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Based on a model appropriate for ”marginally type-II” superconducting system, we study the
dynamics of vortices with competing interactions by Langevin dynamics simulation. In addition to
pinned states and plastic flow, we find that the moving vortex system forms ordered bubble config-
urations and stripe structures, depending on pinning strength and driving force. The vortex system
exhibits a marked hysteresis in its velocity-force characteristic, which results from a dynamical stripe
reordering due to inter-vortex attraction.
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A rich variety of physical and chemical systems display self-organization and structural modulation, originating
from a compromise of the competing long-range repulsive and short-range attractive interactions1. Although the
mechanisms of the interactions may be different from system to system, these systems exhibit some common structural
characteristics, including stripes and circular droplets (bubbles) in two-dimensional systems and sheets, tubes, and
spherical droplets embedded in a homogeneous three-dimensional matrix, see, for example, Ref.1 and references
therein. The period of the modulated structures can be tuned by changing the relative strengths of the competing
interactions or by controlling external parameters such as temperature or applied magnetic or electric fields2–6.
Such modulated structures can also be found in superconducting systems: the intermediate state in type-I super-

conductors7, and the intermediate-mixed state in low-κ type-II superconductors7–10. For a type-I superconductor,
both droplet and stripe patterns are observed in a slab geometry due to the competition between the interface energy
and a demagnetizing field. For a low-κ type-II superconductor, such as Nb, V, Tc, and Pb alloys7, the two-band
superconductor MgB2

11, and the spin-triplet superconductor Sr2RuO4
12, the superconducting vortices form islands

or lamellas of regions in the Meissner state submerged in the normal regions filled with vortices, or such normal
regions surrounded by Meissner state regions. Particularly, two kinds of vortex superlattices can be found for the
low-κ superconductors, (i) the parallel stripe-like Shubnikov domains embedded in the Meissner phase for Nb single
crystals13, (ii) the ordered bubble-like Shubnikov domains embedded in a Meissner phase for high-purity Nb foil, as
shown in Fig. 4 in Ref.10. The intermediate-mixed state has been explained by the appearance of a long-range vortex
attraction that causes an S-shape (unstable) magnetization curve from which the equilibrium states are obtained by
a Maxwell construction11,14–18. The observations of bubble-like or stripelike or other irregular vortex domains indeed
show the existence of the inter-vortex attraction for low-κ type-II superconductors, but the presence of long-range
order between vortex domains means that the long-range interaction between vortices should be repulsive rather
than attractive. Therefore, to study the statics and the dynamics in the vortex systems with κ close to 1/

√
2, one

has to consider the long-range repulsion in addition to the attraction between vortices. In our previous work19, a
phenomenological model was proposed to study the static phase behaviors of the vortex system, in which the vortices
interact with each other through a short-ranged attraction and a long-ranged repulsion. This model system can
reproduce all of the well-known vortex phases such as the Abrikosov mixed phase and the intermediate-mixed phase,
depending on temperature, magnetic field and κ. However, the dynamics of the vortices with competing interactions
in a superconducting system with quenched disorders has not been investigated to the best of our knowledge. It is
not clear how the disorders affect the formation of moving states for such vortex systems, and what types of dynamic
phases exist as a function of driving force.
In this work, we study the nonequilibrium driven phases for the vortices with competing interactions at zero

temperature based on our model system with Langevin dynamics simulation. Depending on pinning strength and
driving force, we find that the vortex system displays a variety of dynamic phases: pinned state and plastic flow for
lower driving forces, and ordered moving bubbles and ordered moving stripes for larger driving forces. While the
driving force can induce order at the macro scale (which is realised through the appearance of bubbles or stripes) the
vortices inside each bubble and stripe remain disordered. We have found no evidence that the local order within each
bubble or stripe could be introduced by varying the strength of the driving force. In addition, we find that the vortex
system shows a marked hysteresis in its velocity-force characteristic. This is associated with the re-ordering of the
system from a disordered configuration (which results in slower motion) into a stripe domains (which results in faster
motion) for identical driving forces. The reordering takes place at large driving forces.
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FIG. 1: Effect of density of pinning centers (black open circles) np on the vortex (magenta solid circles) phase at fpv = 5f0
without an external driving force. The top row shows simulation results for B = 0.5Bc2 with increasing ratio np of number
pinning centers to number of vortices: (a) np = 0.1, (b) np = 0.2, (c) np = 0.5, (d) np = 1. The vortices for np = 0 form an
ordered bubble state. The bottom row shows simulation results for B = 0.65Bc20 : (e) np = 0.1, (f) np = 0.2, (g) np = 0.5, and
(h) np = 1. The vortices for np = 0 form an ordered stripe state.

The overdamped Langevin equation of motion for a vortex at position ri is
20

Fi =

Nv
∑

j

F
vv(ri − rj) +

Np
∑

k

F
vp(ri − r

p

k) + F
L = η

dri
dt

where Fi is the total force acting on vortex i, F
vv and F

vp are the forces due to vortex-vortex and vortex-pin
interactions, respectively, FL is the driving force, η is the Bardeen-Stephen friction coefficient, Nv is the number of
vortices, Np is the number of pinning centers and r

p

k is the position of the kth pinning center. The effective interaction
between two vortices is19

F vv(r) =
φ2
0s

2πµ0λ3

[

λ

r
− q exp(−r

ξ
)

]

where φ0 is the flux quantum, s is the length of the vortex, µ0 is the vacuum permeability, λ is the London penetration
depth, and ξ is the effective coherence length, The first term is a long-range repulsion via the logarithmic form
potential, which is commonly used to calculate the vortex-vortex interaction in high-κ type-II superconductors21,
and the second term is the short-ranged vortex attraction of an exponential form. The parameter q reflects the
relative strength of the attraction to repulsion interactions. We employ periodic boundary conditions and cut off the
vortex-vortex interaction potential smoothly22,23. A pinning center at position rpk exerts an attractive force on the
vortex at position ri: F

vp(ri − r
p

k) = −fpv(rik/rp) exp(−(rik/rp)
2)r̂ik, where fpv tunes the strength of this force and

rp determines its range. fpv ∝ B2
c2(1 − B/Bc2)ξ

2/κ2 as core pinning is considered24, where κ = λ/ξ. The driving

force is applied in x-direction. The average x-component of the velocities of the vortices is 〈Vx〉 = 1
Nv

∑Nv

i vxi which

is proportional to the resulting voltage. We normalize lengths by λ0, forces by f0 = (φ2
0s)(2πµ0λ

3)−1 and time by
τ0 = λη/f0. All quantities shown in the following figures are expressed in these simulation units. The equation of
motion is integrated by an Euler scheme with a normalized time step of ∆t = 0.00523. The total number of vortices
Nv = 900 is used in the calculations presented here. For larger systems, similar results are observed. We employ
q = 2.3, rp = 0.2λ, ξ = 200Å, λ = 200Å, s = 12Å, and η = 1.4 × 10−17kg/s. In all cases the vortices are randomly
distributed for the initial state of the superconducting system. We calculated the vortex phases by replacing the
logarithmic form vortex-vortex potential with the modified Bessel function of the second kind (K0(r/λ)), and found
that the simulating results for the modified Bessel function are in qualitatively agreement with those for the logarithmic
function. The simulation results in this work are applicable to two-dimensional (thin-films, stack of superconducting
layers) and quasi-two-dimensional systems (rigid vortex lines).
We start by studying the statics of the vortex state with quenched disorder and competing interactions as introduced

above. For the sake of simplicity, we demonstrate only the dependence of the equilibrium ordered bubble and stripe
states on the density of pinning centers, np = Np/Nv, as shown in Fig. 1. For small np, it can be seen that the vortex
system shows an ordered bubble state (as it would without pinning), except that a few vortices are trapped by the
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FIG. 2: Vortex configurations for different driving forces at B = 0.65Bc2 and fpv = 28.2f0 : (a) FL = 0, (b) FL = 20f0, (c)
FL = 40f0, (d) F

L = 100f0. Solid circles and open circles are respectively the vortices and the pinning centers.

pinning centers, as shown in Fig. 1a. With increasing np, more vortices are pinned, resulting in fuzzier boundaries
of the bubbles due to the attractive interactions of pinning centers nearby, as shown in Fig. 1b. As np is increased
further, the pinning centres attract vortices away from the bubbles and the gaps between the bubbles as visible in 1a)
and 1b) are increasingly populated with vortices as shown in 1c). The additional pinning centers destroy the subtle
balance of vortex-vortex repulsion and vortex-vortex attraction which is required to establish the bubble phase, and
the vortex system forms interconnected stripe-like domains, as shown in Fig. 1c. The simulation results show that
the pinning destroys the ordered bubble phase and this may explain why the disordered domains of vortices have
been frequently observed for low-κ type II superconductors7, while the hexagonally ordered bubble or ordered stripe
states were seldom probed in experiments. For still larger np, the role of pinning is dominant and thus the vortex
system forms a disordered and pinned vortex state, as shown in Fig. 1d. Similarly, Fig. 1 e-h show how the ordered
stripe state changes successively into the disordered domains and then the disordered single-vortex pinning state with
increasing np.
We next study the dynamic vortex phases of a low-κ system with quenched disorders. Fig. 2 shows the evolution

of the vortex state with driving forces at B = 0.65Bc2 and fpv = 28.2f0. At driving forces below the depinning
transition, the vortices are individually trapped by the pinning centers, showing a pinned vortex glass state as seen in
Fig. 2a. With increasing driving force magnitude, a plastic flow state appears: a part of the vortices move in preferred
channels, the others remain pinned, as shown in Fig. 2b. These two vortex states have been well observed in high-κ
systems with pure intervortex repulsion23,25–31. We thus conclude that for strong pinning and moderate driving forces
both for low-κ and high-κ vortex system the driven vortex states are dominated by pinning and that the details of
the intervortex interactions are not so important. Upon further increase of the driving force, shown in Fig. 2c, d, all
of the vortices are depinned, and form two kinds of ordered vortex structures: (i) An ordered bubble-like state for
comparatively low driving forces (see Fig. 2c); (ii) An ordered stripe-like state for comparatively high driving forces
(see Fig. 2d). We have previously shown19 that, a bubble phase will be observed if the vortex-vortex attraction is
large enough (relative to the vortex-vortex repulsion), whereas a stripe phase can be observed for a smaller vortex-
vortex attraction (see Fig. 4b in19). Thus, the occurrence of the ordered bubble state indicates that the short-range
attraction in the vortex-vortex interaction is enhanced due to pinning. Because the effect of pinning is weak for
increasing driving force, the effective short-range attraction becomes smaller at larger vortex speed. Thus, the moving
ordered bubble state will transit into a moving ordered stripe state at larger vortex speed. In addition, one can note
that the vortices inside the moving bubbles or stripes are disordered, indicating that the order of the moving vortices
in a short range is determined by pinning and order within each bubble (or stripe) cannot be introduced by a driving
force.
Now we construct the phase diagram in the driving force-pinning strength plane at B = 0.65Bc2, as shown in

Fig. 3. For weak pinning (fpv ≤ 3.2f0), the vortex-vortex interactions dominate over the disorders, so the vortex
system shows a direct phase transition from pinned ordered bubble phase to moving ordered stripe phase without
undergoing intermediate plastic motion. The precise transition driving force is more difficult to identify because of
its small magnitude (inline with 23,26). For stronger pinning (3.2f0 < fpv ≤ 16.0f0), at lower driving forces the
vortex system display a pinned vortex glass and plastic flow with increasing driving force (see Fig. 2a, b respectively).
For higher driving forces, the vortex system forms an moving ordered stripe state due to the dominating intervortex
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FIG. 3: Dynamic phase diagram for different pinning strengths and driving forces at B = 0.65Bc2. The typical structures of
these phases are shown in Fig. 2a-d.
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FIG. 4: (a) Velocity-force curve for a fixed force scanning rate dFL/dt = ±0.05(f0/t0), the density of pinning centres (black
open circles) np = 1, fpv = 10, and B = 0.2Bc2. The arrows indicate the evolution of the driving force. The inset is the
velocity-force curve for the case of pure repulsion (q = 0), suggesting that the hysteresis arises due to inter-vortex attraction.
Subfigure (b) show the vortex configuration (magenta solid circles) corresponding to labels A in the velocity-force curve shown
in (a) at FL = 8f0, and subfigure (c) shows the corresponding snapshot for label B (also at FL = 8f0).

interaction. Upon further increase of pinning strength (fpv > 16.0f0), between plastic flow and ordered stripe regimes,
there exists an hexagonally ordered bubble-like state because of the enhanced vortex-vortex attraction due to pinning.
Finally, we study the hysteretic behavior of vortex matter with competing interactions. Fig. 4(a) shows a repre-

sentative anticlockwise velocity-force curve in one upward/downward force scanning circle for B = 0.2Bc2. In order
to understand the mechanism responsible for this hysteretic behavior, we examine the vortex configurations in both
upward and downward branches at a fixed force at FL = 8f0 as shown in Fig. 4b, c. We find that the vortices are
disordered due to pinning in the upward branch, while become ordered stripe structure in the downward branch.
In fact, more pinning centers are ineffective for the vortex stripe configuration in a superconducting system with
random pinning centers, leading to a bigger vortex velocity in the downward branch or a velocity-force curve with
anticlockwise character. Then we calculate the velocity-force curve for q = 0 (other parameters are the same as those
for q = 2.3), as shown in the inset of Fig. 4(a). It can be seen that no hysteresis is observed for the pure repulsion
system32. Thus, we conclude that this hysteretic behavior arises to be due to the dynamical reordering relating to
inter-vortex attraction.
In summary, based on a model system appropriate for vortex matter in low-κ type II superconductors, we have

studied the dynamic phases at zero temperature as functions of pinning strength and driving force. In addition to
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pinned state and plastic flow for lower driving forces, we find the vortices show two distinct dynamic phases: ordered
moving bubbles and ordered moving stripes for larger driving forces. The simulation shows the vortices inside bubble
and stripe domains are disordered, indicating that order within each bubble (or stripe) cannot be introduced by a
driving force. Moreover, we find that the vortex system shows a marked hysteresis in its velocity-force characteristic,
which results from a dynamical stripe reordering due to inter-vortex attraction.
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