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Motivated by recent numerical results, we study the quantum phase transitions between Z2 spin
liquid, Néel ordered, and various valence bond solid (VBS) states on the honeycomb and square
lattices, with emphasis on the staggered VBS. In contrast to the well-understood columnar VBS
order, the staggered VBS is not described by an XY order parameter with ZN anisotropy close
to these quantum phase transitions. Instead, we demonstrate that on the honeycomb lattice, the
staggered VBS is more appropriately described as an O(3) or CP(2) order parameter with cubic
anisotropy, while on the square lattice it is described by an O(4) or CP(3) order parameter.

PACS numbers:

I. INTRODUCTION

Exotic criticality, in particular transitions which vio-
late the Landau rules for continuous phase transitions, is
now believed to be possible and perhaps even prevalent
at quantum critical points. The best-studied example
of such phenomena is the “Deconfined Quantum Criti-
cal Point” (DQCP) between the columnar valence bond
solid (c−VBS, Fig. 2a, Fig. 3b) and Néel ordered antifer-
romagnet, in simple unfrustrated geometries such as the
square and honeycomb lattices. An intuitive understand-
ing of this transition is available through the topological
defects of these phases. Coming from the antiferromag-
netic state, one can regard the transition as the prolif-
eration of the skyrmion of the Néel order parameter1,2,
which destroys the Néel order. It simultaneously creates
valence bond solid order, because the skyrmion carries
the same quantum number as c−VBS3,4 on both the hon-
eycomb and the square lattices. In this picture, we can
view the skyrmion as a boson, and the c−VBS order sim-
ply corresponds to the superfluid phase of the skyrmion
boson. Although this skyrmion boson is not precisely a
conserved particle, it is expected that at the deconfined
quantum critical point, the skyrmions is fully conserved
in the long wavelength limit. Hence it is reasonable to
describe the c−VBS with an XY order parameter, whose
anisotropies become irrelevant at the critical point. This
is a specific embedding of the discrete c−VBS order pa-
rameter in a larger XY (U(1)) order parameter space. A
consequence of the irrelevance of anisotropy in this XY
space is that the c−VBS order is “unified” with plaque-
tte VBS order, such that both types of states are nearly
degenerate near the critical point. A similar picture can
be applied to the transition between the Z2 spin liquid
phase and the c−VBS, where the XY order parameter
is the vison field in the Z2 spin liquid. This picture has
been confirmed with quantum Monte Carlo simulation
on the J − Q spin models with multi-spin interactions,
and it was clearly shown that the U(1) symmetry of the
c−VBS order parameter is fully restored at the critical
point between Néel and c−VBS5.
The staggered VBS (s−VBS) is another very natural
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FIG. 1: The Z4 vortex and Z3 vortex of s−VBS on the square
and honeycomb lattice, the vortex core is featureless.

pattern on both the honeycomb and the square lattices
(Fig. 2b, Fig. 3c), and quite distinct from the c−VBS.
However, so far there has been no theory describing the
transition from magnetic ordered phases or spin liquid
to the s−VBS. The difference between the c−VBS and
s−VBS is hinted at by their vortices. It was noticed that
a vortex of c−VBS always carries an unpaired spinon,
thus the proliferation of c−VBS vortices will lead to
magnetic order. However, in Fig. 1 it is clearly shown
that the vortex of s−VBS is completely featureless, hence
the transition into magnetic order cannot be driven by
these vortices. Therefore a completely different theory
is needed to describe the s−VBS and its quantum phase
transitions.

It was proposed that for spin-1/2 systems on the hon-
eycomb lattice, the quantum fluctuations tend to melt
the incommensurate spin spiral order, and induce a
s−VBS6. Also, phase diagrams involving the s−VBS
have been proposed in many recent numerical works. For
instance, exact diagonalization of the J1−J2 Heisenberg
model on the honeycomb lattice found a gapped liquid
phase between the Néel order and s−VBS7, and a similar
phase diagram of this model including the liquid phase
and the s−VBS was later confirmed with variational
methods8. Strong tendency towards the s−VBS was also
verified by functional renormalization group studies on
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the same model9. On the square lattice, exact diagonal-
ization of the J−Q model10 suggests that the Néel order
can have direct transition into both c−VBS and s−VBS.
QMC of a modified J − Q model on the square lattice
also revealed a direct transition between Néel order and
s−VBS (although it was found to be first order in this
case)11.
These numerical results strongly suggest that the

s−VBS is a very important competing order on the hon-
eycomb lattice and square lattice. In this paper we de-
velop a theory of phase transitions to/from the s−VBS.
Put simply, the main result of our analysis is that the ap-
propriate embedding for the s−VBS order parameter is
into a vector (O(n)) or complex projective (CP(n)) space,
both very different from the XY order parameter of the
c−VBS case. In the main text, we propose effective field
theories for several quantum critical points neighboring
the s−VBS phase, which expose these embeddings. As
in the original proposal for the DQCP, these are strongly
coupled field theories in 2+1 dimensions, so some of their
properties cannot be established conclusively from ana-
lytics (we discuss in the main text what can be inferred
from the renormalization group literature). However, a
robust prediction of the proposed field theories is that,
like in the Néel–c−VBS problem, the embedding into a
larger order parameter space unifies s−VBS order with
other competing orders, all of which should be present
in low energy fluctuations in the vicinity of the quantum
critical points. The nature of the competing order(s)
is determined from our analysis. For instance, at the
transition between the s−VBS and a Z2 spin liquid, the
competing order is of four-sublattice plaquette VBS type
(Fig. 2c). Other cases are described in the main text.
The presence of such competing orders at low energies is
testable in numerics or experiment.
The remainder of the paper is organized as follows. In

sections II and III, we discuss the theory describing the
phase transition between the Z2 spin liquid and various
VBS orders, including the s−VBS. In section IV, this
theory is extended to the transition between the (easy-
plane) Néel order and s−VBS. We conclude with some
general remarks in Sec. V.

II. ODD Z2 GAUGE FIELD ON THE

HONEYCOMB LATTICE

In this section we begin by considering the simplest
candidate for the fully gapped spin liquid state observed
in recent numerics on the honeycomb lattice7,8,12, which
is the Z2 spin liquid. Although honeycomb lattice is a
bipartite lattice, the effective spin Hamiltonian of the
Hubbard model at intermediate t/U regime is rather
complicated13, thus the spin ground state can be very
different from the semiclassical Néel order. Theoretical
proposals of Z2 spin liquid (as well as its generalized ver-
sions) on the honeycomb lattice have been made14–19. We
will study the transition between the Z2 liquid phase and

different types of VBS orders using an effective Z2 gauge
theory on the honeycomb lattice, and eventually in this
way connect to the s−VBS state. To perform the analy-
sis, we will work with a lattice Z2 gauge theory, which is
particularly convenient. One may wonder whether this is
a sufficient and general starting point, correct for all pos-
sible Z2 spin liquid states, since many distinct such states
are possible using the projective symmetry group analy-
sis of candidate wavefunctions (see, e.g. Wen’s analysis
of the square lattice20). The answer is, we believe, yes,
since our analysis of the lattice gauge theory in fact rests
only on three key assumptions, which are true for all fully
gapped symmetric Z2 spin liquids: (1) the Z2 state sup-
ports “visons” (Z2 vortices), which have a mutual statis-
tics angle of π with respect to elementary spin-1/2 spins;
(2) the Z2 state preserves all the lattice symmetries; and
(3) there is a gap to all excitations in the spin liquid state.
Thus we believe the results of the following analysis are
generally true for transitions from arbitrary gapped Z2

spin liquids to VBS states.
To understand the meaning of the Ising gauge theory,

consider constructing VBS ordered states as the limit of
“hard dimers”, in which precisely one dimer (spin sin-
glet) is attached to each site. The dimer constraint is
translated into the Gauss law constraint in the gauge

field language: ~∇ · ~e = ηi, and ηi = ±1 on two dif-
ferent sublattices. Now if the U(1) gauge symmetry is
broken down to Z2, we need to introduce a Z2 electric
field σx

ij = (−1)nij on every link (nij = 0, 1 denotes the
absence and presence of dimer), and the gauge constraint
becomes

∏

links round site i

σx
ij = −1. (1)

With this Z2 gauge constraint, we can write down the
simplest Z2 gauge theory on the honeycomb lattice as
follows:

H =
∑

7

−K
6
∏

links in 7

σz
ij −

∑

i,j

hσx
ij + · · · . (2)

The first term is a sum of the ring product of the Z2 gauge
field σz

ij in every hexagon, and the second term is a Z2

“string tension”. The ellipses include other interaction
terms between Z2 electric field.
When the K term dominates everything else in Eq. 2,

the system is in the deconfined phase of the Z2 gauge
theory, with topological degeneracy. When h or other
interaction terms between σx dominate K, the system
enters the confined phase. In order to analyze the con-
fined phase, it is convenient to go to the dual picture of
the Z2 gauge theory. Dual variables τz and τx are de-
fined on the dual lattice sites m̄, which are located at the
center of the hexagons (Fig. 2a):

σx
ij = −τzp̄ τzq̄ , p̄ and q̄ share link ij,
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FIG. 2: (a), c−VBS order. p̄ and q̄ are the dual triangular lat-
tice sites. We consider the nearest and 2nd neighbor hopping
for vison (vortex). (b), the s−VBS pattern, realized when
h/8 < J < h in the dual Ising Hamiltonian Eq. 9. (c), the
four sublattice plaquette order, realized when w > 0 in Eq. 13.
(d), the vison (vortex) Brillouin zone. For weak 2nd neigh-
bor vison (vortex) hopping, the minima of band structure are
located at the corner of the BZ (circles); with intermediate
2nd neighbor hopping, there are three inequivalent minima lo-
cated at the center of the edges of BZ (square); There are six
inequivalent incommensurate minima with strong 2nd neigh-
bor hopping (hexagon).

6
∏

links around p̄

σz
ij = τxp̄ . (3)

Introduction of τz
ī
automatically solves the odd Z2 gauge

constraint Eq. 1. Now the Hamiltonian becomes an an-

tiferromagnetic transverse field Ising model on the dual
triangular lattice:

H =
∑

p̄

−Kτxp̄ +
∑

p̄,q̄

Jp̄,q̄τ
z
p̄ τ

z
q̄ (4)

For nearest neighbor sites p̄, q̄, Jp̄,q̄ = h. When Jp̄,q̄ dom-
inates K, τzp̄ takes on a non-zero expectation value form-
ing some pattern which optimizes the Jp̄,q̄ term. The
non-zero “condensate” of τz signals that the Z2 gauge
theory has entered the confined phase.
The pattern of order in τzp̄ depends upon the detailed

form of Jp̄,q̄. This can be analyzed by treating τzp̄ as a
“soft” scalar field taking all possible real values, rather
than the integers ±1; this approximation describes well
the critical region in which fluctuations on short time
scales render the average of τz non-integral. Then, the
quadratic form defined by Jp̄,q̄ can be diagonalized in
wavevector space and generically has multiple minima
in its Brillouin zone. Physically the eigenvalues of this
quadratic form define the dispersion relation of visons
in the Z2 phase. On entering the confined phase, the
location of these minima determines the VBS pattern.

Notice that the physical VBS order parameter should
always be a bilinear of 〈τz〉, since under transformation
τz → −τz the physical quantity σx is unchanged. In the
following we will discuss four types of VBS patterns on
the honeycomb lattice.

A. c−VBS order

Now let us take the simplest case, with nonzero Jp̄,q̄
only between nearest neighbor dual sites p̄, q̄. Taking
h > 0, the model becomes the nearest neighbor frustrated
quantum Ising model with transverse field. This model
was studied in Ref.21. Solving the band structure of τz ,
we find two inequivalent minima at the corners of the

vison BZ: ~Q = (± 4π
3
, 0). Expanding τz at these two

minima, we obtain a complex local order parameter ψ:

τz ∼ ψei
4π
3
x + ψ∗e−i 4π

3
x. (5)

The low energy physics of visons should be fully charac-
terized by ψ.
Under discrete lattice symmetry, ψ transforms as

T1 : x→ x+ 1, ψ → ei
4π
3 ψ,

T2 : x→ x+
1

2
, y → y +

√
3

2
, ψ → ei

2π
3 ψ,

Py : x→ −x, ψ → ψ∗,

Px : y → −y, ψ → ψ,

T : t→ −t, ψ → ψ∗,

R 2π
3

: ψ → ψ. (6)

R 2π
3

is the rotation by 2π/3 around the center of hexagon.

The transformations in Eq. 6 determine that the low
energy Lagrangian for ψ reads

L = |∂µψ|2 + r|ψ|2 + u|ψ|4 + w(ψ6 + ψ∗6), (7)

i.e. The condensation of ψ is described by a 3d XY tran-
sition with Z6 anisotropy. The physical VBS order pa-
rameter V should be a bilinear of ψ, i.e. V ∼ ψ2. It is
straightforward to check that V transforms in the same
way as the columnar VBS order parameter on the honey-
comb lattice. Notice that on the honeycomb lattice the
c−VBS and the

√
3×

√
3 plaquette order have the same

symmetry, hence the condensate of ψ can be either the
c−VBS or the plaquette order depending on the sign of
w. Recently this plaquette order has been observed with
exact diagonalization on frustrated spin models on the
honeycomb lattice22. The Z6 anisotropy introduced by
the w term in Eq. 7 is an irrelevant perturbation at the
3d XY fixed point.
If we approach this transition from the c−VBS side of

the phase diagram, this transition can be interpreted as a
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proliferation of the vortex of ψ i.e. double vortex of VBS
order paramter V , while the single vortex of V is still
gapped. In fact, the single vortex core of the c−VBS is
attached with a spinon (analogous to the square lattice
case discussed in Ref.23), proliferation of single vortex
will lead to a spinon condensate, which corresponds to
certain spin order. However, if the spinon gap is finite,
the finite temperature thermal fluctuation can proliferate
the single vortex. Therefore although the quantum phase
transition is driven by double vortices, the finite tempera-
ture phase transition is still driven by single vortex, hence
at finite temperature the Z6 anisotropy of Eq. 7 becomes
the Z3 anisotropy, and there is no algebraic Kosterlitz-
Thouless phase at finite temperature. This is a key differ-
ence between our current case and a physical transverse
field frustrated quantum Ising model, where a finite tem-
perature algebraic phase is expected21.

B. s−VBS order and four-fold plaquette order

Now we modify the Z2 gauge theory in Eq. 2 by turning
on the interaction between Z2 electric field σx on second
nearest neighbor links:

HJ =
∑

2nd neighbor links

Jσx
ijσ

x
kl. (8)

In the dual theory this electric field interaction becomes
a next nearest neighbor hopping of τz , and the full dual
Hamiltonian reads

H =
∑

p̄

−Kτxp̄ +
∑

<p̄,q̄>

hτzp̄ τ
z
q̄ +

∑

≪p̄,q̄≫

Jτzp̄ τ
z
q̄ . (9)

The vison minima (± 4π
3
, 0) are stable with J/h < 1/8.

When 1/8 < J/h < 1, the minima of the vison band
structure are shifted to three inequivalent points on the
edges of BZ (Fig. 2d):

~Q1 = (0,
2
√
3π

3
),

~Q2 = (−π,−
√
3π

3
),

~Q3 = (π,−
√
3π

3
). (10)

Notice that − ~Qa are equivalent to ~Qa in the BZ.
Now three low energy modes can be defined by expand-

ing τz at momenta ~Qa:

τz ∼
∑

a

ϕa e
i ~Qa·~r. (11)

Since ~Qa and − ~Qa are equivalent, all three fields ϕa are
real. Under lattice symmetry, ϕa transform as

T1 : ϕ1 → ϕ1, ϕ2, ϕ3 → −ϕ2,−ϕ3,

T2 : ϕ1, ϕ2 → −ϕ1,−ϕ2, ϕ3 → ϕ3,

Py : ϕ1 → ϕ1, ϕ2, ϕ3 → ϕ3, ϕ2,

Px : ϕ1 → ϕ1, ϕ2, ϕ3 → ϕ3, ϕ2,

T : ϕa → ϕa,

R 2π
3

: ϕ1 → ϕ2, ϕ2 → ϕ3, ϕ3 → ϕ1. (12)

Now the symmetry allowed Lagrangian for ϕa up to
the quartic order reads

L =
∑

a

(∂µϕa)
2 + rϕ2

a + u(
∑

a

ϕ2
a)

2 + w(
∑

a

ϕ4
a). (13)

This is an O(3) model with cubic anisotropy. There are
two possible types of condensates of ϕa:
(i) When w > 0, the condensate 〈~ϕ〉 are along the

diagonal directions, and there are in total four indepen-
dent states with 〈~ϕ〉 ∼ (1, 1, 1), (−1,−1, 1), (−1, 1,−1),
(1,−1,−1). According to the transformation of ~ϕ, these
four states correspond to the four-sublattice plaquette
phase (Fig. 2c).
(ii) When w < 0, the condensate 〈~ϕ〉 has three fold

degeneracy: 〈~ϕ〉 ∼ (1, 0, 0), (0, 1, 0) and (0, 0, 1). These
three condensates break the rotation symmetry of the
lattice, but they do not break the translation symmetry.
This is again because physical order parameters are bilin-
ears of ϕa, hence they are insensitive to the sign change of
ϕa under translation. These three states correspond pre-
cisely to the three s−VBS pattern. Unlike the c−VBS,
the s−VBS is no longer described by an XY order param-
eter, and the phase transition is not driven by vortex-like
VBS defect.
The universality class of Eq. 13 was studied exten-

sively with ǫ = 4 − d expansion24. The results is that
the O(3) Heisenberg fixed point is not stable. For w > 0
the transition is controlled by a stable cubic fixed point
with nonzero fixed point values w∗ and u∗. This case
corresponds to the transition between the Z2 spin liquid
and the four-sublattice plaquette phase described above.
For w < 0, which corresponds to the transition to the
s−VBS phase, there is instead a run-away flow, which
most likely implies a first order transition. But if w is
small enough, for numerical simulations on finite system
the transition between Z2 spin liquid and s−VBS will be
similar to the 3d O(3) transition.
Although we chose a specific vison hopping model Eq. 9

to obtain the vison band structure, the three minima ~Qa

in the BZ are stable against any symmetry allowed per-
turbations on Eq. 9. This is because no linear spatial
derivative terms are allowed in Eq. 13 by transforma-
tions Eq. 12. Thus there are only two ways to destabilize
the minima in the BZ: (1). the current minima will be re-
placed by a new set of minima through a first order tran-
sition, like the transition between c−VBS and s−VBS
at J/h = 1/8; (2). the sign of the spatial derivative
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terms in Eq. 9 changes through a second order Lifshitz
transition. The second situation will lead to the incom-
mensurate VBS order, which will be discussed in the next
subsection.

C. incommensurate VBS

In Eq. 9, if J/h > 1, the vison band structure has

six inequivalent incommensurate minima ~Qa in its BZ

(Fig. 2d). Since ~Qa and− ~Qa are no longer equivalent, the
low energy vison modes are described by three complex

fields ϕa:

τz ∼
∑

a

(

ϕae
i ~Qa·~r + ϕ∗

ae
−i ~Qa·~r

)

. (14)

Under lattice symmetries, these vison fields transform as

T1 : ϕa → ei
~Qa,xx,

Py : ϕ1 → ϕ1, ϕ2, ϕ3 → ϕ3, ϕ2,

Px : ϕ1 → ϕ∗

1, ϕ2, ϕ3 → ϕ∗

3, ϕ
∗

2,

T : ϕa → ϕ∗

a,

R 2π
3

: ϕ1 → ϕ2, ϕ2 → ϕ3, ϕ3 → ϕ1. (15)

The field theory describing ϕa is

L =
∑

a

|∂µϕa|2 + r|ϕa|2 + u(
∑

a

|ϕa|2)2 + w(
∑

a

|ϕa|4)

+ v1|ϕ1|2|ϕ2|2|ϕ3|2 + v2(ϕ
2
1ϕ

2
2ϕ

2
3 +H.c.) + · · · (16)

When ~ϕ condenses, the system exhibits incommensurate
VBS order. Since incommensurate VBS order has yet to
be observed numerically, we will not explore this phase
or the corresponding transitions further.

D. A quantum dimer model

In addition to the numerical works introduced in sec-
tion I, a recent QMC simulation discovered a gapped
liquid phase in the SU(4) Hubbard model on the honey-
comb lattice. In those simulations, this liquid phase ap-
peared between the semimetal phase and c−VBS phase,
and SU(4) Néel order was completely absent25. Since all
the gapped liquids observed numerically are adjacent to
VBS phases, it is natural to approach the gapped liquid
phase starting with dimer (spin singlet) basis. In this
subsection we write down a quantum dimer model which
realizes part of the physics discussed above.
The standard quantum dimer model (QDM) on the

honeycomb lattice has been studied carefully in the
past26:

H0 = Ht +Hv

disorder

c−VBS s−VBS

Z2−liquid V/t

T

A B C

D

a b c

d

FIG. 3: (a) − (d), the dimer patterns involved in the quantum
dimer model Eq. 17 and Eq. 19. e, phase diagram of the
quantum dimer model tuned with V/t, with the presence of
H1 in Eq. 19.

= −t (|A〉〈B| + |B〉〈A|) + V (|A〉〈A| + |B〉〈B|).(17)

|A〉 and |B〉 are dimer configurations depicted in Fig. 3a,
b. This model can be mapped to a compact U(1) gauge
theory in the standard way:

~eij = ~v · nij , Ht ∼ −t cos(~∇× ~a). (18)

Here nij = 0, 1 is the dimer density on each link (i, j), ~v
is a unit vector defined on each link, and it always points
from sublattice A to B on the honeycomb lattice. ~e and ~a
are electric field and gauge vector potential respectively.
Due to the confinement of compact U(1) gauge theory in
two dimensions27, the system is gapped and VBS ordered
throughout the phase diagram, except for the isolated
gapless RK point at V = t. There is thus no stable
gapped liquid phase in this phase diagram26. Therefore
in order to understand the gapped liquid phase around
VBS phases on the honeycomb lattice, a modified QDM
is needed.
First of all, we notice that all the gapped liquid phases

observed numerically only occur at intermediate J2/J1
or t/U (Ref.7,8,25). In this regime, there must be a
considerable probability for dimers to form not only be-
tween nearest neighbor sites but also between next near-
est neighbor sites. Then, in addition to the standard
QDM Eq. 17, we turn on the following dimer flipping
term:

H1 = −t̃ (|C〉〈D| + |D〉〈C|). (19)

|C〉 and |D〉 are dimer configurations in Fig. 3c, d. This
term breaks the U(1) gauge symmetry of the original
QDM down to Z2 gauge symmetry, because it annihi-
lates two electric flux quanta along the same direction.
An alternative way of understanding this Z2 effect is by
noticing that annihilating configuration |C〉 is equivalent
to hopping two unit U(1) gauge charges, hence H1 is
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equivalent to the following term at low energy:

H1 ∼ − cos(2∇µφ− 2aµ). (20)

Here exp(iφ) creates a unit gauge charge. When φ con-
denses, it breaks the U(1) gauge symmetry down to Z2.
As an analogue, the triangular lattice QDM can also
be viewed as a square lattice QDM with extra diago-
nal dimers, which also breaks the U(1) gauge symmetry
down to Z2.
The term H1 can drive the system into a Z2 liquid

phase on the honeycomb lattice. In the presence of non-
zeroH1, a possible schematic phase diagram for the QDM
is shown in Fig. 3e. The Z2 liquid phase intervenes be-
tween the c−VBS and s−VBS phases. The nature of
the phase transitions in this phase diagram have been
discussed in subsection IIA and IIB.
The transition between the Z2 liquid phase and the

c−VBS can also be more intuitively understood as fol-
lows: The c−VBS is a confined phase of the compact
U(1) gauge field, where the triple-monopole of the com-
pact U(1) gauge field leads to the following height field
theory in the dual theory:

Lh = (∂µh)
2 − g cos(6πh), (21)

where height field h is defined as ~e = ẑ × ~∇h, and
exp(i2πh) creates a flux quantum of the compact U(1)
gauge field ~a. The vertex operator −g cos(6πh) has three
independent minima h = 0, ±1/3, which corresponds to
the three fold degenerate c−VBS phase. In the Z2 liquid
phase, since the U(1) gauge symmetry is broken down to
Z2, there are stable π-flux excitations of the U(1) gauge
field. Hence the triple-monopole of the U(1) gauge field
corresponds to creating/annihilating six π-flux. If we de-
scribe the transition in terms of these π-flux excitations,
the field theory takes exactly the same form as Eq. 7.
At the transition between the c−VBS and Z2 liquid

phase, based on the well-known critical exponent of the
3d XY fixed point obtained from various methods24, we
predict the anomalous dimension of the c−VBS order pa-
rameter to be ηV = 1.47 (much larger than the ordinary
Wilson-Fisher transitions). Also, close to this transition,
the c−VBS order parameter scales as 〈V 〉 ∼ (rc − r)β ,
with β = 0.83. These predictions can be checked numer-
ically.

III. ODD Z2 GAUGE THEORY ON THE

SQUARE LATTICE

Now we switch gears to the odd Z2 gauge theory on
the square lattice. Again we want to discuss the phase
transition from the Z2 liquid phase to both c−VBS and
s−VBS. The odd Z2 gauge theory is dual to a trans-
verse field quantum Ising model on the dual square lat-
tice (Fig. 4a). Unlike the honeycomb lattice case, now
the dual quantum Ising model has to apparently break
the lattice symmetry in any specific gauge choice. The

correct lattice symmetry transformation for the dual vi-
son field τz must be combined with a nontrivial Z2 gauge
transformation, i.e. τz carries a projective representation
of the symmetry group. The dual quantum Ising model
has to be invariant under the projective symmetry group
(PSG).
We consider the following Hamiltonian for the dual

Ising model:

H =
∑

p̄

−Kτxp̄ +
∑

<p̄,q̄>

Jp̄,q̄τ
z
p̄ τ

z
q̄ +

∑

p̄,q̄

J ′

p̄,q̄τ
z
p̄ τ

z
q̄ . (22)

J and J ′ denote the nearest and fourth nearest neighbor
Ising couplings. J and J ′ are chosen to be positive on
all the solid bonds, but negative on all the dashed bonds
in Fig. 4a. The Hamiltonian of Eq. 22 with the current
choice of gauge is invariant under the PSG of τz . Notice
that 2nd nearest neighbor Ising couplings are entirely
prohibited by the PSG.
If J ′/J < 0.0858, there are two inequivalent minima in

the vison band structure, located at ~Q = (0,±π
2
). Again

we can expand τz at these two minima as

τz ∼ ϕei
π
2
y + ϕ∗e−iπ

2
y. (23)

The PSG for ϕ reads

Tx : x→ x+ 1, ϕ→ ei
π
4
xϕ∗,

Ty : y → y + 1, ϕ→ e−iπ
4
xϕ∗,

Py : x→ −x, ϕ→ ϕ,

Px : y → −y, ϕ→ ϕ,

Px+y : x→ y, y → x, ϕ→ iϕ∗. (24)

Notice that the reflection Px and Py are site-centered
reflection of the dual lattice (bond-centered reflection of
the original lattice). The PSG allowed field theory for ϕ
reads

L = |∂µϕ|2 + r|ϕ|2 + g|ϕ|4 + w(ϕ8 + ϕ∗8). (25)

The gauge invariant physical order parameters are

c−VBSx : ei
π
4 ϕ2 + e−iπ

4 ϕ∗2,

c−VBSy : e−iπ
4 ϕ2 + ei

π
4 ϕ∗2. (26)

The quantum phase transition between the Z2 liquid and
the c−VBS is a 3d XY transition, since the Z8 anisotropy
in Eq. 25 is highly irrelevant at the 3d XY fixed point.
This result is consistent with previous studies on fully
frustrated Ising model on the cubic lattice28,29.
When J ′/J > 0.0858, the minima of the vison band

structure are shifted to four other inequivalent momenta
in the BZ:

Q1 = (0, 0), Q2 = (0, π),
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d

2

1

34

a b

c

FIG. 4: (a), the dual square lattice. The vison (vortex) hop-
ping on the dashed bonds are negative. (b), (c), the c−VBS
and s−VBS patterns. (d), the vison (vortex) Brillouin zone.
When the nearest neighbor vison (vortex) hopping is domi-
nant, there are two inequivalent minima located at (0,±π

2
)

(circles); when the 4th neighbor hopping is dominant, there
are four inequivalent minima described by Eq. 27.

Q3 = (
π

2
,
π

2
), Q4 = (−π

2
,
π

2
). (27)

We denote the low energy vison modes at these four mo-
menta by ϕa with a = 1 · · · 4. Notice all these four modes
are real fields, because Qa are equivalent to −Qa.
The PSG action on ϕa reads

Tx : ϕ1 → ϕ2, ϕ2 → ϕ1, ϕ3 → ϕ4, ϕ4 → −ϕ3,

Ty : ϕ1 → ϕ2, ϕ2 → −ϕ1, ϕ3 → ϕ4, ϕ4 → ϕ3,

Py : ϕ1 → ϕ1, ϕ2 → ϕ2, ϕ3 → ϕ4, ϕ4 → ϕ3,

Px : ϕ1 → −ϕ2, ϕ2 → −ϕ1, ϕ3 → ϕ3, ϕ4 → ϕ4,

Px+y : ϕ1 → ϕ3, ϕ3 → ϕ1, ϕ2 → ϕ4, ϕ4 → ϕ2. (28)

It is straightforward to show that these four vison min-
ima actually describe the s−VBS pattern on the square
lattice. By using the PSG transformations above, we find
that fields transforming as the s−VBS order parameters
are

s−VBSx : ϕ2
1 − ϕ2

2,

s−VBSy : ϕ2
3 − ϕ2

4. (29)

Applying the PSG to obtain a general invariant field

theory, we find, up to quartic order the Lagrangian

L =
∑

a

(∂µϕa)
2 + rϕ2

a + u(
∑

a

ϕ2
a)

2

+ w(
∑

a

ϕ4
a) + v(ϕ2

1 + ϕ2
2)(ϕ

2
3 + ϕ2

4) (30)

The location of vison band structure minima is stable,
since no linear spatial derivative terms are allowed in
this field theory. The first line of this equation describes
an O(4) theory, which is very different from the effective
XY theory in the c−VBS case. The second line of Eq. 30
breaks this O(4) symmetry down to Z4×Z4×Z2. When
v > 0, w < 0, the visons condense in a way that yields
s−VBS order. However, according to the high order ǫ
expansion in Ref.30, both v and w are relevant pertur-
bations at the 3d O(4) universality class. This likely
indicates the lack of a direct continuous Z2 spin liquid to
s-VBS transition (though a weakly first-order transition
would be possible).

IV. MAGNETIC ORDER − VBS TRANSITIONS

The phase transition between the standard collinear
ordered antiferromagnet and the c−VBS phase is de-
scribed by the theory of deconfined criticality, with the
critical effective field theory being the noncompact CP(1)
model1,2. This deconfined phase transition is realized in
the J−Q model on the square lattice with both two spin
and four spin interactions3132. Recent exact diagonaliza-
tion simulation of the same model (with full parameter
space of J −Q)10 and QMC on a modified J −Q model5

discovered that there can also be a direct transition be-
tween the Néel and s−VBS order, and this transition is
what we will try to understand in this section.
To simplify this problem, we turn on an easy plane

anisotropy on the spin system. Now the spin-1/2 problem
is equivalent to a hard-core boson model at half-filling,
and the Néel order is mapped to the superfluid phase of
the boson system. It is well-known that the hard-core
boson problem is dual to its vortex theory, where vor-
tices are bosons hopping on the dual lattice sites, with
coupling to a dynamical U(1) gauge field, this U(1) gauge
field is precisely the dual of the Goldstone mode of the su-
perfluid phase. Because the boson is half-filled, a vortex
will see a π−flux through each of the dual plaquettes.
Previous studies showed that if the nearest neighbor

vortex hopping is considered in the dual Hamiltonian, the
transition between superfluid (Néel order) and c−VBS
may be described as the condensation of vortices33,34. In
the follows we will see that if further neighbor vortex hop-
pings are taken into account, the superfluid (Néel order)
to s−VBS transition can also be understood as vortices
condensing in its BZ, just like the vison theory in the
previous sections.
For instance, on both the honeycomb and square lat-

tice, in order to describe the s−VBS phase, we only need
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to turn on exactly the same further neighbor vortex hop-
ping as the previous vison theories in section II and III.
The PSG of the vortices is almost identical to that of the
visons in the previous sections, thus we will not write it
down explicitly. The main differences between the vortex
theory and vison theory are, (1) the vortex is described
by a complex boson instead of real boson, (2) the vortex
is coupled to a dynamical U(1) gauge field, (3) physical
order parameters should be U(1) gauge invariant.
We summarize our results here:
(i) on the honeycomb lattice, with 2nd neighbor vor-

tex hopping, the vortex band structure can have minima
located at the three momenta in Eq. 10, the low energy
vortex mode at each momentum is described by a com-
plex boson field ϕa. The transition between the super-
fluid (magnetic order) and the s−VBS is described by
the CP(2) theory with cubic anisotropy:

L =

3
∑

α=1

|(∂µ − iAµ)ϕα|2 + r|ϕα|2 + g(
∑

α

|ϕα|2)2

+
∑

α

u|ϕα|4 + · · · (31)

When u < 0 and r < 0, only one of the vortex modes is
condensed, which corresponds to the s−VBS order. Al-
though ϕa is a complex field, its condensate has no gap-
less Goldstone mode, due to its coupling to U(1) gauge
field Aµ. It is unclear whether cubic anisotropy is rele-
vant or not at this CP(2) quantum critical point. The
scaling dimension of the cubic anistropy can be calcu-
lated systematically with the standard 1/N expansion.
(ii) on the square lattice, the transition between the su-

perfluid (magnetic order) and the s−VBS is described by
the CP(3) theory with anisotropies that break the SU(4)
symmetry down to (U(1))4 and discrete interchange sym-
metries between ϕa:

L =
4

∑

α=1

|(∂µ − iAµ)ϕα|2 + r|ϕα|2 + g(
∑

α

|ϕα|2)2

+
∑

α

u|ϕα|4 + v(|ϕ1|2 + |ϕ2|2)(|ϕ3|2 + |ϕ4|2) + · · ·(32)

ϕα are four low energy vortex modes at the four mo-
menta in Eq. 27. When u < 0, v > 0 the condensate of
ϕa corresponds to the s−VBS order. The s−VBS order
parameters are

s−VBSx : |ϕ1|2 − |ϕ2|2,

s−VBSy : |ϕ3|2 − |ϕ4|2. (33)

Here there are two quartic anisotropies, though again
their scaling behavior at the CP(3) point needs to be
addressed by further calculations.
It was shown in Ref.23 that the Z4 vortex of c−VBS

has to carry a spinon. However, in Fig. 1 we illustrated
that there is no spinon attached to the Z4 vortex of the
s−VBS, thus the s−VBS to magnetic order transition

should not be induced with Z4 vortex proliferation. This
difference can be understood with the s−VBS order pa-
rameters in Eq. 33: the flux of the U(1) gauge field in
Eq. 32 carries spin (since Aµ is the dual of Goldstone
mode associated with Sz conservation), while the Z4 vor-
tex of s−VBS is simply a vortex surrounded by ϕ1, ϕ3, ϕ2

and ϕ4 condensate cyclicly, thus no gauge flux is attached
with this vortex core. In fact, the U(1) gauge flux cor-
responds to the “skyrmion” type of defect of the CP(2)
and CP(3) manifold. Thus to induce a magnetically or-
dered phase, we need to condense the more complicated
skyrmion defect of the s−VBS order.

V. SUMMARY AND OUTLOOK

In this work we studied the quantum transitions from
the Z2 spin liquid and magnetically ordered phases to
different types of VBS orders, with the focus on the stag-
gered VBS. Although the s−VBS and c−VBS have the
same degeneracy, the low energy field theories describing
these two cases close to the transitions are very differ-
ent. In our current work we only considered the case of
transitions from magnetically ordered phases with easy
plane anisotropy, while a description for the SU(2) invari-
ant case is still needed. We will leave this case to future
study. Moreover, even in the easy plane case, the field
theories we obtained are not well-studied, and the effects
of anisotropies on their critical properties (and indeed
stability of the latter) deserve more detailed study.
The formalisms we used in this work, namely the odd

Z2 gauge theory, the dual vortex theory, and quantum
dimer model, are all theories for strongly coupled sys-
tems, i.e. the electric charge excitations of this system
were ignored completely. However, the deconfined quan-
tum criticality theory can also be formulated in the weak
coupling limit, as it can be interpreted as the phase tran-
sition between five competing mass gap order parameters
of Dirac fermion35. The Dirac fermion will generate a
topological Wess-Zumino-Witten (WZW) term for these
competing orders36,37, and physically the WZW term at-
taches a spin-1/2 degree of freedom to each vortex core
of the c−VBS. Fermions on both honeycomb lattice, and
square lattice with π−flux through every plaquette have
Dirac fermion in the band structure, and in both cases
the Néel and c−VBS are five competing order parameters
with a WZW term38.
Unlike the c−VBS, the s−VBS does not generate a

Dirac mass gap for either honeycomb or square lat-
tice π−flux state, thus the standard calculation used in
Ref.36,37 does not lead to a WZW term between s−VBS
and Néel order. This observation also suggests that the
s−VBS and c−VBS are fundamentally different, which
echoes the results obtained in our current paper. In the
future, it would be very meaningful to also pursue a weak
coupling version of the theory for quantum phase transi-
tions with s−VBS using fermion band structure.
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