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We study underdoped high-Tc superconductors YBa2Cu3O6.5 and YBa2Cu4O8 using first-
principles pseudopotential methods with additional Coulomb interactions at the Cu atoms, and
obtain Fermi-surface pocket areas in close agreement with measured Shubnikov-de Haas and de
Haas-van Alphen oscillations. With antiferromagnetic order in CuO2 planes, stable in the calcu-
lations, small hole pockets are formed near the so-called Fermi-arc positions in the Brillouin zone
which reproduce the low-frequency oscillations. A large electron pocket, necessary for the negative
Hall coefficient, is also formed in YBa2Cu3O6.5, giving rise to the high-frequency oscillations as well.
Effective masses and specific heats are also calculated. Our results highlight the important role of
magnetic order in the electronic structure of underdoped high-Tc superconductors.

PACS numbers: 71.18.+y, 74.25.Jb, 74.72.-h, 74.25.Ha

The normal-state electronic structures of the underdoped high-Tc superconductors have been studied for more than
twenty years, but the Fermi-surface (FS) topology is still only partially understood1–14. An important observation is
the disconnected FSs1,2, namely Fermi arcs, observed in angle-resolved photoemission spectroscopy (ARPES), which
initiated intense investigations about whether the FSs are really disconnected arcs or closed pockets of which one side
is hardly visible in ARPES. Recently, in contrast to having Fermi arcs, de Haas-van Alphen (dHvA) oscillations in the
magnetization and Shubnikov-de Haas (SdH) oscillations in the resistance3–7 observed in ortho-II YBa2Cu3O6.5 and
YBa2Cu4O8 suggest well-defined close pockets in the FS of underdoped high-Tc cuprates. The measured oscillations
for YBa2Cu3O6.5 are a dominant one at 500±20 T with a satellite at 1650±40 T5, and more recently a dominant
oscillation at 540±15 T with satellites at 450±15 T, 630±40 T, and 1130±20 T6. For YBa2Cu4O8, oscillation at
660±15 T is observed7.
The measured dHvA and SdH oscillations provide extreme cross-sectional areas of closed FS pockets18, but they

alone are not enough to identify the shapes and locations of the pockets. Thus, a quantitative theoretical calculation
of the FS geometry can be useful to determine the FS topology. First-principles calculations based on the density
functional theory (DFT) approach have been performed for YBa2Cu3O6.5 and YBa2Cu4O8

8,9, but the calculated
FSs could not explain the oscillation measurements. In contrast to the meansurements, reported DFT calculations
predict only FS pockets much larger than 500 T, and do not obtain the electron-type carriers implied by the observed
negative Hall coefficients10.
According to model calculations11–17, antiferromagnetic (AFM) order, a d-density wave, or a stripe order may result

in small pockets in regions of the FS. Although using DFT, one may examine static magnetic order using spin-density
functional theory19; as yet, no magnetic order has been considered in the reported DFT calculations of YBa2Cu3O6.5

and YBa2Cu4O8.
In this paper, we present, for the first time, first-principles DFT calculations of YBa2Cu3O6.5 and YBa2Cu4O8 with

a Coulomb repulsion U at Cu sites which yield FSs consistent with the dHvA and SdH measurements. We show that,
with physically reasonable U values, the AFM order in the CuO2 planes reconstructs the FS and produces pockets
with sizes consistent with the measured frequencies. Moreover, the calculated FS of YBa2Cu3O6.5 has a large electron
pocket which explains the observed negative Hall coefficients. In addition, cyclotron effective masses and specific
heats are calculated and compared with experiments. Our results support the possible importance of magnetic order
in the electronic structures of underdoped high-Tc cuprates.
Our present work is based on ab-initio pseudopotential density-functional calculations with pseudo-atomic orbitals

to expand the electronic wavefunctions20. Coulomb interaction at Cu d orbitals, parameterized by U and J21, is
added to the local (spin) density approximation [L(S)DA+U ]. With experimental atomic structures22,23, we minimize
the total energy with respect to the magnetic moments of Cu atoms in the CuO2 planes and CuO chains to consider
the possibility of AFM order. Our results are that YBa2Cu3O6 is an AFM insulator (using U = 8.0 eV and J = 1.34
eV) and YBa2Cu3O7 is a non-magnetic metal (using U = J = 0).
Using the LDA+U method with no magnetic order, we obtain the electronic structure for YBa2Cu3O6.5 (Figs. 1a

and 1b), which are in good agreement with previous calculations8. The FS has only large hole pockets and open
orbits (Fig. 1b); however, this is not in agreement with the observed quantum oscillations.
When magnetic order is considered in the LSDA+U calculations for YBa2Cu3O6.5, (π, π) AFM order is stabilized
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in the CuO2 planes, with neighboring Cu magnetic moments pointing in opposite directions, and this drastically
changes the electronic structures (Figs. 1c and 1d). With U = 6.0 eV and J = 1.0 eV, each Cu atom in the CuO2

plane has 0.48 Bohr magneton (µB), while the CuO chains are still non-magnetic. The FS (Fig. 1d) now consists of
small hole pockets (α and α′ indicating the two largest ones) and a large electron pocket (β). The calculated pocket
areas, which are not very sensitive to U and J around the used values, are in good agreement with the experimental
observations (Fig. 1f). This shows that the AFM order24,25 may be a way to quantitatively explain the measured
dHvA and SdH frequencies.
Figure 1d shows that the hole pockets (α and α′) are located at (±π

2
, ±π

2
), close to the positions of the Fermi arcs

in the ARPES data1,2. This supports the idea that slow AFM fluctuation26 may form hole pockets near (±π
2
, ±π

2
),

with their shapes possibly modified to form the arcs because of short-range fluctuation11,12.
Figure 1d also shows that the electron pocket (β) is much more anisotropic than the hole pockets (α and α′). This

arises because the electron pocket is derived from CuO-chain states moving along the chain and CuO2-plane states
moving perpendicular to the chain, while the hole pockets come from the CuO2 plane only. To have an isotropic
resistivity as observed in experiments at temperature below 80 K3,27, we find that the electron mean free path for
the CuO-chain states should be about one quarter of that for CuO2-plane states in the β pocket because of difference
in the group velocities. The presence of ordered CuO chains is essential for the metallicity of ortho-II YBa2Cu3O6.5.
With broken CuO chains, we obtain an almost insulating phase for YBa2Cu3O6.5.
For more detailed comparison, Fig. 2a shows the kz dependence of FS pocket areas. The three largest extreme

areas of hole pockets are 485 and 621 T at kz=0 and 708 T at kz=π/c (Fig. 2a), which overestimate by about 15 %
the experimental low frequencies, 450, 540, and 630 T6. The largest extreme area of the electron pocket (β) is 1450 T
at kz=0 (Fig. 2a), and it underestimates by 12 % the experimental high frequency, 1650 T5. If the Fermi level is
shifted to higher energy, hole pockets would shrink and the electron pocket would expand (Figs. 2b and 2c). With
a Fermi-level shift (∆EF ) of 4 meV above the charge-neutrality level, the extreme pocket sizes become 441, 564,
and 652 T for the holes and 1519 T for the electron, respectively, resulting in closer agreement with experimental
results. Since FS pocket areas change slowly with the AFM ordering vector28, our results using the (π, π) AFM order
approximate incommensurate cases close to the (π, π) order.
We calculate the cyclotron effective masses (Figs. 2b and 2c) and the electronic contribution to the normal-state

specific heat from the LSDA+U electronic structure of YBa2Cu3O6.5. The obtained cyclotron effective masses are
1.78 times the free electron mass (me) for the α′ pocket and 1.88 me for the β pocket. These values are smaller than
measured values, 1.78 ∼ 1.9 me for the low frequency and 3.8 me for the high frequency3–5, but they are consistent
with experiments in the sense that the effective mass of the low-frequency oscillation (from the α′ pocket in our result)
is smaller than that of the high-frequency oscillation (from the β pocket in our result). The calculated Sommerfeld
coefficient for the normal-state specific heat is 9.28 mJ·mol−1

·K−2, slightly smaller than the experimental value of 10
mJ·mol−1

·K−229. The differences between our values and the measured ones may originate from many-body effects.
The presence of the electron pocket in our FS (Fig. 1d) definitely opens a chance of a negative Hall coefficient, but

it alone is not sufficient since the total numbers of holes and electrons in our calculation are equal to each other to
represent a charge-neutral stoichiometric sample. Since the Hall coefficient is inversely proportional to the net charge
of the carriers, a slight imbalance of the two types of carriers would result in a relatively large Hall coefficient. With
∆EF = 4 meV, as discussed above for the oscillation frequencies, we can obtain a negative Hall coefficient of -25
mm3C−1 at 70 T (Fig. 3a), close to the experimental value of about -30 mm3C−110.
Figure 3 shows the Hall coefficients obtained by semiclassical transport theory within the relaxation-time approxi-

mation, assuming temperature-dependent but field-independent mean free paths (λ) and ∆EF = 4 meV. At 50 K, we
assume isotropic λ’s for holes, which are 40 nm for the α and α′ pockets and 10 nm for the other smaller pockets, and
anisotropic λ for electrons (β), which are 20 and 80 nm for CuO-chain and CuO2-plane states, respectively. At 1.5 K
they are increased to ten times the values at 50 K. These values of λ’s are adjusted to show a theoretical reproduction
of the experimental data although they are quite a bit larger than those for SdH oscillation amplitudes. With the
assumed λ’s, the calculated Hall coefficient is negative at high magnetic field and low temperature, becoming positive
at high temperature (Fig. 3b), as in the experiment10.
The SdH oscillations are displayed in Fig. 3a by modifying the conductivity tensor σij to include effects of the

Landau levels30. The above mentioned mean free paths (λ) are used for σij itself; however, a reduction of λ’s by a
factor of 0.05 is assumed for the modification factor of σij for quantum oscillations, yielding SdH oscillation amplitudes
close to experiments10. This may suggest that the quantum coherence is relaxed much faster than the classical linear
momentum, but it is beyond the scope of our present work to justify the assumed λ’s. Nonetheless, our assumed λ
of 20 nm at 1.5 K for SdH oscillations from the α and α′ pockets is consistent with 17 nm from measured dHvA
oscillations5. In our results, the low-frequency α and α′ oscillations are much stronger than the high-frequency β
oscillation since the average mean free time is larger for the holes than for the electrons even with the assumed λ’s
because of the difference in their group velocities. Thus, the dominant oscillation in the Hall coefficient (Fig. 3a)
originates from the hole pockets although the Hall coefficient itself is negative at high field due to the electron pocket.
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Calculated SdH oscillations grow with the magnetic field (Fig. 3a), as in experiments10.
Compared with model calculations considering magnetic fluctuations11,12, our results show that the presence of

CuO chains in YBa2Cu3O6.5 is important for explaining the high-frequency quantum oscillation and the negative
Hall coefficient. Since our results are based on a static long-range magnetic order stable in the LSDA+U method,
fluctuations in real materials may modify the FS. As discussed above, one possibility is the evolution of the small-size
hole pockets (α and α′ in Fig. 1d) to arcs, as proposed by the model calculations.
While the d-density-wave theory predicts hole pockets larger than electron pockets, our result predicts an electron

pocket larger than hole pockets, and assigns FS pockets to the observed frequencies oppositely. Thus, in our work,
the observed major frequency originates from small-size hole pockets while the negative Hall coefficient is due to a
large-size electron pocket.
For YBa2Cu4O8, as in the case of YBa2Cu3O6.5, we obtain very different FSs with and without AFM order in

the CuO2 planes (Fig. 4). With the LDA+U method with U = 3.1 eV and J = 0.8 eV for all Cu d orbitals, we
obtain a FS consisting of large hole pockets and open orbits (Fig. 4b) which is consistent with previous first-principles
calculations31. When the magnetic order is considered by the LSDA+U method with the same U and J , AFM order
is stable in the CuO2 planes with 0.22 µB at each Cu atom, and the FS consists of small hole pockets (α and α′

indicating the two largest ones), open orbits, and small electron pockets (β), as shown in Fig. 4d. The calculated FS
pocket areas are 721 T (α), 729 T (α′), and 685 T (β), which are close to the measured value 660 T7, overestimating
it by about 10 % or less. Contrary to YBa2Cu3O6.5, the calculated FS pocket sizes in YBa2Cu4O8 are sensitive to U

and J around the used values. Calculated cyclotron effective masses, 0.45 me for holes and 0.52 me for electrons, are
much smaller than the measured values of 2.7 ∼ 3.0 me

7, but calculated Sommerfeld coefficient for the normal-state
specific heat, 6.97 mJ·mol−1

·K−2, is rather close to the experimental value of 9 mJ·mol−1
·K−232.

In summary, we have studied the electronic structures of YBa2Cu3O6.5 and YBa2Cu4O8 by the LSDA+U method,
and the results yield FS topologies fully consistent with quantum oscillation measurements. It is shown that the
magnetic order in the CuO2 planes may explain quantitatively the dHvA and SdH oscillation frequencies, the negative
Hall coefficients, and the specific heat. These results point to the importance of magnetic order for understanding the
electronic structures of the underdoped high-Tc cuprates.
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FIG. 1: (Color online) Electronic structures in ortho-II YBa2Cu3O6.5 with Coulomb interaction at Cu d orbitals (U = 6.0 eV
and J = 1.0 eV). (a) The band structure and (b) the FS obtained by the LDA+U method with no magnetic order. (c) The
band structure and (d) the FS obtained by the LSDA+U method with (π, π) AFM order in the CuO2 planes. In (b) and (d),
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Blue (red) lines are hole pockets and open orbits (electron pockets). (e) FS pockets in (d). The α, α′, and β pocket areas are
485, 621, and 1450 T, respectively. The shape of the α′ pocket is close to the rounded square reported by the angle-dependent
quantum oscillation measurement33. (f) Comparison with experimental FS pocket areas (630 T6 and 1650 T5) in dashed lines.
A FS area of 1 nm−2 corresponds to a frequency of 105 T18.
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FIG. 3: (Color online) Hall coefficients for YBa2Cu3O6.5. (a) Hall coefficient versus magnetic field (B) at temperature T = 1.5
K, with and without the SdH oscillation (red and blue lines, respectively). (b) Hall coefficient versus temperature at B = 60
T without considering the SdH oscillation.
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FIG. 4: (Color online) Electronic structures in YBa2Cu4O8 with Coulomb interaction at Cu d orbitals (U = 3.1 eV and J =
0.8 eV). (a) The LDA+U band structure and (b) the FS in the non-magnetic case. (c) The LSDA+U band structure and (d)
the FS with (π, π) AFM order in the CuO2 planes. In (b) and (d), the FSs are drawn in the Brillouin zone of a real-space unit
cell (0.384 × 0.387 nm2) containing a Cu atom on each CuO2 plane. Blue (red) lines are hole pockets and open orbits (electron
pockets). (e) FS pockets in (d). The α, α′, and β pocket areas are 721, 729, and 685 T, respectively. (f) Comparison with the
measured FS pocket area (660 T7) in the dashed line.


