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We investigate the ground state of interacting spin- 1
2

fermions in 3D at a finite density (ρ ∼ k3F )6

in the presence of a uniform non-Abelian gauge field. The gauge field configuration (GFC) described7

by a vector λ ≡ (λx, λy, λz), whose magnitude λ determines the gauge coupling strength, generates8

a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel9

described by a small negative scattering length (kF |as| . 1), the ground state in the absence of the10

gauge field (λ = 0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs.11

With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS12

ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction13

that fails to produce a two-body bound state in free vacuum (λ = 0). For large gauge couplings14

(λ/kF � 1), the BEC attained is a condensate of bosons whose properties are solely determined by15

the Rashba gauge field (and not by the scattering length so long as it is non-zero) – we call these16

bosons “rashbons”. In the absence of interactions (as = 0−), the shape of the Fermi surface of17

the system undergoes a topological transition at a critical gauge coupling λT . For high-symmetry18

GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime19

of λ near λT . In the context of cold atomic systems, these results make an interesting suggestion20

of obtaining BCS-BEC crossover through a route other than tuning the interaction between the21

fermions.22
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I. INTRODUCTION24

Recent experimental progress in the generation of synthetic gauge fields1–3 has enhanced the possibilities of con-25

trolled experimental studies of outstanding problems of quantum condensed matter and even of high energy physics426

using cold atomic systems. Many theoretical works5–8 have explored the possibilities of generating and physical ori-27

gins of both Abelian and non-Abeilan gauge fields. The experimental work with synthetic gauge fields has been with28

bosonic 87Rb atoms. In a recent commentary9 , the investigation of fermions in synthetic non-Abelian gauge fields29

has been identified as a key research direction.30

The study of interacting fermions in 3D space with controlled interactions has been one of the key successes of31

cold atoms research.10–12 A particular example is the problem of the crossover from a BCS ground state with large32

overlapping pairs to a BEC of tightly bound bosonic pairs with increasing strength of attractive interactions – a33

phenomenon that was suggested many years earlier.13–15 The superfluid transition temperature on the BCS side is34

determined by the superfluid energy gap, while on the BEC side it is determined by the condensation temperature35

of the tightly bound bosonic pairs of fermions.16 A review of BCS-BEC crossover that is particularly useful in the36

context of this paper may be found in reference [17].37

An interesting question is regarding the fate of interacting fermions in the presence of a non-Abelian gauge field.38

Motivated by the fact that even a spatially uniform non-Abelian gauge field produces interesting physical effects for39

bosons,3,18,19 we focus on interacting fermions in uniform non-Abelian gauge fields.40

In a recent paper,20 two of us investigated how a uniform non-Abelian gauge field influences the bound state of two41

spin- 12 fermions interacting via a contact attraction in the singlet channel characterized by a s-wave scattering length42

as. The type of uniform non-Abelian gauge field considered in that work leads to a generalized Rashba spin-orbit43

interaction. A key finding of that work is that for high-symmetry GFCs (more precisely defined in the next section),44

a two-body bound state exists for any scattering length however small and negative. The study suggested that the45

BCS-BEC crossover is drastically affected by a non-Abelian gauge field.46

Here, motivated by the results of reference [20], we study the many-body ground state of a finite density of interacting47

fermions in a non-Abelian gauge field by means of mean field theory. At a fixed interaction (fixed scattering length as)48

however small and negative, we show that increasing the strength of a non-Abelian gauge field produces a crossover49

from a BCS superfluid (which is the ground state in the absence of the gauge field) to a BEC of bosons. Further, the50

bosons that condense to form the BEC at large gauge couplings are tightly bound pairs of fermions whose properties51

are determined solely by the non-Abelian gauge field – we have ventured to call these bosons “rashbons”. For a given52

attractive interaction (fixed as), therefore, the crossover takes the standard BCS superfluid state to a rashbon BEC.53

There is an additional feature of the crossover that is particularly noteworthy. The Fermi surface of the non-interacting54

system (as = 0−) undergoes a transition in its topology with increasing gauge-coupling strength. We show that for55

high-symmetry GFCs, the crossover regime of gauge couplings in the presence of interactions overlaps with the regime56

of topological transition of the non-interacting Fermi surface. In a sense this provides a “geometrical” view of the57

crossover.58

The background and the statement of the problem we address along with a summary of our results are given in59

Section II. The mean field formulation is detailed in Section III. Section IV describes the results in detail. The paper60

is concluded with a discussion in Section V. We recommend the reading of Section II and Section V to obtain a61

physical picture of our results.62

II. QUESTION ADDRESSED AND SUMMARY OF RESULTS63

In units where the mass of the fermions and Planck’s constant are set to unity, the hamiltonian of the fermions64

moving in a uniform non-Abelian gauge field is65

HGF =

∫
d3rΨ†(r)

[
1

2
(p1−Aµτµ) · (p1−Aµτµ)

]
Ψ(r), (1)

where Ψ(r) = {ψσ(r)}, σ =↑, ↓ are fermion operators, p is the momentum, Aµ ≡ Aµi ei, are uniform gauge fields,66

τµ (µ = x, y, z, generator index) are Pauli matrices and ei’s are the unit vectors in the i-th direction, i = x, y, z67

(spatial index). As in [20], we specialize to Aµi = λiδ
µ
i leading to a hamiltonian with a generalized Rashba spin-orbit68

interaction69

HR =

∫
d3rΨ†(r)

(
p2

2
1− pλ · τ

)
Ψ(r), (2)

where pλ =
∑
i piλiei. The vector λ = λλ̂ =

∑
i λiei describes a gauge field configuration (GFC) space as depicted70

in fig. 1; we call λ = |λ| as the gauge-coupling strength. GFCs have been classified in [20] as prolate, spherical, oblate71
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FIG. 1. (Color online) Gauge field configuration (GFC) space. The non-Abelian gauge field of eqn. (2) is described by a vector

λ = (λx, λy, λz) = λλ̂, where λ = |λ| is the gauge-coupling strength and λ̂ is a unit vector. High-symmetry GFCs such as

extreme prolate (EP, λ̂ = (0, 0, 1)), spherical (S, λ̂ = 1√
3
(1, 1, 1)) and extreme oblate (EO, λ̂ = 1√

2
(1, 1, 0)) are as shown.

and generic. Of particular interest are the high-symmetry configurations shown in fig. 1 called extreme prolate (EP),72

spherical (S) and extreme oblate (EO).73

The one-particle states of HR are74

|kα〉 = |k〉 ⊗ |αk̂λ〉 (3)

that disperse as75

εkα =
k2

2
− α|kλ| (4)

where k-the momentum, and α = ±1-the eigenvalues of the helicity operator p̂λ · τ , are the good quantum numbers.76

The quantity kλ is defined analogously with pλ in eqn. (2).77

The interaction between the fermions is described by a contact attraction in the singlet channel78

Hυ = υ

∫
d3r ψ†↑(r)ψ†↓(r)ψ↓(r)ψ↑(r). (5)

The endemic ultraviolet divergence of the theory described by the hamiltonian79

H = HR +Hυ (6)

is handled21 by introducing an ultraviolet momentum cutoff Λ. This entails characterization of the attraction by a80

physical parameter that describes the low energy scattering properties while making the parameter υ depend on Λ.81

More precisely,82

1

υ
+ Λ =

1

4πas
(7)

where as is the s-wave scattering length in free vacuum, i. e., when the gauge field is absent (λ = 0). In free vacuum83

(3D) only an attraction larger than a critical strength can produce a two-particle bound state. This is embodied in84

the fact that for as < 0 (BCS side) there is no two-body bound state; a bound state develops only as as → −∞, or85

1
as
→ 0− (resonance). For as > 0 (BEC side) a bound state is obtained with a binding energy Eb = 1

a2s
.86
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GFC asc

as < 0 Resonance as > 0

λ|as| � 1 1/(λas) = 0 λas � 1

Eb ηt Spin Structure Eb ηt Spin Structure Eb ηt Spin Structure

EP −∞ No bound state 0
1

2
Bi-axial nematic (BW)

1

a2s
0 singlet

S 0−
λ4a2s
3

1

2
Spherical

λ2

3

1

4
Spherical

1

a2s
+

2λ2

3
0 singlet

EO 0−
2λ2

e2
e
− 2

√
2

λ|as|
1

2
Uni-axial nematic (ABM) 0.22λ2 0.28 Uni-axial nematic (ABM)

1

a2s
+
λ2

2
0 singlet

TABLE I. Summary of the two-body problem20 in high-symmetry GFCs (λ > 0). Eb is the binding energy and ηt is the
triplet content (not reported in reference [20]). The bi-axial spin nematic structure is similar to the BW (Balian-Werthamer)
or B-phase15 of 3He, and the uni-axial spin nematic structure to that of the ABM (Anderson-Brinkman-Morel) or A-phase15 of
3He. The values of Eb and ηt at resonance, which correspond to the properties of the rashbon (for S and EO cases), are exact
results, while others are asymptotic values in the regimes indicated.

A. Summary of the two-body problem20
87

A uniform non-Abelian gauge field brings about remarkable changes in the two-body problem as shown in reference88

[20]. Most vividly, for high-symmetry GFCs such as S and EO, the critical scattering length asc required for the89

formation of a bound state vanishes, i. e., there is a two body bound state for any scattering length however small90

and negative (deep BCS side). The size of the binding energy of the bound state depends on the GFC. On the91

BCS side, the binding energy has an exponential dependence on as and λ for the EO GFC while for the S GFC this92

dependence is algebraic. Another interesting aspect that emerges is the symmetry of the bound-state wave function.93

In a non-Abelian gauge field, the normalized bound-state wave function is made up of spatially symmetric singlet and94

spatially antisymmetric triplet pieces95

|ψb〉 = |ψs〉+ |ψt〉. (8)

Time reversal symmetry of the hamiltonian is preserved and this two-body-bound-state wave function picks up a96

nematic spin structure consistent with the symmetry of the GFC. The quadrupole operator is defined as Qαβ =97

1
2

(
SαSβ + SβSα

)
− 〈S

2〉
3 δαβ where Sα are spin operators. A nematic state has 〈Sα〉 = 0, while 〈Qαβ〉 6= 0. In the98

present context, the singlet piece of the two-body wave function does not contribute to the quadrupole moment, while99

the triplet wave function has 〈Sα〉 = 0, but 〈Qαβ〉 6= 0. The triplet content of the wave function is characterized by a100

parameter101

ηt = 〈ψt|ψt〉. (9)

which, therefore, is also a measure of the nematicity.102

The binding energy Eb, the triplet content ηt and the spin symmetry of the two-body wave function for different103

GFCs are summarized22 in Table I. The gist of reference [20] is that high-symmetry GFCs induce high degeneracy104

that enhances the low-energy (infrared) density of states and this promotes bound state formation. Colloquially,105

high-symmetry GFCs are “attractive interaction amplifiers”. An aspect that is important in the discussion below is106

that the physics of the two-body problem in the presence of the gauge field (λ > 0) is completely determined by the107

dimensionless parameter λas. All aspects of the solution depends only on λas when length and energy are respectively108

measured in units of λ−1 and λ2. This is true for any GFC (except EP GFC) as is evident from Table. I The EP GFC109

is an exception because the kinetic energy content inside the non-interacting Fermi sea is unaltered by the increase110
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(a) λ = 0
(b) 0 < λ < λT

(c) λ = λT
(d) λ > λT

FIG. 2. (Color online) Fermi surface topology transition (FSTT) with increasing gauge-coupling strength for EO GFC. (a)
Two overlapping spherical Fermi surfaces in the absence of a gauge field (b) A gauge coupling smaller than λT : The union of
the + and − Fermi surfaces forms a spindle torus. The apple of the spindle torus is the + helicity Fermi surface which is shown
with a blue border, and the lemon of the spindle torus is the − helicity Fermi surface which is shown with a red border. (c)
The gauge coupling that obtains the FSTT. The + helicity Fermi surface is a horn torus, while the − helicity Fermi surface
vanishes. (d) For a gauge coupling larger than λT , there is only the + helicity Fermi surface which is a ring torus. Note that
all the figures show only a sectioned half of the Fermi surfaces.

of λ. Therefore, the gauge coupling λ stays neutral in the competition between kinetic energy and the attractive111

interaction. This is the reason why the energetics of the two-body problem is unaffected by the presence of an EP112

gauge field (see Table. I).113

B. Synopsis of the new results of this paper: Evolution of the many-body ground state with gauge coupling114

In this paper we investigate the system described by the hamiltonian of eqn. (6) at a finite density ρ of the fermions.115

The finite density introduces an additional energy scale which can be conveniently taken to be the Fermi energy EF116

(and an associated Fermi wave vector kF ) in the absence of the gauge field (λ = 0)117

EF =
k2F
2

=
1

2
(3π2ρ)

2/3
. (10)

At finite densities of fermions, therefore, the ground state of the system (zero temperature) is determined by the118

dimensionless parameters kFas, λ/kF , and the direction λ̂ in GFC space. We work at fixed density and kFas, and119

study the evolution of the ground state with λ/kF for different λ̂s corresponding to high-symmetry GFCs.120

The possibility of interesting physics in this system is suggested by the following observation which provided one121

of the motivations for this work. Consider a system of non-interacting (NI) fermions (Hυ = 0 in eqn. (6)). In the122

absence of a gauge field (λ = 0), the ground state has a chemical potential EF and is described by two identical filled123

Fermi seas bounded by spherical Fermi surfaces of radius kF – one each for ↑ and ↓ spins. In the presence of the gauge124

field (λ 6= 0), the helicity α is the good quantum number along with momentum (see eqn. (3)), and hence the ground125

state will be two Fermi seas, one for each helicity. The chemical potential23 now depends on λ through a function126

µNI(λ) that is determined by λ̂. Both of the Fermi seas are generically non-spherical with a shape determined by127

λ̂. Since the one-particle states with same momentum but with opposite helicities are non-degenerate (see eqn. (4)),128

the Fermi surfaces of different helicities are not identical and evolve differently with increasing λ (at a fixed density129

ρ). The most interesting aspect is that since the + helicity state is lower in energy than the − helicity one for all130

momenta, upon increasing λ, the volume enclosed by the + helicity Fermi surface increases at the expense of that of131

the − helicity Fermi surface. Matters come to a head at a critical gauge coupling λT (which depends on λ̂) where the132

− helicity Fermi sea ceases to exist since the chemical potential µNI(λ) falls below the bottom of the − helicity band.133

Thus, for λ ≥ λT the ground state is a Fermi sea of only + helicity. This is illustrated for the EO GFC in fig. 2. The134

values of λT determined by the density of particles for different high-symmetry GFCs are given in Table II; it is to be135

noted that in all cases λT is of order kF . Another aspect to be noted is that there is a change in the topology of the136

+ helicity Fermi surface at λT . We call this the “Fermi surface topology transition” (FSTT) – hence the subscript T137

in λT . For example, in the EO case, the genus of the + helicity Fermi surface changes from zero (homeomorphic to138

a sphere) to unity (homeomorphic to a torus) at λT as illustrated in fig. 2. We emphasize here that our use of the139
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GFC λT

λ� λT λ� λT Crossover to

Before FSTT After FSTT rashbon-BEC

µ ηt Spin Structure µ ηt Spin Structure as λ→∞?

EP kF ≈ EF ∝ λ2 Bi-axial nematic ≈ EF
1

2
Bi-axial nematic No

S
√
3

2(2/3)
kF ≈ µNI(λ) (eqn. (34)) ∝ λ2 Spherical ≈ −λ

2

6
≈ 1

4
Spherical Yes

EO
(

8
√
2

3π

) 1
3
kF ≈ µNI(λ) (eqn. (37)) ∝ λ2 Uni-axial nematic ≈ −0.11λ2 ≈ 0.28 Uni-axial nematic Yes

TABLE II. Summary of the properties of the superfluid ground state for two regimes of the gauge-coupling strength λ. The
results shown here are for a weak attractive interaction (as < 0, kF |as| � 1). µ is the ground state chemical potential and ηt
is the triplet content of the pair wave function. Well before the FSTT (λ� λT ), the ground state is a BCS superfluid. In the
regime (λ� λT ), for the S and EO GFCs, the chemical potential is close to half of the rashbon energy (see Table. I) and the
pair wave function attains the same triplet content as that of the rashbon, clearly indicating a crossover from a BCS superfluid
to a rashbon condensate. Any GFC except EP produces a BCS - rashbon BEC crossover.

phrase “transition” is not to suggest that an order parameter emerges from any broken symmetry for λ > λT , rather140

it connotes a change in the topology of the Fermi surface and the concomitant low energy excitations. For λ < λT ,141

there are low energy excitations of both helicities, while for λ > λT low energy excitations are only of the + helicity.142

What happens in the presence of interactions (Hυ 6= 0 in eqn. (5))? Consider an interaction with a small negative143

scattering length (kF |as| � 0, deep BCS side). For λ � λT , the ground state is a superfluid with large overlapping144

pairs and an exponentially small excitation gap. The chemical potential of this state is nearly unaffected and is145

µNI(λ), that of the non-interacting system in a gauge field. The only qualitative difference from the usual s-wave146

BCS state is that the pair wave function now has a small triplet content and an associated spin nematicity induced147

by the gauge field. This picture changes drastically in the case of high-symmetry GFCs (such as S and EO) when148

the gauge-coupling strength λ is tuned past λT . The key new finding of this paper is that for high-symmetry GFCs,149

a BEC of tightly bound pairs is obtained for λ � λT even with a small negative scattering length. In other words,150

one can engineer a BCS-BEC crossover with a high-symmetry GFC by increasing the gauge-coupling strength even151

with a very weak attractive interaction that is unable to produce a two-body bound state in free vacuum. This result152

arises from the fact that for λ� λT , the size of the two-body bound-state wave function (see Table I) becomes smaller153

than the inter-particle spacing. The fermions therefore form tightly bound pairs which then Bose condense in the zero154

center of mass momentum state. As is evident from the discussion, the physics of these results owes to the character155

of high-symmetry GFCs to act as attractive interaction amplifiers. Indeed, as λ/λT →∞ the chemical potential tends156

to that determined by the two-particle bound-state energy. Since λ|as| → ∞ (fixed as), the nature of the two body157

bound state obtained is identical to that obtained with a resonant scattering length in the presence of the gauge field158

as tabulated in Table I. The properties of this bosonic bound state of two fermions is determined solely by the Rashba159

gauge field; we call these emergent bosons as “rashbons” (see Section IV B and second paragraph of Section V for160

details). The BEC that is obtained for λ� λT is a rashbon condensate. The results for various GFCs are tabulated161

in Table II which is a summary of this paper.162

In the remaining sections we illustrate these conclusions by a mean field theory of the superfluid ground state of this163

interacting fermion system. Mean field theory is known to give a qualitatively correct description for the superfluid164

ground state.24165

III. MEAN FIELD THEORY166

We now describe the details of the mean field analysis of the superfluid ground state of fermions in a non-Abelian167

gauge field. This analysis involves certain straightforward manipulations beyond the standard formulation,17 and168

hence presented in detail. The present analysis can treat any GFC. Results for specific GFCs of interest will be169

presented in the next section.170

To perform a mean-field analysis of the superfluid ground state we recast the interaction term Hυ in a convenient171
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form172

Hυ =
υ

2

∫
d3r S†(r)S(r), (11)

where S†(r) is the singlet creation operator173

S†(r) =
1√
2

(
ψ†↑(r)ψ†↓(r)− ψ†↓(r)ψ†↑(r)

)
. (12)

The interaction in terms of the singlet operators can be cast in momentum space174

Hυ =
υ

2V

∑
q

S†(q)S(q), (13)

where V is the volume of the system and the mean-field ansatz corresponds to taking175

〈S(q)〉 = 〈S〉δq,0, (14)

where 〈S〉 = 〈S(0)〉 with176

S†(0) =
1√
2

∑
k

(
c†k↑c

†
−k↓ − c

†
k↓c
†
−k↑

)
. (15)

The fermion operators c†kσ are defined by177

c†kσ =
1√
V

∫
d3r e−ik·rψ†σ(r). (16)

It is now convenient to sum only over half of the allowed k values in eqn. (15)178

S(0) =
√

2

′∑
k

(
c†k↑c

†
−k↓ − c

†
k↓c
†
−k↑

)
(17)

as is here and henceforth indicated by the prime over the summation symbol. The advantage of this exercise is that179

the operator S(0) can be written in the helicity basis as180

S(0) =
√

2

′∑
kα

αc†kαc
†
−kα (18)

Introducing a chemical potential µ, we obtain the mean-field Hamiltonian as181

HMF =
∑
kα

ξkαc
†
kαckα + ∆

′∑
kα

αc†kαc
†
−kα

+ ∆

′∑
kα

αc−kαckα −
V∆2

υ

(19)

where c†kα are electron operators associated with the one-particle helicity eigenstate (eqn. (3)), ∆ = υ〈S〉√
2V

is the order182

parameter (taken to be real), and ξkα = ε̃kα − µ. Here ε̃kα is εkα referred to the bottom of the + helicity band.183

Noting inversion symmetry, ξ−kα = ξkα, eqn. (19) can now be recast as184

HMF =

′∑
kα

(
c†kα c−kα

) [ ξkα α∆
α∆ −ξkα

](
ckα
c†−kα

)

+

′∑
kα

ξkα −
V∆2

υ

(20)

which now has the standard form except for the fact that the summation over k is carried out only over half of the185

momentum space and a sum over the two helicities is taken.186
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The hamiltonian in eqn. (20) can now be diagonalized in terms of the Bogoliubov quasiparticle operators as187

HMF =

′∑
kα

Ekα

(
γ†kα1γkα1 + γ†kα2γkα2

)
+

′∑
kα

(ξkα − Ekα)− V∆2

υ

(21)

where Ekα =
√
ξ2kα + ∆2 (∆ is also the excitation gap), and188

γkα1 = ukαckα − αvkc†−kα
γ†kα2 = αvkαckα + ukc

†
−kα

(22)

with189

u2kα =
1

2

(
1 +

ξkα
Ekα

)
, v2kα =

1

2

(
1− ξkα

Ekα

)
. (23)

A standard analysis now leads to the gap equation190

− 1

υ
=

1

V

′∑
kα

1

2Ekα
. (24)

Noting the inversion symmetry of the problem and using the renormalization of the interaction, the gap equation191

becomes192

− 1

4πas
=

1

2V

∑
kα

(
1

2Ekα
− 1

k2

)
. (25)

The number equation is193

ρ =
1

V

∑
kα

1

2

(
1− ξkα

Ekα

)
. (26)

The solution of eqn. (25) along with the number equation (eqn. (26)), determines the chemical potential µ and the194

gap parameter ∆ in the ground state.195

The ground state |ΨG〉 of the system is given by196

|ΨG〉 =

′∏
kα

(ukα + αvkαc
†
kαc
†
−kα)|0〉 (27)

where |0〉 is the fermion vacuum. This can be (up to a normalization) be re-written as197

|ΨG〉 = eP
†
|0〉 (28)

where P † is the pair creation operator given by198

P † =

′∑
kα

αφkαc
†
kαc
†
−kα (29)

where φkα =
vkα
ukα

. The singlet and triplet parts of the pair can be extracted by noting that199

P † =

′∑
k

φs(k)
(
c†k+c

†
−k+ − c

†
k−c

†
−k−

)
︸ ︷︷ ︸

singlet

+

′∑
k

φt(k)
(
c†k+c

†
−k+ + c†k−c

†
−k−

)
︸ ︷︷ ︸

triplet

(30)
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EP, kFas = −1

 0

 0.25

 0.5

 0  1  2  3

η t

λ/kF

λT

NI
MFT

FIG. 3. (Color online) Evolution of the triplet content ηt of the pair wave function as a function of the gauge-coupling strength
λ for an EP GFC with kF as = −1. The evolution of the same quantity of the non interacting system (as = 0−) is also shown
for comparison.

with200

φs(k) =
1

2
(φk+ + φk−)

φt(k) =
1

2
(φk+ − φk−) .

(31)

This analysis sheds light on how an attraction in the singlet channel in presence of a non-Abelian gauge field201

can produce a triplet piece in the pair wave function. The triplet content ηt is now defined as the weight of the202

triplet piece of the pair creation operator in eqn. (30). One can also charecterize this by an expectation value of203

the quadrupole operator of reference [22]. However, the definition for the triplet content ηt given above provides a204

physically transparent and a simple measure of the quantity of interest.205

A remark about the Bogoliubov quasiparticles obtained in eqn. (22) is in order. It appears that for each helicity206

there are two branches of quasi-particle excitations labeled 1 and 2. Ostensibly, therefore, there are four branches207

of quasiparticles which at the first sight is surprising. Note, however, that these four branches are defined only in208

half of the momentum space. If the Bogoliubov excitations were defined for all k, they will not be independent, for209

example, γ†k+2 ≡ γ
†
−k+1. This is the motivation behind introduction of the sum over one half of the momentum space210

in eqn. (17). It is now clear that the formulation recovers the correct count of excitations, i.e., within the present211

formulation, two excitations for each k in momentum space is recovered as four excitations for each k in half the212

momentum space.213

IV. RESULTS FOR SPECIFIC GAUGE FIELD CONFIGURATIONS214

In this section, we shall present results of how the ground state of the system evolves with λ for different high-215

symmetry GFCs. We shall be concerned only with negative scattering lengths (as < 0) since this is the regime which216

has the most interesting physics. In the absence of the gauge field (λ = 0) there is no two-body bound state, and217

the usual BCS superfluid ground state17 |BCS0〉 is obtained. For small λ, i. e., λ � λT , we expect and find the218

ground state |ΨG〉 to be qualitatively close to |BCS0〉 state with an exponentially small excitation gap and a chemical219

potential essentially unaltered from that of the non-interacting problem (µNI(λ)). Except for the EP GFC, when λ220

is increased beyond λT , the chemical potential µ begins to fall and approaches −Eb/2, the value set by the energy of221

the two-body bound state. This signals the crossover to the BEC state. Additionally, the pair wave function defined222

by eqn. (29) approaches the wave function of the two-body bound state.223

A summary of the results for various GFCs discussed below is given in Table. II.224

A. Extreme prolate (EP) GFC225

This GFC with λ = (0, 0, λ) has an FSTT at λT = kF . Before FSTT (λ < λT ), the + helicity Fermi sea consists of226

the volume enclosed by two intersecting spheres of radius kF centered around (0, 0,±λ), while the − helicity Fermi227

sea is the lens shaped region formed by the volume common to both spheres. When λ exceeds λT the − helicity Fermi228

surface vanishes, and the + helicity Fermi sea is made of two disjoint spheres centered at (0, 0,±λ). The chemical229

potential µNI(λ) = EF , i. e., is unaffected by the EP gauge field.230
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For kF |as| � 1, the standard result17 for the excitation gap is231

∆

EF
≈ 8

e2
e
− π

2kF |as| (32)

and the chemical potential is232

µ ≈ EF . (33)

Not unexpectedly, the excitation gap ∆ and the chemical potential are independent of λ. The ground state for any233

λ is a superfluid state with large overlapping pairs, and there is no BCS-BEC crossover for the EP GFC. There234

is, however, a qualitative change in the spin structure of the pair wave function. With increasing λ, the pair wave235

function develops a triplet content ηt (see fig. 3) which attains a value close to 1
2 at λ = λT and stays so with further236

increase of λ. The physics behind this result can be traced to the speciality EP GFC discussed earlier.237

It must be noted that the non-interacting ground state also has a triplet content (see Fig. 3). As is evident (see238

eqn. (30)), this arises from the fact that the + helicity Fermi sea is different (and larger) than the − helicity Fermi239

sea. The triplet content of the non-interacting system increases monotonically with λ and attains a value of 1
2 at240

λ = λT and remains at this value for any larger λ. As expected, in the presence of an attractive interaction in the241

singlet channel (as < 0), the pairs have a triplet content less than that of the non interacting system.242

We note that the qualitative nature of the results for negative scattering lengths (as < 0) of larger magnitude are243

similar to those for kF |as| � 1.244

B. Spherical (S) GFC245

When λ = λ√
3
(1, 1, 1) a spherical (S) GFC is obtained. Starting from two identical overlapping spheres at λ = 0,246

the non-interacting Fermi surfaces of the two helicities continue to be spheres with their centers at the origin of the247

momentum space for 0 < λ < λT . Here λT =

√
3

22/3
kF . When λ � λT , the chemical potential of the non-interacting248

system depends on λ as249

µNI(λ)

EF
= 1− 1

2
1
3

(
λ

λT

)2

(λ� λT ). (34)

In this regime, the radius of the + helicity Fermi surface is larger than that of the − helicity Fermi surface. At the250

FSTT, the − helicity Fermi surface vanishes and ceases to exist for all λ ≥ λT . After the FSTT, the + helicity Fermi251

sea is “a sphere with a hole”, i. e., a region bounded by two concentric spherical Fermi surfaces. For λ � λT the252

chemical potential of the non-interacting system goes as253

µNI(λ)

EF
=

2
8
3

9

(
λT
λ

)4

(λ� λT ). (35)

Consider now the situation when kF |as| � 1. When λ = 0, the usual BCS state with properties given by eqn. (32)254

and eqn. (33) is the ground state. For λ � λT , µ is very nearly equal to that given by eqn. (34); the gap equation255

can be solved in this regime to obtain an analytical approximation for the gap as256

∆ =
8µNI(λ)

exp
(

12µNI(λ)
6µNI(λ)+λ2

) exp

(
−

3π
√
µNI(λ)√

2|as|(6µNI(λ) + λ2)

)
. (36)

Fig. 4(a) and (b) show, respectively, the numerical solutions of the chemical potential and gap as a function of λ.257

Fig. 4(a) also shows the non-interacting chemical potential, and the two-body energy −Eb/2 (which depends on λ and258

as only). As is evident the chemical potential µ is identical to the non-interacting value µNI(λ) for λ� λT . There is259

also excellent agreement for the gaps obtained from the numerical solution with the analytical approximation given260

in eqn. (36). When λ approaches λT the chemical potential begins to fall below µNI , and on further increase of λ261

(λ & λT ), the chemical potential tends to that set by the two-body problem. This clearly signals a crossover from the262

BCS like state for λ� λT to a BEC state where the fermions form tightly bound bosonic pairs which then condense263

in the zero center of mass momentum state.264

Further corroboration of the crossover to the BEC like state with increasing λ can be obtained by a study of265

the triplet content ηt which is shown in Fig. 4(c). Again, ηt of the non-interacting system monotonically increases266
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S, kFas = −1
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 0.25

 0.5
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∆
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FIG. 4. (Color online) Evolution of the ground state of a collection of interacting fermions (kF as = − 1
4
) with gauge-coupling

strength λ for the S GFC. (a) Chemical potential obtained from a numerical solution of mean field theory (MFT) is compared
with the chemical potential of the non interacting system (NI) and that set by the binding energy of the two-body problem
(−Eb/2). For λ . λT the chemical potential is indistinguishable from that of the non-interacting system. For λ & λT the
chemical potential approaches the two body value indicating a crossover to a BEC. (b) Evolution of the numerically obtained
mean field energy gap ∆ with the gauge-coupling strength λ. The analytical approximation (eqn. (36)) for λ � λT is also
shown and is indistinguishable from the numerical result. (c) The dependence of the triplet content (ηt) of the pair wave
function defined in eqn. (29) on the gauge coupling strength. This is compared with the same quantity of the non-interacting
system (NI) and with that of the wave function of the two-body bound state. It is seen that the pair wave function evolves to
two-body bound-state wave function.

and attains a value of 1
2 at λT . The triplet content of the superfluid pair, as expected, is less than that of the267

non-interacting system, but has a similar qualitative behavior as the NI case in the regime λ � λT . The triplet268

content attains a maximum at a λ close to λT and then begins to fall. On further increase of λ, ηt approaches that269

of the two-body bound-state wave function, demonstrating again that the pair wave function tends to the two-body270

bound-state wave function. We also see that λ = λT marks the crossover point, i. e., the crossover regime is precisely271

the regime of λ where change in the topology of the non-interacting Fermi sea takes place.272

It is particularly interesting to study the BEC state that is attained when λ→∞. The key point as noted in Section273

II is that the physics of the two-body bound state is determined by the dimensionless parameter λas (see Table. I).274

Therefore, as λ→∞, the parameter 1
λas
→ 0. Thus the state that is obtained is same as that obtained for the two-275

body bound state with a resonant scattering length in the presence of the gauge field (λ > 0) (Table. I)! Therefore276

the properties of the BEC for λ → ∞ are completely determined by λ, independent of the scattering length (as long277

as it is non vanishing, see Fig. 5), i. e., the system is a collection of bosons whose properties are determined solely278

by the Rashba interaction. Hence we call this tightly bound bosonic state of two fermions as “rashbon”. Rashbon is279

a bound state of two fermions in a Rashba gauge field (λ > 0) at resonant scattering length ( 1
as

= 0).280
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S GFC

 0.25

 0.29

 0.33

 15  30  45  60  75

η t
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µ
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-1/4
-1/2

-1

-2
-4
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FIG. 5. (Color online) Dependence of chemical potential (µ) and triplet content (ηt) on gauge-coupling strength λ (S GFC) in
the λ� λT regime, for various scattering lengths as. (a) Chemical potential, for all scattering lengths, asymptotically attains
the value set by the rashbon energy (see Table I) as λ/kF →∞. (b) Triplet content also attains the rashbon value independent
of the scattering length.

C. Extreme oblate (EO) GFC281

The evolution of the non interacting Fermi surfaces for this GFC (λ = λ√
2
(1, 1, 0) is shown in fig. 2. The non-282

interacting chemical potential in the regime λ� λT is283

µNI(λ)

EF
= 1−

(
4

3π

) 2
3
(
λ

λT

)2

(λ� λT ) (37)

and that in the regime λ� λT is284

µNI(λ)

EF
=

(
4

3π

) 2
3 λT
λ

(λ� λT ). (38)

To illustrate that the qualitative nature of the crossover is unaltered by the size of the scattering length, we study285

this GFC at the resonant scattering length 1/kFas = 0. The results are shown in fig. 6. These results clearly illustrate286

a crossover from the resonant superfluid (in the absence of the gauge field) to a rashbon BEC. The crossover obtained287

at resonance is “smoother” than that for kF |as| � 1.288

It is also interesting to discuss the dispersion of the Bogoliubov quasiparticles with particular focus on the “topology289

transition” of their dispersion (which takes place for all GFCs). The term “transition” is used in the same sense as290

that in the non-interacting case (FSTT) and does not, again, indicate the emergence or vanishing of a new order291

parameter. At the transition, the topology of the constant-energy surfaces of the quasiparticles in k space changes.292

This change in topology is also accompanied by low energy excitations of only the + helicity. To this end, we introduce293

the gauge-coupling strength λB at which the transition occurs. For a non-positive scattering length (as < 0), the294

gauge-coupling strength at which the chemical potential µ(λ) equals that of the non-interacting system at the FSTT295

defines λB , i. e.,296

µ(λB) = µNI(λT ) (39)

Note that λB , in general, depends on the scattering length as with λB ≈ λT when kF |as| � 1. Fig. 7 shows the297

evolution of the quasiparticle dispersion with increasing gauge-coupling strength. When λ < λB , we see that there are298
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FIG. 6. (Color online) Evolution of the ground state of a collection of resonantly interacting fermions ( 1
kF as

= 0) with gauge-

coupling strength λ for the EO GFC. (a) Chemical potential obtained from a numerical solution of mean field theory (MFT)
is compared with the chemical potential of the non interacting system (NI) and that set by the binding energy of the two-body
problem (−Eb/2). For λ . λT the chemical potential is changed significantly from the NI value due to large interactions.
For λ & λT the chemical potential approaches that set by the rashbon value. There is a crossover from a resonant superfluid
(at λ = 0) to a rashbon BEC as λ/kF → ∞. (b) Evolution of the numerically obtained mean field energy gap ∆ with the
gauge-coupling strength λ. (c) The dependence of the triplet content (ηt) of the pair wave function defined in eqn. (29) on the
gauge-coupling strength. The triplet content of the pair wave function evolves to that of the rashbon.

low lying quasiparticle excitations of both helicity. At λ = λB , the low lying − helicity excitation appears at k = 0,299

and for λ > λB , the there are no low-lying excitations corresponding to − helicity. It is evident from Fig. 7 that there300

is a transition in the topology of the dispersion of the Bogoliubov quasiparticles at λB . Clearly, this can be traced to301

the FSTT, and indeed for kF |as| � 1, this transition in the quasi particle spectrum very nearly coincides with FSTT.302

V. SUMMARY AND DISCUSSION303

Here we summarize the work carried out and the new results of this paper:304

1. We have studied, using mean field theory, the evolution of the many body ground state wave function of a finite305

density of interacting spin- 12 fermions in a non-Abelian gauge field with increasing gauge coupling.306

2. We show that a non-Abelian gauge field, which produces a spin-orbit coupling of the Rashba type, engenders307

a crossover from a BCS ground state to a BEC ground state of bosons even for a weak attractive interaction308

(small negative scattering length).309
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(b) 0 < λ < λB
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EkΑ

(c) λ = λB

k

EkΑ

(d) λ > λB

FIG. 7. (Color online) Evolution of the Bogoliubov quasiparticle dispersion with gauge coupling λ. Solid lines (red) correspond
to + helicity quasiparticles, while the dashed (blue) ones are for − helicity. The shading represents occupied states. The
horizontal lines mark the chemical potential. The gauge coupling λB is that at which the chemical potential µ equals that of
the non-interacting system at FSTT (µ(λB) = µNI(λT )). (a) The standard BCS dispersion in the absence of the gauge field.
(b) The gap of excitation of quasiparticles for both helicities are equal. (c) Transition point in the topology of the Bogoliubov
dispersion (d) The negative helicity quasiparticles have a higher gap; low lying quasiparticles are only of + helicity. All the
dispersions shown are for the EO GFC with kF as = −1 for excitation momenta along (1, 0, 0). The critical gauge coupling in
this case is λB ≈ 1.03 kF .

3. For large gauge couplings, the BEC that forms is a condensate of bosons whose properties are determined310

entirely by the Rashba gauge field (and not by any other scale in the system). These bosons have many features311

different from bound bosonic pair in free vacuum (no gauge field) and we have called them “rashbons” to bring312

out this point clearly.313

4. We demonstrate that in the absence of interactions the Fermi surface of the system undergoes a topology change314

at a critical value of gauge coupling. We call this the Fermi surface topology transition (this is not a phase315

transition with an associated order parameter) since the genus of the Fermi surface changes at the critical gauge316

coupling. We show that for weak attractive interactions, the regime of the crossover from the BCS to BEC317

occurs around the critical gauge coupling that causes the Fermi surface topology transition.318

5. These results make a novel suggestion of obtaining a BCS-BEC crossover through a new route i. e., by tuning319

the spin-orbit interaction.320

We conclude the paper with further discussion of our results. On the BCS side (kF |as| � 1 and λ � λT ), the321

transition temperature will be determined by the zero temperature gap which we have calculated in this paper. On322

the rashbon BEC side, the transition temperature will be determined by the mass of these emergent bosons25 which323

will be renormalized by the gauge field (and not twice the bare fermion mass).324

As noted earlier, the rashbon is a bound state of two fermions in a Rashba gauge field (λ > 0) when the s-wave325

scattering length is infinity, i.e., at resonance. This two-fermion bound state exists for all GFCs except the EP GFC326

and has a spin structure determined by λ̂ of the GFC (see the “resonance” column of Table. I). As is evident this327

state is not rotationally symmetric – it is an “anisotropic particle” that emerges. It is also interesting to contrast the328

rashbon state obtained in a Rashba gauge field (λ > 0) with the two-body quasi-bound state obtained in free vacuum329

(λ = 0) at resonance. In the latter case, the binding energy is zero, and the state is scale free with a singlet spin330

structure. This is to be contrasted with the rashbon state whose binding energy is λ2 times a dimensionless number331

that depends on λ̂. Indeed, the rashbon state is not scale free – the wave function in the relative coordinate of the332

two fermions dies exponentially with a scale λ−1 as noted in reference [20].333

For a generic GFC, it is known that the critical scattering length asc required to induce a bound state is negative334

and finite20 and is given by asc = F(λ̂)
λ where F is a dimensionless function. For a given as < 0, this corresponds335

to a critical gauge-coupling strength λc =

∣∣∣∣∣F(λ̂)

as

∣∣∣∣∣. The crossover with increasing λ is then governed by the relative336

magnitudes of λT and λc. If λc . λT , the crossover regime coincides with the regime of the FSTT. On the other hand337

if λc � λT , the crossover regime is centered around λ ≈ λc. In any case, for λ� max (λT , λc) the ground state will338

be a condensate of rashbons determined by the GFC in question. It is evident that except for the EP GFC, every339

other GFC will support a BCS-rashbon BEC crossover.340

We now discuss the situation with a small positive scattering length with kFas � 1. In absence of a gauge field,341

the ground state is a BEC of bosonic pairs of fermions with mass (nearly) twice that of the fermion mass. In the342

presence of the gauge field, this BEC will evolve to the rashbon BEC as λ → ∞, i.e, there is a BEC-rashbon BEC343

crossover.344
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It is also interesting to discuss the issue of gauge invariance in the context of synthetic gauge fields. It must be noted345

that the experimental synthetic gauge fields1–3 make a particular gauge choice, i. e., they are an implementation of a346

particular gauge. Any other gauge field that is “gauge related” will produce the same physical results. In our case all347

gauge fields that are related by a SU(2) gauge transformation to the ones that are considered here will produce same348

physical results as found here.349

The authors are not aware of any experimental realization of synthetic gauge fields in fermionic systems. The350

natural question that arises is if the parameter regime of λ & λT with a high-symmetry GFC can be realized in351

experiments. We do hope that our paper provides the motivation for this direction of experimental research.352
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