2 into ground state
wave function remains negligible (< 5%). Inclusion of the extra orbitals is found not to resolve the
discrepancy between computed and observed conductivity in the insulating state.

PACS numbers: 74.72.-h, 71.35.-y, 71.10.Fd, 71.30.+h

I. INTRODUCTION

More than 25 years after their discovery,1 many aspects of the physics of the high-Tc cuprate superconductors
remain unclear.2,3 For a long period, researchers attempted to discuss the physics in terms of single-band models,
including the t-J model and the one-band Hubbard model.4–6 While much of the low-energy physics can be explained
by single-band models with appropriately chosen parameters,6–12 many properties of the cuprates and other transition
metal oxides require consideration of more realistic models.4,13–16 The importance of the oxygen bands was stressed
early on by Emery and Reiter,17 and their ideas were encoded in the “three-band” model18–22 which retains the Cu
3dx2−y2 and O 2px,y orbitals on the CuO2 plane. Early qualitative studies of this model13,23–26 have been followed
by recent quantitative studies27–33 using the dynamical mean-field theory (DMFT)34,35 and sometimes in conjunction
with density functional theory calculations.36–38 A very recent paper has argued that even the low energy physics may
reveal signatures of non-Hubbard or non-t-J physics.39 Although the three-band model helps us in understanding
various features of cuprates, it has its limitations. For example, the three-band model has been shown to provide an
inadequate description of the optical absorption at frequencies ω & 2 eV.32,33

A natural question is whether other Cu orbitals, in particular the Cu 3d3z2−r2 , play an important role. Higher energy
spectroscopies40,41 have detected these states, which may lead in particular to excitonic states in the spectrum.42–46

An early theoretical study,47 based on the slave boson approximation, argued that the d3z2−r2 orbitals are not just
admixed into the conduction band, but can give rise to another sheet of the Fermi surface at reasonable doping levels.
Variations between material families in the energy and mixing of the d3z2−r2 orbital were recently argued to affect
the value of the second neighbor hopping, thereby explaining the material dependence of Tc.

48 The comparison of
theoretical and experimental optical absorption was argued to be at least partially resolved by consideration of the
Cu d3z2−r2 and apical oxygen orbitals.38

These and many other observations motivate this paper, in which we study a six-band model which includes, in
addition to the three bands included before, the Cu 3d3z2−r2 orbital and (depending on crystal structure) apical
oxygen 2pz orbitals above and below the CuO2 plane. We shall present DMFT calculation of the phase diagram,
spectral functions, d-d exciton spectrum, optical conductivity and the effect of doping into the d3z2−r2/pz complex.
We also study the possible importance of apical oxygen orbitals by comparing the result of T -phase (with apical
oxygen) and T ′-phase (without apical oxygen) crystal structures.49

The remainder of the paper is organized as follows. In Sec. II we present the model and the method we employed.
Sec. III gives the numerical results of the phase diagram and the spectral functions. Sec. IV discusses the d-d exciton
spectrum. Sec. V shows in-plane and c-axis optical conductivities, and in Sec. VI we discuss the distribution of hole
doping on various orbitals and its consequence on Fermi surfaces. We conclude in Sec. VII.
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FIG. 1: Illustration of orbitals in the six-band model for the T -phase crystal structure. (a) Cu dx2
−y2 orbital and planar O2pσ

orbitals which couple to it; (b) Cu d3z2−r2 orbital and planar and apical orbitals which couple to it. The different colors (red
and blue online) indicate the relative sign of the wave function. In the T ′ phase the apical oxygens are absent.
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II. MODEL AND METHOD

The three-band model previously considered21,31–33 involves the Cu 3dx2−y2 and O 2px,y orbitals pointing to the
Cu site in each unit cell. In this work we consider the six-band model, which in addition to the Cu 3dx2−y2 and planar
O 2px,y orbitals also includes the Cu 3d3z2−r2 orbital and two apical oxygen sites (above and below the plane) with
one pz orbital on each site hybridizing with the Cu 3d3z2−r2 orbital. A schematic illustration of orbitals retained in
the six-band model is shown in Fig. 1 with panel (a) showing orbitals relevant to the Cu 3dx2−y2 orbital (which are
essentially what included in the three-band model) and panel (b) showing orbitals relevant to the Cu 3d3z2−r2 orbital.
The resulting model involves six bands, and we restrict attention here to paramagnetic phases, so it is not necessary

to write the spin dependence of the band structure explicitly. The band theory part of the Hamiltonian is thus a 6×6
matrix in k-space. We neglect the periodicity in the z-direction, thus the Hamiltonian only has kx and ky dependences.
The hopping integrals between Cu and O are also labelled on Fig. 1: we use tpd to denote the hopping integral between
px,y and dx2−y2 , tpdz

between px,y and d3z2−r2 and tpzdz
between pz and d3z2−r2 . Our previous studies of three-band

models shows that the precise value and form of the oxygen-oxygen hopping do not affect the results in any important
way.33 For definiteness, here we obtain estimates for the form and magnitude of the oxygen-oxygen hopping following
Ref. 21, which argues that the oxygen-oxygen hopping is the result of a virtual process involving hopping on and off
the Cu 4s orbital. Therefore we derive the six-band model by applying the Löwdin downfolding procedure50 to a
model involving the six bands considered here plus a Cu 4s band (see Appendix for details).
We use d‖ to denote the dx2−y2 orbital, dz the d3z2−r2 orbital, take the basis |ψ〉 =

(

d‖k, dzk, pxk, pyk, p
above
zk , pbelowzk

)

and write the resulting band-theoretic part of the Hamiltonian as

H6band =





HCu
6band H

hyb
6band

(

H
hyb
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)†
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 , (1)
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(
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, (3)

and the hybridization between Cu and O orbitals:

H
hyb
6band

=

(

2itpd sin
kx

2
−2itpd sin

ky

2
0 0

−2itpdz
sin kx

2
−2itpdz

sin
ky

2
tpzdz

−tpzdz

)

.
(4)

We note that a linear combination of the two apical oxygen operators decouples from the problem, however for the
ease of calculating the c-axis conductivity (Sec. V) we leave it as it is here, explicitly keeping the two apical oxygen
orbitals separately.
We choose tpd = 1.6eV.21 If there is cubic symmetry, tpdz

= 1/
√
3tpd and tpzdz

= 2/
√
3tpd but in the T phase

the Cu-O bond length is longer along the z-axis than x, y-axes, resulting in a smaller value of tpdz
and tpzdz

. We
follow Ref. 51 and use tpdz

= 0.5eV, tpzdz
= 0.8eV, tpp = 0.6eV and tppz

= 0.4eV. These values are consistent
with other estimates found in the literature.52–55 The value of tpzpz

has not been considered in Ref. 51 but since the
downfolding procedure implies that tpzpz

/tppz
= tppz

/tpp (see Appendix), we set tpzpz
= 0.27eV. We note that the

effect of oxygen-oxygen hopping has been studied in detail in Ref. 33 and it has been shown that the precise values
and form of oxygen-oxygen hopping does not change the physics in any important way. To model the T ′-phase, in
which the apical oxygen states are absent, we set tpzdz

= tpzp = tpzpz
= 0.

We next turn to the interaction part of the Hamiltonian. When more than one Cu orbital is important, interactions
beyond the Hubbard U must be considered. We adopt the standard Slater-Kanamori form56,57 for the interacting
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part of the Hamiltonian Hint:

Hint = U
(

nd‖,↑nd‖,↓ + ndz,↑ndz,↓

)

+ U ′(nd‖,↑ndz,↓ + nd‖,↓ndz,↑)

+ (U ′ − J)(nd‖,↑ndz,↑ + nd‖,↓ndz,↓)

− J
(

d†‖↓d
†
z↑dz↓d‖↑ + d†z↑d

†
z↓d‖↑d‖↓ + h.c.

)

(5)

Here we have used d†‖ (d‖) as the creation (annihilation) operator for the planar dx2−y2 orbital, and d†z (dz) as the

creation (annihilation) operator for the d3z2−r2 orbital. All the interactions are on-site so we have not written the
site indices explicitly. We follow the conventional choice of U ′ = U − 2J which comes from symmetry arguments of
d-orbitals. Note that in keeping with the common practice in modelling cuprates we do not consider interactions on
the oxygen sites. At the parameter values we consider the density of holes on the oxygen sites small enough that these
interactions are not expected to be important.
Except in the construction of the phase diagram we will choose the value U = 9 eV58,59 believed to be representative

of cuprates, and set the bare p and d energies equal: εd = εdz
and εp = εpz

(where there are pz orbitals). We define
the bare charge-transfer energy

∆ = εp − εd. (6)

As will be seen, a large difference in d-occupancy and other aspects of the physics arises from difference in in-plane
and c-axis hopping implied by the crystal structure. We study J = 0, 0.5 and 1eV.
We solve the model using the single-site dynamical mean field approximation34,35 with the continuous-time quantum

Monte Carlo impurity solver in its hybridization-expansion (CT-HYB) form.60–62 To obtain real-frequency information
we perform analytic continuation of the imaginary-axis self-energies using the method of Ref. 63. The specifics are
described in Refs. 32,33. The key approximation is assuming that the lattice self-energy is momentum-independent,
Σ(ω,k) → Σ(ω). The self energy is a matrix in the space of orbitals. Because the interaction is local, which involves
only the d electrons, all entries of Σ except the d-d components vanish.

III. PHASE DIAGRAM AND SPECTRAL FUNCTIONS

In this section we present the metal-insulator phase diagram and electron spectral functions for the six-band model
for varying choices of Hund interaction J and compare the results to the phase diagram and spectra previously
published for the three-band model.32 To facilitate the comparison we remove the Hartree energy by shifting the
x-axis of the six-band model by −2U + 5J relative to the three-band model. The magnitude of the Hartree shift can
be understood as follows. In the three-band model the undoped compound is the d9 state with the energy εd + 2εp;
adding one electron leads to the d10 state with the energy 2εd + 2εp + U ; the two-hole state nearest in energy is d9L
with energy εd + εp. Therefore the physical charge-transfer energy is (note that we use electron notation; in some of
the literature the charge-transfer energy is defined in hole notation, without the U and with εd and εp reversed)

E
(

d10
)

+ E
(

d9L
)

− 2E
(

d9
)

= U − (εp − εd) (7)

However, in the six-band model there is an additional Hartree shift arising from the 3d3z2−r2 orbital. In this case
the d9 state has energy εd + 2εdz

+ 2εp + 2εpz
+ 3U − 5J (see, e.g. Table II of Ref. 60); the d10 state has energy

2εd + 2εdz
+ 2εp + 2εpz

+ 6U − 10J and the two-hole state nearest in energy is the d9L state whose energy is
εd + 2εdz

+ εp + 2εpz
+ 3U − 5J . The physical charge-transfer energy is thus

E
(

d10
)

+ E
(

d9L
)

− 2E
(

d9
)

= 3U − 5J − (εp − εd)

= U − (εp − εd − 2U + 5J) (8)

shifted by 2U−5J relative to the three-band model. The spectra presented below show that six-band models with the
same value of εp − εd − 2U +5J have the same energy splitting between the non-bonding oxygen band and the upper
Hubbard band, and that this splitting is also the same as would be found in a three-band model with charge-transfer
energy εp − εd.
The solid, dashed and dash-dotted lines in Fig. 2 show the phase boundaries calculated from the T -phase six-band

model for three different values of J . The metal-insulator phase transition is first order32–34 with a coexistence region.
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FIG. 2: Metal-insulator phase diagram calculated in space of interaction strength U and p − d energy splitting εp − εd at
carrier density of one hole per unit cell for the six-band model in the T -phase at J-values indicated (lower x-axis, solid, dashed
and dash-dotted lines) and compared to the previously published32 phase diagram for the three-band model (shaded area,
green on-line; upper x-axis). The metal-insulator phase transition is first order, with a region of metastability. The phase
diagram shows the limit of stability of the metallic phase, ∆c2 as the left-hand lines (six-band case) or left boundary of shaded
region (three-band case) and the limit of stability of the insulating phase, ∆c1, as the right-hand lines (six-band case) or right
boundary of shaded area (three-band case).

∆c2, the limit of stability of the metallic phase, is indicated by the left-hand lines in Fig. 2. The limit of stability of
the insulating phase is denoted by ∆c1 and is indicated by the right-hand lines. Once the Hartree shift is removed, the
Hunds coupling J is seen to have a minor effect on the location of the phase boundary and the width of the crossover
regions, although the crossover region is slightly narrower for larger J .
The shaded area (green on-line) shows previously published32 results for the coexistence region of the three-band

model: the left boundary is ∆c2 and the right boundary is ∆c1. Even after the Hartree shift is removed, the phase
boundaries are displaced significantly, and the coexistence regime is wider. Some of the difference in width arises
because the three-band model could be studied to lower temperature (0.025 eV) than the six-band model, but the
difference is larger than the thermal effect. While a small portion of the difference in location of the phase boundary
arises from the difference in Hartree shift arising from small differences in the occupancy of the dx2−y2 orbitals, the
majority of the change is due to non-Hartree many-body effects. In essence, in the six-band model the insulating
phase remains stable down to weaker values of the effective correlation strength than in the three-band model. We
do not have a definitive explanation of this finding at this stage; Further clarification of this issue is important.
This physics is also seen in the spectral functions, presented in Fig. 3 for the six-band model in the undoped

case for the T [panel (a)] and T ′ [panel (b)] structures at parameters corresponding to the charge-transfer insulator
(upper panels) and paramagnetic metal (lower panels) phases. The results are obtained by maximum-entropy analytic
continuation of the self energies, following Ref. 63. We note that analytic continuation produces very wide tail down
from −10 eV which we do not present since it is subject to large uncertainties while being unimportant for our
discussion.
The spectra of the dx2−y2 and the px,y orbitals are similar to that of the three-band model with comparable

parameters.32,33 The new features are the d3z2−r2 and (for the T structure) the apical oxygen pz orbital. The
spectrum of the pz orbital includes a δ-function centered at ω = εpz

because, as noted above, one linear combination
of the pz orbital decouples. The two side-bands in the pz spectrum are the bonding and antibonding portions of
the orbital which couple. Inclusion of oxygen-oxygen hopping between different unit cells in the z-direction would
broaden the δ-function, however this effect is not important for our considerations.
The hybridization to the pz orbitals is evident in the spectrum of the d3z2−r2 orbital: it has mainly a two-peak

feature which both at around the same place as the side-bands of the pz orbitals, although their strengths are quite
different. The onset of the d3z2−r2 spectrum is at a lower energy (around 1 eV) than that of the dx2−y2 which is due
to the fact that the lattice is distorted in the c-direction away from the octahedron. The lower part of panel (a) shows
the result calculated at ∆ = ∆c1. The ground state is marginally metallic and one can see a narrow quasiparticle
peak appears at the Fermi energy.
Panel (b) of Fig. 3 shows the result in the T ′-phase, where the apical oxygen orbitals are absent. We see similarities



6

(a)

0

0.2

0.4

-10 -5 0 5
ω [eV]

A
(ω

) 
[e

V
-1

]
∆=21.6eV

∆=22.8eV

0

0.2

0.4

0.6

ω [eV]

A
(ω

) 
[e

V
-1

]
∆=21.6eV

∆=22.8eV

dx2-y2

d3z2-r2

px, y
pz

(b)

0

0.2

0.4

-10 -5 0 5
ω [eV]

A
(ω

) 
[e

V
-1

]

∆=21.8eV

∆=22.8eV

0

0.2

0.4

0.6

ω [eV]

A
(ω

) 
[e

V
-1

]

∆=21.8eV

∆=22.8eV

dx2-y2

d3z2-r2

px, y

FIG. 3: Momentum-integrated spectral functions of the six-band model in the undoped case (one hole per unit cell) for (a)
T -phase and (b) T ′-phase. The Fermi energy is at zero. Panel (a): upper part shows the ∆ = 21.6eV(< ∆c2) result and the
lower part shows the ∆ = 22.8eV(= ∆c1) result. Panel (b): upper part shows the ∆ = 21.8eV(< ∆c2) result and the lower
part shows the ∆ = 22.8eV(= ∆c1) result. Parameters: U = 9 eV, J = 0, T = 0.1 eV. Panel (a) upper part: εd = εdz = −26.3
eV, εp = εpz = −4.7 eV; lower part εd = εdz = −26.9 eV, εp = εpz = −4.1 eV. Panel (b) upper part: εd = εdz = −26.2 eV,
εp = −4.4 eV; lower part εd = εdz = −27.1 eV, εp = −4.3 eV.

in the lineshape of the dx2−y2 and px,y orbitals. However the d3z2−r2 spectrum is quite different: it now has a single
peak centered at an energy slightly above εp, with its onset similar to panel (a). This is a main change induced by
absence of apical oxygen sites. The quasiparticle peak in the lower part of panel (b) is more broad than that of panel
(a) indicating that in this case the system is less strongly correlated. Further support for this notion comes from the
values of the imaginary part of Matsubara-axis self energy; here larger magnitudes correspond to larger values of the
effective correlation strength. We find, for example, that at a doping of aound x = 0.1 ImΣ at the lowest Matsubara
frequency is 1.6eV for the T phase and 1.3eV for the T ′ phase.
In constructing the figures we selected values of ∆ such that ∆ − ∆c2 was the same for the T and T ′ phase

calculations. We can define the charge-transfer energy empirically as the energy difference between the non-bonding
oxygen peak and the lowest peak in the upper Hubbard band and the splittings in panels (a) and (b) are seen to be
very similar. Comparison of the upper panels of figures (a) and (b) shows that the gap in the T ′ phase calcuation is
smaller than the gap in the T phase calculation, indicating that for comparable paramters the T ′ phase is less strongly
correlated than the T phase. Comparison of the upper panels of Fig. 3(a) and (b) here to Fig. 2(a) of Ref. 32 shows
that a separation of 7 eV leads to metallic behavior in the three-band model but insulating behavior in the six-band
model. Examination of data at a distance from the phase boundary in the insulating regime shows that the insulating
gap is generically smaller in the six-band case than it is in the three-band case.

IV. d-d EXCITON SPECTRUM

In this section we discuss the d-d exciton spectrum. The corresponding correlation function is defined as:

D(τ) =
〈

Tτ [Ô(τ)Ô†(0)]
〉

(9)

where the operator Ô is either the singlet exciton operator

1√
2

(

d†‖↑dz↑ + d†‖↓dz↓

)

, (10)
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FIG. 4: Excitonic correlation functions on imaginary-time axis D(τ ) of the six-band model in the undoped case for (a) T -phase
and (b) T ′-phase. Note the semi-log scale. Two different ∆ values with a ∆ < ∆c2 (empty square with lines, red online) and a
∆ = ∆c1 (filled circle with lines, blue online) are shown in each panel. The parameters are the same as in Fig. 3. Lines without
symbols: a fit to D(β) exp(−δω · τ ). The fitted δω is indicated on the figure.

or one of the triplet exciton operators

d†‖↑dz↓, (11)

1√
2

(

d†‖↑dz↑ − d†‖↓dz↓

)

, (12)

d†‖↓dz↑. (13)

Here, the d‖ and dz operators have the same meaning as in Eq. (5).
We have used the CT-HYB procedure to measure D(τ) [Eq. (9)] in imaginary time. We note that at J = 0 the

singlet and triplet do not split, as expected. However since we are primarily concerned with the one-hole state, even
at non-zero J (up to 1 eV) the difference between the singlet and triplet is negligible. Moreover, we have found
(not shown) that J induces very small effect on the exciton correlation function. We have cross-checked the lack of
J-dependence by exactly diagonalizing an isolated CuO6 octahedron. We therefore focus on the J = 0 results only.
Fig. 4 shows the results of excitonic correlation functions for the T (upper panel) and T ′ (lower panel) structures, on
the imaginary-time axis on a semi-log scale for metallic (blue traces) and insulating (red traces) situations.
D(τ) is related to the real axis spectral function D(ω) by

D(τ) =

∫

dω
D(ω)e−τω

1− e−βω
. (14)

In the regime near τ = β, D(τ) drops exponentially, as expected if the real-axis exciton spectrum includes a δ
function-like peak. To find the energy of the peak we perform a fit of D(τ) to D(β) exp(−δω · τ) where δω indicates
the binding energy of the peak. The results are shown on Fig. 4 with the fitting parameter δω indicated. We note
that although for insulating cases the exciton spectra peaks inside the optical gap, in the metallic cases the exciton
has a peak with an even larger gap, meaning that it moves to a slightly higher binding energy.
The correlation function D(τ) calculated from CT-HYB is essentially exact: it includes all quantum fluctuations. It

is interesting to view this correlation function in diagrammatic terms as a combination of bubble diagram (convolution
of interacting Green’s function) and vertex correction. The exciton corresponds to moving an electron from a d3z2−r2

orbital to a dx2−y2 orbital. The corresponding bubble diagram is

Bd(iΩn) = − 1

β

∑

ωn

Gd‖
(iωn)Gdz

(iωn + iΩn). (15)
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FIG. 5: Exciton spectrum (dashed line, blue on-line) calculated for six-band model at carrier concentration of one hole per unit
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−y2 joint density of states Bd (solid line, red on-line)
and total joint density of states Btot (dash-dotted line, magenta on-line). The parameters are indicated on the figure and are
the same as in Fig. 3. Note that the spectra have been rescaled to facilitate comparison of structures.

or, on the real frequency axis,

Bd(ω) =

∫

dω′Ad‖
(ω′)Adz

(ω + ω′) [f(ω + ω′)− f(ω′)] (16)

where f(ω) is the Fermi function. Bd(ω) is the joint d-density of states of the dx2−y2 and d3z2−r2 orbitals.
It will be useful in our subsequent discussion to define the total joint density of states as

Btot(ω) =

∫

dω′Atot(ω
′)Atot(ω + ω′) [f(ω + ω′)− f(ω′)] (17)

where Atot(ω) is the total spectral function.
In order to compare with these real frequency functions, we have analytically continued the D(τ) data using the

maximum entropy method.64 Results are presented in Fig. 5. The broadening of D(ω) is due to the uncertainty of
the analytic continuation procedure but the center of the peak is consistent with the exponential fit shown in Fig. 4.
It is clear from Fig. 5 that in the insulating case the exciton spectrum has a peak inside the optical gap, while in the
metallic case where the optical gap is closed, the exciton spectrum peak continues to exist as a reasonably well-defined
excitation at a slightly higher binding energy.
The exciton energy we find is not consistent with the 0.5 eV scale proposed in Ref. 42 but is reasonably consistent

with the discussion in Refs. 40,41,43,44.

V. OPTICAL CONDUCTIVITY

In this section we discuss the optical conductivities, in order to determine which features in the optical spectrum
may relate to the d orbitals of interest here. Also, previous calculations32,33 based on the three-band model revealed a
strong discrepancy between theory and experiment, with the theoretically calculated conductivity much smaller than
the measured one in the region of the charge-transfer gap edge. Ref. 38 argued that inclusion of the d3z2−r2 orbital
could resolve this discrepancy.
The in-plane optical conductivities can be calculated from65

σ(Ω) =
2e2

~c0

∫ ∞

−∞

dω

π

∫

d2k

(2π)2
f(ω)− f(ω +Ω)

Ω

× Tr [j(k)A(ω +Ω,k)j(k)A(ω,k)] , (18)
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below the insulating boundary ∆c2. U = 9 eV and T = 0.1 eV. Parameters: T -phase: J = 0 (red solid line), ∆ = 21.6 eV,
εd = εdz = −26.3 eV, εp = εpz = −4.7 eV. J = 0.5 eV (blue dashed line), ∆ = 19.2 eV, εd = εdz = −23.8 eV, εp = εpz = −4.6
eV. J = 1 eV (magenta dash-dotted line), ∆ = 16.8 eV, εd = εdz = −21.3 eV, εp = εpz = −4.5 eV. T ′-phase (black dotted
line): J = 0, ∆ = 21.8 eV, εd = εdz = −26.2 eV, εp = −4.4 eV.

where c0 is the c-axis lattice parameter, f(ω) is the Fermi function, the k-integral is over the full Brillouin zone with
k scaled to π divided by the in-plane lattice parameter a, and A(ω,k) =

[

G(ω,k)−G†(ω,k)
]

/(2i) is the electron
spectral function, a matrix in orbital space. We have chosen our Fourier transform so that the in-plane current
operator is simply a k-derivative of the Hamiltonian matrix, j = ∂H/∂kx;

33 the extra terms discussed by Ref. 66 are
not needed.
The c-axis optical conductivity can be calculated in a similar manner using the current operator

jc =
(c0
a

)2
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0 0 0 0 − i
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ky
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ky
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, (19)

and in La2CuO4 c0/a ∼ 1.3.
Fig. 6 shows the calculated in-plane optical conductivity for the T and T ′ phases. In the two calculations the ∆

values are chosen to be at approximately the same distance from the insulating phase boundary ∆c2 so the gap sizes
are quite similar. The two systems give very similar in-plane conductivities. Further, the results are very similar to
those obtained from the three-band model32,33: an onset of absorption above around 1.8 eV and a strong absorption
at energy between 6 eV and 8 eV. The rise in the 3 eV-5 eV range is due to the effect of the d3z2−r2 orbital. The
introduction of additional orbitals does not increase the conductivity magnitude in the frequency range immediately
above the gap (Ω ∼ 2 − 3eV) significantly: the disagreement with experiment previously noted in the three-band
model32,33 remains. These results do not agree with results presented in Ref. 38.
Fig. 7 shows the results of the c-axis optical conductivity calculated in the T -phase. The overall magnitude is at

least an order of magnitude smaller than that of the in-plane conductivity, which is a consequence of a much smaller
hybridization strength and smaller number of relevant orbitals in the c-direction. In the 2 eV to 4 eV range the
conductivity is non-zero but very small. At 4 eV the conductivity start to rise, signalling the onset of transitions
involving the d3z2−r2 orbitals. Between 6 eV and 8 eV there are two strong peaks which we consider to be the
transition between the upper Hubbard band (which has a double peak structure) and the non-bonding pz band.
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VI. ORBITAL CHARACTER OF DOPED HOLES AND SHAPE OF FERMI SURFACES

In this section we consider the variation with doping of the orbital character of the low-lying states. This section
is motivated by the possibility that above a critical doping the d3z2−r2 band begins to become occupied.
Fig. 8 shows the doping dependence of the number of holes on each orbital per unit cell. From the spectral functions

shown in Fig. 3 one would expect that the number of holes on the d3z2−r2 orbital will dramatically increase when the
chemical potential is reduced below a certain point. The theoretical arguments of Ref. 47 also suggest that this will
occur. However the actual DMFT calculation is inconsistent with the rigid band picture. We see that while the total
number of holes in the d-band increases linearly with doping, the hole density on the d3z2−r2/pz complex remains
very small even at very high doping levels. Thus the spectra deform as the chemical potential is reduced, in such a
way that the d3z2−r2 orbital remains far below the Fermi level.
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To gain further insight into the doping dependence we plot the Fermi surfaces of the six-band model in T -phase
in Fig. 9. Panels (a) and (b) shows results obtained for parameters such that at half filling the model is in its
paramagnetic insulating phase while panels (c) and (d) show results obtained for parameters such that at half filling
the model is in the paramagnetic metallic phase. The hole doping values of panels (a) and (c) are selected around
0.1 and panels (b) and (d) around 0.35. We see that the Fermi surface includes only one sheet in all cases, consistent
with the discussion above that the crossing of the Fermi energy into the d3z2−r2 band is avoided. For the smaller
doping value the Fermi surface is approximately a circle enclosing (π, π) and for the larger doping the Fermi surface
is star shaped enclosing the (0, 0) point. Thus, in disagreement with early slave boson studies,47 we find that in the
six-band model there is no physically relevant doping at which holes occupy d3z2−r2/pz orbitals as separate bands,
and the Fermi surface remains one-sheeted. However, we do note that the van Hove singularity happens at around
hole doping value x ≈ 0.28, an intermediate value between what shown in panels (a), (c) and (b), (d) in Fig. 9.
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FIG. 11: Fermi Surfaces of the six-band model in T ′-phase. Panel (a): ∆ = 21.8 eV (< ∆c2), hole doping x = 0.13. Panel (b):
∆ = 21.8 eV, x = 0.37. Panel (c): ∆ = 22.8 eV (= ∆c1), x = 0.12. Panel (d): ∆ = 22.8 eV, x = 0.35. Parameters: U = 9
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εd = εdz = −26.1 eV, εp = −3.3 eV. Panel (d): εd = εdz = −25.3 eV, εp = −2.5 eV.

We have repeated the entire analysis for the T ′ structure, finding very similar results but with even smaller occupancy
of the d3z2−r2 orbitals. This is understandable as the hybridization to the d3z2−r2 orbital is much weaker once pz
orbitals are removed. We also plot the Fermi Surface in Fig. 11. As for the T -phase, the Fermi surface has only one
sheet, and the d3z2−r2 orbitals are not populated as separate bands. We note that the van Hove singularity happens
at around hole doping value x ≈ 0.37 which is approximately a 0.1 shift in doping compared to the T phase.

VII. CONCLUSION

In this paper, we have employed the single-site DMFT method to study a six-band model, which includes copper
dx2−y2 , d3z2−r2 , in-plane oxygen px,y, and (in T phase structure) the apical oxygen pz orbitals. This model is more
chemically realistic than the three-band or one-band models frequently considered. We considered two structures: the
T -phase, appropriate to La2CuO4, and the T ′-phase, appropriate to the infinite-layer cuprates and to the electron-
doped materials such as Nd2CuO4. From the model point of view these structures different in whether or not apical
oxygen pz orbitals are incluced. We have mapped out the metal/charge-transfer-insulator phase diagram, finding that
after the atomic-limit Hartree shift is accounted for, the phase boundaries are systematically shifted to the metallic
regime compared to that of the three-band model. Thus we conclude that incorporating the d3z2−r2 orbital expands
the insulating regime of the system.
The spectral functions are calculated by analytic continuation. The dx2−y2 and px,y spectra are observed to be

similar to that of the three-band model. In the T -phase the non-bonding pz band appears as a δ-function and two
side-bands corresponds to the bonding apical oxygen bands. Hybridization to these orbitals means that the d3z2−r2

has a double-peak structure. In contrast, in the T ′-phase, the spectrum of d3z2−r2 orbital has a single peak. In the
insulating regime, we have found that the insulating gap is generically smaller in the six-band model than in the
three-band model, for comparable correlation parameters.
We have calculated the d-d exciton spectrum, finding a sharp exciton line which should be visible in experiments.

In the insulating phase, the exciton states are inside the charge-transfer gap. In the metallic phase, the exciton states
are at slightly higher binding energy, but although they overlap in energy with the tails of the Hubbard bands, the
broadening is small.
Both in-plane and c-axis optical conductivy are calculated. We have found, in disagreement with previous

publication,38 that inclusion of the additional d3z2−r2 and apical oxygen bands does not fix the problem of the
near-gap magnitude. The c-axis conductivity is much weaker and the absorption is very small in the frequency range
2 eV to 4 eV. Above 4 eV there is a relatively noticeable absorption due to transition from the decoupled apical
oxygen bands to the upper Hubbard band.
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We have studied the distribution of doped holes onto different orbitals. We have shown that under no physically
relevant doping values that the d3z2−r2 orbitals (and pz orbitals in the T -phase) are populated as a separate band.
The Fermi surface only contains one sheet. This is in disagreement with previous slave boson studies.47
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Appendix

In this appendix we present the “six-band+s” model involving an additional Cu 4s orbital in each unit cell. We
take the basis as |ψ〉 =

(

d‖k, dzk, sk, pxk, pyk, p
above
zk , pbelowzk

)

. Then the Hamiltonian is a 7 × 7 matrix, which may be
seperated to Cu and O parts as

H6band+s =





HCu
6band+s H

hyb
6band+s

(

H
hyb
6band+s

)†

HO
6band+s



 , (A-1)

where

HCu
6band+s =





εd 0 0
0 εdz

0
0 0 εs



 , (A-2)

HO
6band+s =







εp 0 0 0
0 εp 0 0
0 0 εpz

0
0 0 0 εpz






, (A-3)

and the hybridization between Cu and O orbitals:

H
hyb
6band+s =






2itpd sin
kx

2
−2itpd sin

ky

2
0 0

−2itpdz
sin kx

2
−2itpdz

sin
ky

2
tpzdz

−tpzdz

2itps sin
kx

2
2itps sin

ky

2
tpzs −tpzs






.

(A-4)

The downfolding50 of Eq. (A-1) leads to the Hamiltonian considered in the main text. The effective oxygen-oxygen
hopping amplitudes are

tpp =
t2ps

εs − εF
(A-5)

tppz
=
tps · tpzs

εs − εF
(A-6)

tpzpz
=

t2pzs

εs − εF
(A-7)

Note that this implies that tppz
/tpp = tpzpz

/tppz
which has been used in obtaining the value of tpzpz

in the main text.

1 J. G. Bednorz and K. A. Müller, Z.Phys.B:Condens.Matter{\bf64},189(1986).



14

2 R. Hackl and W. Hanke, Eur.Phys.J.SpecialTopics{\bf188},3(2010).
3 N. P. Armitage, P. Fournier, and R. L. Greene, Rev.Mod.Phys.{\bf82},2421(2010).
4 E. Dagotto, Rev.Mod.Phys.{\bf66},763(1994).
5 P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev.Mod.Phys.{\bf78},17(2006).
6 M. Ogata and H. Fukuyama, Rep.Prog.Phys.{\bf71},036501(2008).
7 P. W. Anderson, Science{\bf235},1196(1987).
8 F. C. Zhang and T. M. Rice, Phys.Rev.B{\bf37}3759(1988).
9 M. Imada, A. Fujimori, Y. Tokura, Rev.Mod.Phys.{\bf70},1039(1998)

10 P. A. Lee, N. Nagaosa, T.-K. Ng, and X.-G. Wen, Phys.Rev.B{\bf57},6003(1998).
11 P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, J.Phys.:Condens.Matter{\bf16},

R755(2004).
12 K.-Y. Yang, C. T. Shih, C. P. Chou, S. M. Huang, T. K. Lee, T. Xiang, and F. C. Zhang, Phys.Rev.B{\bf73},224513(2006).
13 J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys.Rev.Lett.{\bf55}418(1985).
14 A. Liebsch, Phys.Rev.Lett.{\bf91},226401(2003)
15 A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, Phys.Rev.Lett.{\bf92},216402(2004)
16 R. S. Markiewicz, T. Das, and A. Bansil, Phys.Rev.B{\bf82},224501(2010)
17 V. J. Emery and G. Reiter, Phys.Rev.B{\bf38},4547(1988).
18 L. F. Mattheiss, Phys.Rev.Lett.58,1028(1987)
19 V. J. Emery, Phys.Rev.Lett.{\bf58}2794(1987).
20 C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Sol.St.Comm.{\bf62}681(1987).
21 O. K. Andersen, A. I. Liechtenstein, O. Jepsen, and F. Paulsen, J.Phys.Chem.Solids{\bf56},1573(1995).
22 W. Hanke, M.L. Kiesel, M. Aichhorn, S. Brehm, and E. Arrigoni, Eur.Phys.J.SpecialTopics{\bf188},15(2010).
23 J. H. Kim, K. Levin, and A. Auerbach, Phys.Rev.B{\bf39},11633(1989)
24 M. Grilli, B. G. Kotliar, and A. J. Millis Phys.Rev.B{\bf42},329(1990)
25 G. Kotliar, P.A. Lee, and N. Read, PhysicaC{\bf153-155},538(1988).
26 G. Dopf, A. Muramatsu, and W. Hanke, Phys.Rev.Lett.{\bf68},353(1992)
27 A. Georges, B. G. Kotliar, and W. Krauth, Z.Phys.B{\bf92}313(1993).
28 M.B. Zölfl, T. Maier, T. Pruschke and J. Keller, Euro.Phys.J.B{\bf13}47(2000).
29 A. Macridin, M. Jarrell, T. Maier, and G.A. Sawatzky, Phys.Rev.B{\bf71}134527(2005).
30 L. Craco, Phys.Rev.B79,085123(2009).
31 X. Wang, L. de’ Medici, and A. J. Millis, Phys.Rev.B{\bf81},094522(2010)
32 L. de’ Medici, X. Wang, M. Capone, and A. J. Millis, Phys.Rev.B{\bf80},054501(2009)
33 X. Wang, L. de’ Medici, and A. J. Millis, Phys.Rev.B{\bf83},094501(2011)
34 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.Mod.Phys.68,13(1996)
35 G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Rev.Mod.Phys.{\bf78},

865(2006).
36 C. Weber, K. Haule and G. Kotliar, Phys.Rev.B{\bf78},134519(2008).
37 C. Weber, K. Haule, and G. Kotliar, Nat.Phys.{\bf6},574(2010).
38 C. Weber, K. Haule, and G. Kotliar, Phys.Rev.B{\bf82},125107(2010).
39 B. Lau, M. Berciu, and G. A. Sawatzky, Phys.Rev.Lett.{\bf106},036401(2011).
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