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We have combined first-principles calculations and high pressure experiments to study pressure
induced phase transitions in silicon nitride (Si3N4). Within the quasi-harmonic approximation,
we predict that the α phase is always metastable relative to the β phase over the wide pressure-
temperature range. Our lattice vibration calculations indicate that there are two significant and
competing phonon-softening mechanisms in the β-Si3N4, while phonon softening in the α-Si3N4

is rather moderate.When the previously observed equilibrium high-pressure and high-temperature
β→γ transition is by-passed at room temperatures (RT) due to kinetic reasons, the β phase is
predicted to undergo a first-order structural transformation to a denser P 6̄ phase above 39 GPa.
The estimated enthalpy barrier height is less than 70 meV/atom, which suggests that the transition is
kinetically possible around room temperatures. This predicted new high-pressure metastable phase
should be classified as a “post-phenacite” phase. Our high-pressure X-ray diffraction experiment
confirm this predicted room-temperature phase transition around 34 GPa. No similar RT phase
transition is predicted for α-Si3N4. Furthermore, we discuss the differences in pressure dependencies
of phonon modes in the α, β and γ phases and the consequences on their thermal properties. We
attribute the phonon modes with negative Grüneisen ratios in the α and β phases as the cause of the
predicted negative thermal expansion coefficients (TEC) at low temperatures in these two phases,
and predict no negative TEC in the γ phase.

I. INTRODUCTION

Silicon nitride (Si3N4) is known to have excellent me-
chanical strength, high thermal stability, and low mass
density. Its mechanical and thermal properties at ambi-
ent pressure have been investigated extensively by both
experiment and theory,1,2 due to its wide applications
as cutting tools, anti-friction bearings,1 as well as etch
masks in microelectronics.2 In contrast, its properties at
high-pressure are less known. Prior to the discovery of
the cubic spinel-structured γ-Si3N4 (or c-Si3N4, Fd3̄m)
phase at high-pressure and high temperature,3–7 the
structurally related hexagonal α (P31c) and β (P63/m)
phases were the only two bulk crystalline polymorphs of
Si3N4 known to exist. Both α and β phases can be syn-
thesized by nitriding pure silicon.8,9

The relative phase stability between α and β phases
has been a topic of investigation for many years. Di-
rect measurements of energetics of Si3N4 were reported
by Liang et al.10 However, the difference in formation
enthalpies between α- and β-Si3N4 was found to be
less than the intrinsic experimental uncertainty of ±22
kJ/mol (±32.6 meV/atom). Nevertheless, the β phase is
believed to be the ground state of Si3N4 because no β→α
transition was ever observed. The stability condition for
α phase has been experimentally studied at tempera-
tures of 1300◦−1800◦C and pressures up to 60 GPa.11–18

Pure single-crystal α-Si3N4 shows no sign of transfor-

mation at temperatures up to 1820◦−2200◦C.18,19 How-
ever, the α→β transformation is observed to occur at
ambient pressure and high temperatures in the presence
of Y2O3 or other oxides. Based on the observed liquid
phases on the α-Si3N4 surfaces, Suematsu et al. pro-
posed a solution-precipitation mechanism for the α→β
transformation.18 They claimed that first the catalyst
oxides form a liquid phase with Si3N4 on the surface at
high temperatures. Then, through atomic transporta-
tion in the liquid, small particles of β-Si3N4 emerge.
The liquid phase on the α-Si3N4 surfaces is believed to
play an important role to lower the activation energy of
atomic transportation. The stability of pristine α-Si3N4

at high temperatures is ascribed to the extremely high
value of the activation energy with clean surfaces. On
the theory side, several studies confirmed that the static
binding energy of α phase is slightly higher than that
of β phase.8,20–22 Wendel et al.21 and Kuwabara et al.22

carried out calculations using statistical quasi-harmonic
approximation (QHA), and they both found that the α
phase remains metastable in the temperature range from
0 to 2000 K at ambient pressure. Yet, pressure effects on
the relative thermodynamic stability between α and β
phases was not addressed in previous theoretical studies.

Pressure-induced structural phase transitions in Si3N4

have drawn extensive attention since 1999. Experi-
ments showed that the cubic spinel γ-Si3N4 can be ob-
tained from both hexagonal α- and β-Si3N4 upon com-
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pression and simultaneous in situ heating.3–7 The γ
phase is quenchable to the ambient condition, and it
remains stable at temperatures ranging up to about
1670 K at ambient pressure.23,24 When γ-Si3N4 “de-
composes” at ambient pressure upon heating, the sam-
ples may consist of both α- and β-Si3N4.

23 Previous ab

initio studies have calculated the β→γ transition pres-
sure (Pt) at adiabatic static condition,3,25 as well as at
high temperatures.22,26 The predicted equilibrium tran-
sition pressure Pt increases only slightly with the in-
crease of temperature. Several hypothetical post-spinel
high-pressure phases have also been proposed by first-
principles calculations.27,28 For example, a CaTi2O4-type
post-spinel phase is predicted to be thermodynamically
more stable than the spinel γ phase at pressures higher
than 160 GPa. Yet, none of the predicted new phase has
been confirmed experimentally.

The in situ heating to high temperature (HT) is found
to be critical for synthesizing the γ-Si3N4 at high pres-
sures (HP). At room temperature (RT), the β→γ transi-
tion is, however, by-passed. Zerr found that β-Si3N4 ex-
ists up to 34 GPa and it then transforms into an unknown
phase (labeled as δ phase) under further compression.29

The new γ→δ phase transition was observed by both Ra-
man spectroscopy and energy dispersive X-ray powder
diffraction (EDXD) measurements. But the structure of
δ phase was not fully determined. Zerr proposed three
possible unit-cells based on the measured EDXD pattern:
two tetragonal and one orthorhombic. The first hypo-
thetical tetragonal unit-cell has a density of 4.05 g/cm3

at 42.6 GPa, which is smaller than that of γ-Si3N4 (4.50
g/cm3). At the same pressure, the second tetragonal and
the orthorhombic structures were proposed to have den-
sities of 4.56 g/cm3 and 5.16 g/cm3, respectively, which
are both larger than that of the γ phase. The later two
structures are considered as “post-spinel” phases. Zerr
further suggested that the δ-Si3N4 should be considered
as a metastable intermediate stage in the β→γ transition.
Kroll proposed a metastable willemite-II-Si3N4 phase as
an intermediate between β- and γ-Si3N4 in both energet-
ics and density.25 However, the willemite-II (wII) phase
is unlikely to be the experimentally observed δ phase be-
cause: 1) the wII phase, which is structurally closely re-
lated to the spinel γ-Si3N4, has been shown to have a
significantly lower activation barrier for the γ→wII trans-
formation, comparing to that of γ→β transformation.25

Although the activation barrier of the β→wII transfor-
mation is unknown, it is more likely to be high enough
to exclude the room temperature transition. 2) The cal-
culated Raman frequencies of wII-Si3N4 could not match
many strong peaks appeared in the measurements,29,30

e.g., two observed peaks at about 500 cm−1 and 550 cm−1

at 38.2 GPa are absent for the wII phase.

Meanwhile, β-Ge3N4, which is isostructural to β-
Si3N4, is found to transform into the metastable poly-
morph δ-Ge3N4 with hexagonal P3 symmetry at room
temperature.31 Ab initio calculation from Dong et al.
showed that a β→P 6̄→P3 transition sequence could oc-

cur in Ge3N4 at the pressure of about 20 GPa and 28 GPa
respectively,32 which are of second-order that driven by
soft phonons. If β-Ge3N4 directly transforms into the P3
structure, the transition was predicted to be first-order
and Pt = ∼23 GPa. Dong et al. also pointed out that the
β→P 6̄ transition is originated from a soft silentBu mode.
Room temperature experimental study by Soignard et al.
confirmed the direct β→P3 transition associated with
a 5-7% volume reduction.31 The Raman data they ob-
served excludes the intermediate P 6̄ structure. Based on
the mass density consideration, Soignard et al. suggested
that the new polymorph is a “post-phenacite” phase, in
stead of “post-spinel”. Comparison of the X-ray diffrac-
tion and Raman data between Ge3N4 and Si3N4 shows
similarity which may suggest a P3 or related structure
for δ-Si3N4. It is still unclear whether there are intrinsic
differences between the HP-RT behaviors of Si3N4 and
Ge3N4, or the experimental results may be interpreted
differently.

In this paper, we present a series of systematic first-
principles studies for thermodynamic properties of Si3N4

polymorphs over a wide pressure-temperature range
based on the statistical quasi-harmonic approximation
(QHA). The current knowledge of pressure-temperature
(P -T ) conditions for various experimentally confirmed
and theoretically hypothesized polymorphs is sketched
in Fig. 1. In our study, the three main focuses are: (1)
What is the high-pressure and high-temperature equilib-
rium solid phase diagram in Si3N4? Is α phase always a
meta-stable phase relative to the β phase in Si3N4? What
is the phase boundary between the β and γ phases? (2)
Does the high-pressure δ phase have a “post-phenacite”
or “post-spinel” structure? Which role does the vibra-
tional instability (i.e. softening phonons) play in the
RT β-to-δ phase transitions? (3) How do the vibrational
instabilities affect equilibrium thermal properties in the
two hexagonal phases of Si3N4? Does the cubic spinel-
structured Si3N4 have any negative thermal expansion at
low temperature?
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FIG. 1. Polymorphs of Si3N4 and synthesis conditions

The rest of this paper is organized as follows. In Sec.
II, we introduce the methods of our calculations and ex-
periments. In Sec. III, we compare the thermodynamic
stability among the three known phases (α, β, and γ) us-
ing the first-principles calculated thermodynamic poten-
tials, and predict the equilibrium T -P phase transition
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conditions. Next, we investigate the structural instabili-
ties and possible metastable phase transitions from both
theory and experiment for β-Si3N4 at high pressures and
room temperature. The stability of α phase under high
pressure is also discussed on theoretical ground. Then,
we further obtain the measurable thermal properties of
Si3N4, such as thermal expansion coefficient (TEC), heat
capacity and bulk Grüneisen parameter at zero pressure
and high pressures. Our zero-pressure results are com-
pared with available experimental data33–40 and previous
calculations.21,22,41,42 Conclusions are drawn in Sec. IV.

II. COMPUTATIONAL AND EXPERIMENTAL

METHODS

A. First-principles calculation

In this study, the equilibrium T -P phase diagrams and
thermodynamic properties are predicted using the first-
principles calculated thermodynamic potentials. As an
insulator, the Helmholtz free energy of a bulk crystalline
silicon nitride system consists of two parts:

F (T, V ) = Estatic (V ) + Fvib (T, V ) (1)

where Estatic (V ) is the static binding energy of the sys-
tem and Fvib (T, V ) is the vibrational free energy. Free
energy associated with the electronic thermal excitation
is neglected. Estatic (V ) for α-, β-, and γ-Si3N4 are calcu-
lated with unit-cell models of respective crystal symme-
tries. We adopted density functional theory (DFT) with
a plane wave basis set and ultrasoft pseudopotentials
(US-PP),43 which is implemented in the VASP code.44

The exchange and correlation functional is treated with
local density approximation (LDA). The plane wave ba-
sis functions with energies up to 347.9 eV were used.
Total energy change of 10−9 eV per unit cell was cho-
sen as the convergence criterion for the self-consistent
iterations. The Brillouin zone integration in our total en-
ergy calculations was approximated with the Monkhorst-
Pack method, with grids of 4 × 4 × 6, 4 × 4 × 12 and
6× 6× 6 for α-, β- and γ-Si3N4, respectively. The calcu-
lated total energies at several chosen volumes were fitted
to the third-order Birch-Murnaghan equations of state
(BM-EOS)45,46 by the least square fitting algorithm.
The vibrational free energy in Eq. 1 is evaluated within

the statistical quasi-harmonic approximation (QHA),
which can be expressed as:

Fvib (T, V ) =

∫

∞

0

[

1

2
h̄ω + kBT ln

(

1 − exp

(

−h̄ω

kBT

))]

g (ω) dω

(2)

where ω is the harmonic phonon frequency at a given
q point and g (ω) is the vibrational density of state
(VDOS). The calculations of VDOS require the frequen-
cies of phonon modes at arbitrary q-points in the recip-
rocal q-space, which are derived based on the real-space

finite displacement method. Simply speaking, a small yet
finite displacement is first added to a single atom in the
fully relaxed large supercell model. Then, the Hellmann-
Feynman (HF) forces on all the atoms are calculated for
the displaced structure. Neglecting the fourth and higher
order terms, at the condition that the jth atom in the ℓ′th

unit cell is displaced by ∆ in the β direction, the α com-
ponent of the HF force on the ith atom in the ℓth unit
cell can be expressed as a Taylor expansion in terms of
∆

Fα,i (ℓ) = −Φαi,βj

(

ℓ, ℓ
′

)

· ∆−
1

2
Aαi,βj,βj

(

ℓ, ℓ
′

, ℓ
′

)

· ∆2 − · · · (3)

here Φαi,βj (ℓ, ℓ
′) is the element of the force constant

matrix. Aαi,βj,βj (ℓ, ℓ
′, ℓ′) is the third order anharmonic

term, which can be canceled out with two force calcula-
tions using positive and negative displacements of equal
magnitudes. The full set of real-space force constants
are generated by the irreducible ones, which are derived
from group theoretical analysis based on crystal symme-
try. Only the irreducible force constants are calculated
directly. In this study, we adopted 168-atom, 168-atom,
and 112-atom supercell models for α and β and γ phases,
respectively. The sizes of the supercell models are large
enough to minimize the finite-size artifacts in the calcu-
lated real space force constant matrices.
Phonon frequencies and eigenvectors are yielded with

diagonalization of dynamical matrices Dαi,βj (q), which
are obtained from the Fourier transformation of the real
space force constant matrices. In an ionic crystal, lattice
vibrations of optic phonon modes induce dipole-dipole
interactions which in turn affect the phonon frequencies
around the Γ-point (q = 0). The interaction causes the
so-called LO-TO splitting in optic phonon modes. How-
ever, this effect is not taken into account in the supercell
calculations. We corrected the LO-TO splitting effects
with a simple inter-planar force constant method pro-
posed by Kunc and Martin.47

Within the QHA, the bulk Grüneisen parameter can be
obtained from the weighted average of mode Grüneisen
ratios ( γξ (q) = −∂ (lnωξ (q))/∂ (lnV )):

γ =

∑

k,ξ

γξ (q) cv,ξ (q)

∑

k,ξ

cv,ξ (q)
(4)

where cv,ξ (q) is the mode specific isochoric heat capacity.
The mode Grüneisen parameter can be calculated using
Hellmann-Feynman theorem.

γξ (q) = −
V

2ω2
ξ (q)

〈

e (q, ξ)

∣

∣

∣

∣

∂D (q)

∂V

∣

∣

∣

∣

e (q, ξ)

〉

(5)

here V is the volume, D (q) is the dynamical matrix
and e (q, ξ) is the eigenvector of the ξth normal mode
at reciprocal lattice point q. In practice, we evaluate the
first order derivative of D (q) with respect to the volume
approximately using the finite difference method. This
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methodology has been applied successfully to our previ-
ous study of the type-II Si clathrate.48

B. High-pressure experiment

Polycrystalline β-Si3N4 was obtained from Aldrich
(>99.99% purity). Powdered samples were loaded into
cylindrical screw-driven or membrane diamond anvil cells
for Raman and synchrotron X-ray diffraction studies us-
ing 4:1 methanol/ethanol or N2 as pressure-transmitting
media. We used pre-indented Re gaskets with 200-300
holes drilled by electro-erosion. Pressure was measured
by the ruby fluorescence method.49 Raman spectra were
obtained at UCL using a home-built system.50 Early X-
ray diffraction experiments were carried out at beamline
9.1 at Daresbury SRS.51 Later studies were completed
at Diamond I15 using λ = 0.444 Å radiation. The 2D
diffraction data were analysed and transformed to 1D
diffraction patterns using Fit2D.52 Unit cell parameters
and atomic positions were refined by Rietveld and LeBail
techniques using Powdercell and GSAS.53,54

III. RESULTS AND DISCUSSION

In this section, we present results from first-principles
calculations and high-pressure experiments that were in-
dependently conducted. According to our computational
methodologies, the static total energies and vibrational
frequencies are required to obtain the thermodynamic
potentials at finite temperature. The full phonon spec-
tra can also reveal the structural instabilities at desired
conditions (e.g. high pressure). In the following, we will
first present our results on the relative stabilities of the
three know phases at varied pressures and temperatures,
while the emphasis of our study is the pressure-induced
metastable phase transition at room temperature.

A. Crystal structures, static binding energies,

and vibrational spectra

Atomic structures of α-, β-, and γ-Si3N4 are shown in
Fig. 2. Both α- and β-Si3N4 have hexagonal symmetry,
and they contain similar local bonding: each Si atom is
tetrahedrally bonded to four N atoms (Si-N4) and each N
atom has a threefold trigonal coordinates (N-Si3). All the
SiN4 tetrahedra are slightly distorted and connected by
corner-sharing. The difference between these two phases
can be characterized by the stacking sequence along c
axis. The periodicity of α- and β-Si3N4 in that direc-
tion can be described as ABCDABCD.... and ABAB....
stacking, respectively. From another point of view, α-
Si3N4 can be interpreted as a complex network formed
with nonplanar six-membered (6-atom) rings, whereas β-
Si3N4 is composed of non-planar six-, eight- and twelve-
membered rings. There are two types of trigonal N-Si3

units: those with N atoms at the 2a and 2b sites of α-
Si3N4 or the 2c site of β-Si3N4 locate at the basal plane
perpendicular to the c axis, while the rest N-Si3 units
are in the vertical or near-vertical orientations. Most
basal N-Si3 units are perfectly planar with three bonds
of equal length and three 120◦ Si-N-Si bond angles, ex-
cept that the N-Si3 units with N at the 2b sites of α-
Si3N4 form triangular pyramids (i.e. three bonds still
have equal length, but the bond angles are less than
120◦). The vertical N-Si3 units are distorted in bond
lengths and bond angles which yield distorted pyramidal
units. The γ phase has a distinctively different struc-
ture, in which Si atoms occupy both tetrahedral (1/3 of
Si atoms, 8a sites) and octahedral (2/3 of Si atoms, 16d
sites) sites, and all the N atoms are tetrahedrally bonded.
This is consistent with the fact that γ-Si3N4 is the high
pressure phase which has a larger coordination number.
The spinel structure is named after the mineral MgAl2O4

which has a fcc lattice with space group Fd3̄m. For γ-
Si3N4, there are two formula units in the primitive unit
cell and eight units in the conventional cubic cell.

FIG. 2. (Color online) Crystal structures of (a),(b) α-, (c),(d)
β-, and (e),(f),(g) γ-Si3N4. In the panel of α- and β-Si3N4, the
first graph illustrates the unit-cell model and the second graph
is the 2×2×1 supercell model viewed in the direction of c axis.
In the panel of γ-Si3N4, the first graph shows the conventional
cubic cell of the spinel structure and the following two graphs
show the fourfold and sixfold coordinated Si units(SiN4 and
SiN6) with tetrahedra and octahedra, respectively.

The calculated E-V data sets of α-, β- and γ-Si3N4 are
shown in Fig. 3, and the corresponding fitting parame-
ters from the third-order BM-EOS (E0, V0, B and B′)
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are listed in Table I, together with reported experimen-
tal and other theoretical results. As the measurements
were usually made at room temperature, our predicted
parameters at 300K within QHA are also presented. Our
calculation has a good overall agreement with other the-
oretical and experimental results. Compared to the ex-
periments, our calculated static equilibrium volumes are
consistently underestimated by about 1–3%, and the cal-
culated bulk moduli are within the range of reported ex-
perimental data, which contain about 5–15% differences
among different reports. The predicted thermal equa-
tions of states at 300K are slightly closer to the mea-
surement. Our results are within the typical accuracy
of LDA calculation and they are consistent with the fact
that LDA tends to underestimate the equilibrium volume
and overestimate the bulk modulus by a few percent.
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FIG. 3. (Color online) Energy-volume curves for α-, β- and
γ-Si3N4 in the scale of per atom. β phase has an equilibrium
energy of 3 meV lower than that of α phase. E0 of γ phase is
93meV higher than β phase.

Our static total energy calculation shows that β phase
is only slightly energetically more stable (i.e. about 3
meV/atom lower) than α phase at their respective static
equilibrium volumes. Such a small energy difference is
consistent with the fact that both α and β phases are
found to coexist during different synthesis routes. Also,
in agreement with experiment, we find that the calcu-
lated β phase has larger density and lower compressibility
comparing to the α phase. This suggests that α phase is
even less favored thermodynamically at higher pressure
relative to the β phase. The relative stability between
these two phases will be further examined in later text
with the consideration of temperature and pressure ef-
fects. For the γ phase, our calculation yields a static
equilibrium energy which is 93 meV/atom higher than
that of the β phase, and a static equilibrium volume of 2
Å3/atom smaller than that of the β phase. These results
agree with the fact that the spinel structured γ phase is

a high pressure phase in Si3N4.

TABLE I. Summary of calculated and measured crystal pa-
rameters of α-, β- and γ-Si3N4. V0 is the equilibrium volume
per atom, B is the bulk modulus and B′ is the first-order
pressure derivative.

α-Si3N4

Source V0 (Å3/atom) B(GPa) B′

LDA (this work, static) 10.260 232 2.583

LDA (this work, 300K) 10.328 226 2.576

LDA22 10.325 240 4.0 (fixed)

LDA55 10.237 257

OLCAO20 10.542 257

Force fields (300K)21 10.806 246

Experiment56 10.455

Experiment57 10.445

Experiment58 10.465 223.4 (±15) 4.5 (±1.3)

β-Si3N4

Source V0 (Å3/atom) B(GPa) B′

LDA (this work, static) 10.199 241 3.439

LDA (this work, 300K) 10.267 237 3.440

LDA22 10.268 252 4.0 (fixed)

GGA59 237.2-241.5

LDA55 10.183 225

Force fields (300K)21 10.661 266

Experiment60 10.396

Experiment61 10.411 270 (±5) 4.0 (±1.8)

Experiment62 10.452 232.7

Experiment8 10.356

γ-Si3N4

Source V0 (Å3/atom) B(GPa) B′

LDA (this work, static) 8.140 308 3.898

LDA (this work, 300K) 8.220 297 3.898

LDA22 8.137 320 4.0 (fixed)

OLCAO20 8.595 280

Experiment63 8.270 290 (±5) 4.9 (±0.6)

Experiment6 8.286 308 4.0

Experiment23 8.261

Experiment62 300 (±10) 3.0 (±0.1)

Experiment3 8.474 (±0.26)

Fig. 4 shows the phonon dispersion curves and VDOS
plots of the α-, β- and γ-Si3N4 at their respective static
equilibrium volumes. All three phases studied here
are dynamically stable, i.e. no soft phonon modes are
present. The α and β phases have very similar VDOS
which reflects the similarity in their crystal structures
and Si-N bonding. On the other hand, the spinel struc-
tured γ-Si3N4 shows some distinctively different char-
acters in its VDOS, comparing with those of α and β
phases. High-pressure phases usually have higher vi-
bration frequencies. Yet, we find that the top phonon
branches in γ phase have frequencies which are signifi-
cantly lower than those of α or β phases.
Mode Grüneisen ratios along some high symmetry di-
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FIG. 4. Phonon dispersion curves and vibrational density
of states (VDOS) of (a) α-, (b) β-, and (c) γ-Si3N4 at zero
pressure.

rections are shown in Fig. 5. Although there are many
similarities in the mode Grüneisen ratios between the α
and β phases, for example, their low-frequency phonon
modes are found to have negative mode Grüneisen pa-
rameters while all the high-pressure modes have positive
ratios with the upper limit of about 1.5, there are some
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FIG. 5. Calculated dispersion curves (scattered circles) of
mode Grüneisen parameter of (a) α-, (b) β-, and (c) γ-Si3N4

at zero pressure. (Red) horizontal line is present to separate
the positive and negative values.

noticeable differences for phonons around the M-point
transverse acoustic (TA) mode and the Γ-point optic Bu

mode. The phonons close to these two modes in β phase
are found to have large negative Grüneisen ratios, which
suggest possible structural instability of β phase upon
compression. On the other hand, the γ-Si3N4 shows no
negative mode Grüneisen ratios at all, and the values of
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its mode Grüneisen ratios range from 0.24 to 1.66 at zero
pressure.

B. Equilibrium thermodynamic stability and phase

transitions

To illustrate the relative thermodynamic stability be-
tween the α and β phases, we plot the LDA calculated
Gibbs free energy differences between the two phases at
0, 5 and 10 GPa in Fig. 6. A positive value of ∆Gα−β

means that α-Si3N4 is thermodynamically metastable.
At isobaric conditions, the calculated ∆Gα−β are al-
most constant over the temperature range from 0 K to
2000 K. At zero pressure, our calculated ∆Gα−β is 2.8
meV/atom at 0 K which agrees with Kuwabara’s (DFT
with PAW+LDA) ∆Fα−β of 2.6 meV/atom at 0 K. At
2000 K, our ∆Gα−β is 2.6 meV/atom, while Kuwabara’s
∆Fα−β decreases to 1.3 meV/atom. The results of Wen-
del et al. were based on empirical force field models and
they gave opposite trend of temperature dependence, 0.1
meV/atom at 300 K and 0.7 meV/atom at 2000 K. At el-
evated pressures, we predict an increasing ∆Gα−β . At 5
GPa and 10 GPa, ∆Gα−β is about 4.6 meV/atom and 5.9
meV/atom, respectively. We do not predict ∆Gα−β at
pressures higher than 10 GPa because the β phase starts
to show signs of structural instability (see discussion in
later text). We conclude that α phase is metastable com-
pared to β phase in the temperature range from 0 K to
2000 K and at least up to 10 GPa.
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FIG. 6. (Color online) Gibbs free energy of α-Si3N4 relative
to that of β phase as a function of temperature. Solid, dashed
and dotted lines represent the pressure of 0, 5 and 10 GPa,
respectively.

Upon compression, both the ground state β phase and
metastable α phase transform into the γ phase. Our
predicted equilibrium T -P phase boundaries are shown
in Fig. 7. The Clapeyron slopes for the β→γ (solid
line) and α→γ (dashed line) transitions are both posi-
tive, which suggest that the high-pressure γ phase has a
lower vibrational entropy. Consequently, the transition

pressure (Pt) increases with temperature. The predicted
Pt of the β→γ transition is 7.5 GPa at 300 K, and it
increases to 9.0 GPa at 2000 K. The Pt of the α→γ tran-
sition is about 0.5 GPa lower than that of β→γ transi-
tion. Togo et al.26 and Kuwabara et al.22 also predicted
a positive Clapeyron slope for the β→γ transition. The
small calculated Clapeyron slopes (dP/dT ) means that
the transitions are primarily volume driven and the equi-
librium Pt is not sensitive to the temperature. For ex-
ample, Pt changes by less than 2 GPa when temperature
rises from 300 K to 2000 K. On the experimental side, the
transition pressures are scattered from 10 GPa to 36 GPa
(Table II). This could be ascribed to the different com-
positions/impurities of the starting samples being used.
Nonetheless, in situ heating is required for the synthesis
of γ-Si3N4 in all experiments. This is a clear indication
that large kinetic barriers exist. For better comparison
between theory and experiment, we only list here the
theoretical results at T = 2000 K.
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FIG. 7. (Color online) T -P phase diagram of Si3N4. Solid
curve denotes the phase boundary between β- and γ-Si3N4.
Dashed curve denotes the phase boundary between α- and
γ-Si3N4.

C. Phonon-softening induced structural instability

in β-Si3N4 at high pressures

Although β-Si3N4 transforms into the γ phase at high
pressures and temperatures, the β phase is stable at the
room temperature up to at least 30 GPa. To investigate
the structural stability of the β phase, we calculated the
pressure dependence of lattice vibration. First, we exam-
ined the phonon modes at the zone center Γ-point. Our
technique was adopted previously to study the structural
and vibrational properties of Ga2O3 and Ga3O3N.

65,66

For β-Si3N4 with space group P63/m, there are in total
42 vibrational modes. Using group theory, the irreducible
representation for Γ-point phonon modes is

Γacoustic = Au + E1u (6)
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TABLE II. Summary of phase transition pressure and temperature for γ-Si3N4

Method Starting material Pt (GPa) Temperature (K)

Experiment

diamond cell3 Si, amorphous Si3N4 and polycrys-
talline α+ β

15 2100

Shock compression5 β+2 wt% (Nd2O3+Y2O3)β 36 1990

Diamond anvil cell64 α+ 1%β 17.5 -

Multi-anvil4 α+ β 17 2100

Shoch wave7 β 10 2073

Theory

PAW+GGA26 β 13 2000

PAW+LDA22 β 6.3 2000

USPP+LDA (this work) α 8.5 2000

USPP+LDA (this work) β 9.0 2000

Γoptic = 4Ag + 2Au + 3Bg + 4Bu + 2E1g +

5E2g + 4E1u + 2E2u (7)

For the optic modes, 11 modes (4Ag + 2E1g + 5E2g) are
Raman active, 6 modes (2A2u + 4E1u) are infrared (IR)
active, and the rest (3Bg+4Bu+2E2u) are silent modes,
among which Raman and IR spectra can be detected in
experiments. Fig. 8 shows our calculated Raman, IR and
silent modes of the β phase as a function of pressure up
to 60 GPa. Experimental pressure dependencies up to
30 GPa are presented for comparison. For the measured
Raman modes from Zerr et al.,67 one Ag mode is miss-
ing, possibly due to the weak intensity. The rest Raman
modes match well with our calculation. Our prediction
tends to underestimate the frequencies by about 2%-4%
, which is typical for calculations of this type. The calcu-
lation shows a clear pattern that all low frequency modes
( 400 cm−1 and below) have zero or negative pressure de-
pendencies. The lowest Bu silent mode decreases much
faster than the others and eventually vanishes at about
60 GPa. The predicted negative pressure dependencies
in these modes are consistent with the calculated nega-
tive mode Grüneisen ratios [Fig. 5(b)]. The calculated
Γ-point phonon softening pattern in β-Si3N4 is in agree-
ment with our previous results for β-Ge3N4.

32

Next, we extended our study to all the phonon modes
in the reciprocal space. Our calculated phonon disper-
sion curve of β-Si3N4 at 48 GPa (Fig. 9) shows that two
low-frequency branches decrease dramatically upon com-
pression, i.e. one TA branch along the Γ-M direction and
the lowest optic Bu branch. The TAmode goes soft at the

Brillouin zone boundary M point, i.e. q = 2π
a

(

1√
3
, 0, 0

)

and the optic mode goes soft at the zone center Γ point,
i.e. q = (0, 0, 0). A vanishing phonon frequency results
from the vanishing restoring force against the atomic dis-
placement for the corresponding vibrational mode. Con-
sequently, the crystal structure may undergo a displacive
transition to reach a new minimal-energy configuration

with lower symmetry. Our calculated ω2 of the two most
significant soft modes as a function of pressure are shown
in Fig. 10. The two ω2 are found to exhibit linear pres-
sure dependencies. Comparing to the the M-point TA
mode, the softening Bu mode has a higher frequency at
ambient pressure, yet it decreases much faster with the
increase of pressure. Phonon frequencies of both soften-
ing modes reach zero at around 60 GPa. Although the
frequency of the M-point TA phonon vanishes before the
Bu branch, the predicted difference is, however, small.
We thus consider both softening phonon modes as two
competing mechanisms that may be responsible for the
structural instability of β-Si3N4 at high pressures. It
is worth to point out that α-Si3N4 does not show any
signs of structural instability in our calculation, which is
consistent with the observed differences in the calculated
mode Grüneisen ratios [Fig. 5(a)].

The atomic displacements according to the soft M-
point TA mode are in the x-y plane and the symmetry of
the unit-cell is reduced from hexagonal P63/m to mono-
clinic P21/m after the distortion. The magnitude of one
lattice vector of the P21/m primitive unit cell (28 atoms)
is about twice of the a vector of the original hexagonal
unit-cell. Constrained with the P21/m symmetry, we
calculated the minimized total energies of the distorted
structure for several volumes by allowing further relax-
ation of both unit-cell shapes and internal coordinates.
The calculated E-V curve is shown in Fig. 12. According
to our LDA total energy minimization calculations, the
P21/m structure relaxes back to the original β structure
at volumes larger than 8.75 Å3/atom. Yet at volumes
smaller than 8.75 Å3/atom, the P21/m phase yields a
lower energy. The relaxed structure with a volume of
8.25 Å3/atom is shown in Fig. 11(b). After further en-
ergy minimization, for volume 8.25 Å3/atom, the lattice
parameters a = 13.912 Å, b = 6.674 Å, and c = 2.777
Å. The length of a is slightly larger than twice that of
b. The angle between a and b becomes 116.4◦ from the
original 120◦ in β phase. The c/b ratio is getting larger
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FIG. 8. (Color online) (a) Raman, (b) IR and (c) silent mode frequencies as a function of pressure up to 60 GPa for β-Si3N4.
Experimental pressure dependencies of Raman modes up to 30 GPa are also presented in discrete symbols as a comparison.67

Solid squares denote measurements upon compression and open squares denote measurements upon decompression. Several
low-frequency modes are found to decrease with increasing pressure. One Bu branch of silent modes is found dropping to zero
at about 60 GPa.
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FIG. 9. Phonon dispersion of β-Si3N4 at a pressure of 48
GPa. Two competing soft phonon modes are found: one TA
branch at M point and one optic branch at Γ point. No LOTO
splitting correction is added for the interests of low-frequency
modes only.

compared to that in β-Si3N4. This is consistent with
the fact that it becomes more difficult to compress along
c axis than in the x-y plane after the structural distor-
tion. The displacements of internal coordinates can be
described in terms of N atoms. Around each 2c N atom
in β-Si3N4 there are three nearest 6h N atoms which are
in the same basal plane. During the distortion, the 6h N
atoms move in a way that it causes the previous planar
vertical N-Si3 units to pucker. The puckering pattern can
be seen in Fig. 11(b). In P21/m structure, two of the
nearest N atoms become closer to the “centered” 2c N
atom (no longer 2c site in the P21/m symmetry, but it
is convenient to label it consistently) but the third one
moves away from it. Consequently the “centered” 2c N
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FIG. 10. (Color online) The square of vibrational frequency
(ω2) as a function of pressure for two competing soft phonon
branches: one TA branch at M point and one Bu branch
at Γ point. Solid squares and circles represent data from
calculation. Solid and dashed lines are from a linear fitting.

atom is “pushed” away by the two closer N atoms, which
breaks the hexagonal symmetry and causes the three Si-
N-Si bond angles to be distorted from the perfect 120◦.
More importantly, the interatomic distance between the
Si atoms at the 2e site and one of their second nearest
neighbor deceases rapidly upon compression. At the vol-
ume of 8.25 Å3/atom, this distance is only 1.988 Å which
is slightly larger than that of previous Si-N bonds (less
than 1.7 Å). This tendency of forming an extra bond may
help to stabilize the distorted structure under high pres-
sures. The new P21/m phase is dynamically stable at
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pressures at least up to 75 GPa.

FIG. 11. (Color online) Ball-stick models of (a) P63/m, (b)
P 6̄, (c) P21/m and (d) P3 structures viewed along the z axis.
Balls in dark color (blue) represent N atoms, and Si atoms are
in light color (yellow).

A similar distortion calculation was performed for the
soft Bu mode at Γ point. The atomic displacements
based on the corresponding vibrational pattern yields a
new structure which has a hexagonal P 6̄ symmetry. The
size of the primitive unit cell is the same as β-Si3N4 (i.e.
14 atoms) and the displacements are still within the x-y
plane. The E-V curve and data points of P 6̄ phase are
shown in Fig. 12 as the (red) dashed line. Its struc-
ture returns to β phase after fully relaxation for volumes
larger than 8.75 Å3/atom. Its energy is slightly lower
than β phase at a smaller volume, however, it is higher
than that of the P21/m phase. Fig. 11(c) shows the re-
laxed P 6̄ structure at the volume of 8.25 Å3/atom. The
c/a ratio increases slightly compared to β-Si3N4 and this
may again be ascribed to the less compressibility along
c axis. The structure of P 6̄ phase can be interpreted in
terms of the puckering pattern of 6h N atoms. Unlike
the P21/m structure, as shown in Fig. 11(c), three “in-
plane” 6h N atoms move clockwise and become closer to
one of the “centered” 2c N atom that has a z coordinate
of 3

4 in term of c in our case. At the same time, the
other three 6h N atoms move counterclockwise and be-
come away from the other “centered” 2c N atom (z = 1

4 ).
We further calculated the phonon spectrum of the P 6̄

structure which contains 14 atoms per unit-cell and dis-
covered an optic soft phonon mode at its Γ point. Based
on the corresponding eigenvector, we obtained a new
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FIG. 12. (Color online) The total energy of P63/m (β), P 6̄,
P21/m, P3, and P 6̄′ structures as a function of volume.

structure with hexagonal P3 symmetry. The size of its
primitive unit cell is the same as that of the β phase, i.e.
two formula Si3N4 units per cell. The E-V relation of P3
phase is shown in Fig. 12 as the (green) dashed dotted
line. Its structure returns to β phase beyond a volume
of 8.75 Å3/atom and remains stable at a smaller volume.
For volumes smaller than 8.37 Å3/atom, the P3 phase
has the lowest energy among the four structures consid-
ered here. Structure model of P3 phase at the volume of
8.25 Å3/atom is shown in Fig. 11(d). The c/a ratio of
P3 structure is very close to that of β phase.
The P3 structure can be understood as a further dis-

tortion of the P 6̄ phase. Relative to the P 6̄ structure, the
major difference in P3 phase is the z coordinate of the
“centered” 2c N atom which is surrounded by three closer
N atoms. This “centered” 2c N atom, denoted thereafter
as the puckering 2c N, is “pushed” up or down by three
approaching N atoms. As the volume becomes smaller,
the puckering 2c N is “pushed” by the three approaching
6h N atoms eventually to the middle of two “closer-N-
atoms” layers (z = 1

4 ) and becomes six coordinated. The
other “centered” 2c N atom remains its z coordinate be-
cause there is no “push” effect. For volume between 8.00
Å3/atom and 8.75 Å3/atom, which is before the puck-
ering 2c N atom reach its final position (z = 1

4 ), the
z coordinates of other atoms deviate slightly from their
previous values. However, these z coordinates recover
their previous values perfectly (z = 1

4 and 3
4 ) when the

puckering 2c N atom is stabilized at z = 1
4 . It is interest-

ing to note that, when the 2c N atoms are on the same
level (z = 1

4 ), the P3 structure falls into the category of
P 6̄ symmetry. However, this new P 6̄ phase is different
from the former P 6̄ structure. To distinguish them, the
later is labeled as P 6̄′. Using the same criterion to verify
the formation of bonds, there are six extra bonds being
formed within a primitive unit cell, i.e. 3 extra bonds per
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formula unit. And for P21/m phase, it is only 1
2 extra

bonds per formula unit. To show the differences among
the β, P 6̄, P3, and P 6̄′ structures, Wyckoff positions of
these phases are listed in Table III.

D. Room temperature metastable phase

Based on the E-V curves shown in Fig. 12, the transi-
tion from β-Si3N4 to one of the three candidates is deter-
mined by the common tangent line between them. The
smallest magnitude of the slope (negative) corresponds
to the lowest transition pressure, and this is made by the
P3 phase. However, at the transition point, the struc-
ture belongs to the P 6̄′ phase. Both P21/m and P 6̄
phases are likely bypassed. The transition pressure is
estimated to be 38.5 GPa, which is comparable to the
experimentally observed 35 GPa for the unidentified δ-
phase.29 The transition pressure is much smaller than 60
GPa, at which one phonon frequency becomes zero in the
β-Si3N4. It indicates that the predicted β→P 6̄′ transi-
tion is of first-order, and the predicted volume reduction
is about 10.8%.
To estimate the kinetic barrier height in the β→P 6̄′

transition, we calculated the enthalpy landscape in terms
of the atomic displacements in the x-y plane and the z
coordinate of the puckering 2c N atom. At the transition
pressure, we took the β phase as the starting structure
and the P 6̄′ phase as the ending structure. Two transi-
tion parameters, i.e. fx−y and fz, were used to linearly
interpret the phase transition. Initial internal coordi-
nates of the intermediate structure can be expressed as

x = xi + (xf − xi) fx−y

y = yi + (yf − yi) fx−y

z = zi + (zf − zi) fz

(8)

where the subscript “i” and “f” denote the starting (ini-
tial) and ending (final) structures, respectively. Both
fx−y and fz range from 0 to 1, and they can be set in-
dependently. 10×10 uniform grids were adopted for the
intermediate structures. In the total energy calculation
of each structure, by fixing the internal coordinates, we
allowed the external parameters to relax. Because this
transition is observed to occur at room temperature, it is
a good approximation to use enthalpy instead of Gibbs
free energy to investigate the phase transition. The en-
thalpy landscape and its contour plot as functions of fx−y

and fz at 38.5 GPa are shown in Fig. 13. Two minimum
points correspond to β (0,0) and P 6̄′ (1,1) structures.
The transition path is given by the gradient curve con-
necting the two minimum points. It passes the saddle
point which provides the transition barrier height. The
pathway we predict is close to the linear path that fx−y

and fz vary at similar paces. The calculated saddle point
locates at (0.6,0.5) and the corresponding enthalpy bar-
rier is 67.23 meV/atom. To overcome this barrier, cer-
tain activation temperature is necessary to stimulate the

atomic vibrations to a level that is comparable to ∆H .
Using Dulong and Petit law E = 3kBT , the “threshold”
activation temperature is estimated to be 260 K, which is
lower than the room temperature. Since all the internal
coordinates were fixed in our calculation, the activation
temperature should be considered as an upper limit to its
actual value. The β→P 6̄′ transformation should be in-
terpreted as a low-barrier transition induced by softening
phonon modes. The method adopted here for calculat-
ing the kinetic enthalpy barrier has been successfully ap-
plied to the Corundum→Rh2O3(II) transition in Al2O3

previously.68
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FIG. 13. (Color online) Enthalpy landscape and its contour
plot as a function of fxy and fz at the transition pressure of
38.5 GPa.

It is interesting to point out that the new P 6̄′ phase
is dynamically stable above the transition pressure (i.e.
38.5 GPa). However, one of its TA branch shows a ten-
dency to vanish at K point below the transition pres-
sure. The atomic displacements according to theK-point
softening mode suggest a structure which belongs to P3
symmetry, but the unit cell is three times larger than the
previous P3 phase, i.e. six formula units per primitive
unit cell. To distinguish with the previous P3-Si3N4, we
will denote this second P3 structure as P3′ phase later
on. Taking the P3′ structure as the initial structure, we
performed total energy calculations with both internal
and external parameters being full relaxed. P3′ phase is
found to exist only between the volume of 8 Å3/atom and
8.75 Å3/atom. Its structure relaxes back to the β struc-
ture for volumes larger than 8.75 Å3/atom and becomes
P 6̄′ phase for volumes smaller than 8 Å3/atom. Its en-
ergy is slightly lower than that of P3 phase by merely
a few meV/atom. The structure of P3′ phase is very
similar to P3 phase except the z coordinates of each P3
Wyckoff site split into three different values with small
deviations. In another word, the P3 phase is a special
case of the P3′ structure. As indicated in the calculated
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TABLE III. Atomic coordinates (Wyckoff positions) of the β, P 6̄, P3, and P 6̄′ structures at specified volumes. For comparison,
the Wyckoff sites are grouped according to the β phase.

β P 6̄ P3 P 6̄′

Space Group P63/m P 6̄ P3 P 6̄

Z 2 2 2 2

Volume (Å3/atom) 8 8 8.25 8

N1 2c (1/3,2/3,1/4) 1c (1/3,2/3,0) 1b (1/3,2/3,0.300) 1c (1/3,2/3,0)

1f (2/3,1/3,1/2) 1c (2/3,1/3,0.333) 1e (2/3,1/3,0)

N2 6h (0.324,0.013,1/4) 3j (0.269,0.013,0) 3d (0.270,0.003,0.277) 3j (0.261,0.005,0)

3k (0.630,0.994,1/2) 3d (0.625,0.021,0.795) 3k (0.623,0.021,1/2)

Si 6h (0.155,0.748,1/4) 3j (0.148,0.741,0) 3d (0.136,0.733,0.293) 3j (0.136,0.734,0)

3k (0.853,0.257,1/2) 3d (0.860,0.294,0.773) 3k (0.860,0.293,1/2)

enthalpy landscape shown in Fig. 13, the transition path
is close to the linear path along which fxy and fz vary
cooperatively. If we take the P3′ phase as an intermedi-
ate state connecting β and P 6̄′ structures, the enthalpy
barriers at 30 GPa and 38.5 GPa are shown in Fig. 14, to-
gether with the barriers from direct β→P 6̄′ transition as
a comparison. The barrier heights along these two paths
are very comparable. The ∆H in β→P3′→P 6̄′ path is
lower than the β→P 6̄′ path by only 5.6 meV/atom at
38.5 GPa and 9.8 meV/atom at 30 GPa.
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FIG. 14. (Color online) Enthalpy barrier (relative to β phase)
as a function of linearly interpreted transition parameter at
30 GPa (red, gray) and the transition pressure of 38.5 GPa
(black). Solid curves denote the β→P3′→P 6̄′ path and the
dashed curves denote direct β→P 6̄′ path. Horizontal axis is
defined as qualitative structural similarity. The left end rep-
resents β structure and the right end represents P 6̄′ structure.

Our predicted P 6̄′ phase has a hexagonal symmetry
which is different from what Zerr proposed based on the
EDXD pattern.29 However, the interplanar spacings for
the six peaks he observed could also be assigned to a
crystal system with hexagonal symmetry. A support-
ive evidence is that Soignard et al.31 observed a similar
β→P3 metastable transition in Ge3N4. They claimed
that Zerr’s δ-Si3N4 is likely to be analogous to their ob-

served δ-Ge3N4 based on comparison of the X-ray diffrac-
tion and Raman data. Next, we will examine the struc-
ture of δ-Si3N4 from high-pressure experiment.

E. High-pressure experiment

Our room-temperature compression studies of β-Si3N4

using synchrotron angle dispersive X-ray diffraction
(ADXRD) techniques and Raman scattering confirmed
the results of Zerr that a phase transition into a δ-Si3N4

polymorph occurs at P = 35− 36 GPa that is reversible
upon decompression.29 However, the X-ray diffraction
peaks of the high pressure δ-Si3N4 phase do not cor-
respond to those of predicted “post-spinel” polymorphs
including the willemite-II structure. Instead the X-ray
patterns closely resemble those of the starting β-Si3N4

material and they can be readily indexed to a P3 or P 6̄
structure as predicted theoretically (Fig. 11, 15, 16).
The behavior is similar to that reported for β-Ge3N4 in
which a sequence of two soft mode transitions or a first
order transformation occurs between β and δ phases dur-
ing compression, resulting in a variation of the starting
phenacite structure.32 That interpretation is consistent
with the results of the present theoretical study. The X-
ray diffraction results provide evidence that the β and δ
polymorphs coexist over a pressure range providing sup-
port for a first order nature of the phase transition (Fig.
15). The volume reduction at the transition pressure is
about 9.25%, which is close to the theoretically predicted
value (10.8%).
This coexistence between the two phases and the

diffraction features of the δ structure only emerging as
shoulders on β structure peaks demanded a comparative
Rietveld refinement approach. As no defining feature ow-
ing to the δ structure is isolated and easy to refine as a
stand alone peak, the refinement procedure was carefully
undertaken. Fig. 16 shows two different refinements of
the same diffraction data but using in (a) just the fixed
atomic coordinates as generated by the DFT calculations
for describing the δ-Si3N4. This produced wRp and Rp
values of 0.1420 and 0.1025 respectively. In (b) the gen-



13

2 4 6 8 10 12 14 16

In
te

ns
it

y 
(a

.u
.)

26 GPa

30 GPa

34 GPa

37 GPa

39 GPa

41 GPa

Two theta (degrees) 

FIG. 15. X-ray diffraction patterns of the compression of β-
Si3N4 phase from 26 GPa and the formation of the δ-Si3N4

phase emerging at 37 GPa and continuing to 41 GPa. The
arrows highlight the positions of the peaks associated with
the formation of the δ phase. The wavelength used in the
monochromatic synchrotron X-ray diffraction was λ = 0.444
Å

eral atomic coordinates were hand picked but were then
permitted to refine. This gave rise to wRp and Rp val-
ues of 0.1263 and 0.0895 respectively. The approach in
(a) allowed us to validate the consistency of the theo-
retical model to the experimental results observed. Im-
portantly, although the model with the refined atomic
coordinates of the δ phase in (b) produced a better fit,
the fact that the refinement package was trying to fit
only undefined diffraction features does not produce a
convincing enough case to publish the refined positions
but in fact strengthens the importance of the reliance on
theory for when looking at powder diffraction data from
high energy sources at elevated pressures.

Raman spectra obtained during compression of the β-
Si3N4 phase in a 4:1 methanol-ethanol medium to 43 GPa
followed by subsequent decompression are shown in Fig.
17(a). Up to 30 GPa, the observed pressure shifts closely
match those predicted in the theoretical study (Fig. 8).
Above 34 GPa a new set of peaks is observed to appear
in the spectrum, indicating the onset of the transition
into the δ-Si3N4 phase (Fig. 17, 18). The low frequency
peaks match closely those described by Zerr in his first
study documenting the occurrence of δ-Si3N4.

29 On de-
compression, the characteristic spectrum of the β-Si3N4

phase is recovered below 30-33 GPa, indicating some hys-
teresis and likely coexistence of the β and δ forms already
noted from the analysis of the synchrotron X-ray diffrac-
tion results. The behavior in the high frequency region
is unusual, in that a broad band appears in the range ex-
pected for Si-N stretching vibrations (900-1150 cm−1) at
above 34-36 GPa, that disappears upon decompression.
No such broad feature was shown in the data presented
by Zerr,29 during Raman spectroscopy carried out within
an Ar pressure-transmitting medium (PTM). It is possi-

4 5 6 7 8 9 10 11 12 13 14 15 16
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2 18

(a) 41 GPa /�6L�1�
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FIG. 16. (Color online) Rietveld refinements of diffraction
data obtained of both the δ and β phases of Si3N4 in lithium
fluoride pressure-transmitting medium at 41 GPa. Data
points and Rietveld fit are overlaid in black and red (gray),
respectively, and the difference plot is shown. The red (gray)
tick marks indicate peaks for δ-Si3N4, the top black tick marks
indicate peaks for β-Si3N4, and the middle black tick marks
are of the Rhenium gasket and the bottom black ones are
of the LiF pressure medium. (a) Data obtained at 41 GPa of
both the δ and β phases of Si3N4. The internal atomic coordi-
nates used for the refinement are fixed according to the values
generated from the DFT calculations. (b) The same data set
as (a) at 41 GPa but with the atomic coordinates refined.
The wavelength used in the monochromatic synchrotron X-
ray diffraction was λ = 0.444 Å

ble that this broad band might arise from the methanol-
ethanol mixture that has become an amorphous solid at
these high pressures, but that does not appear to be the
case in recent studies of B4C compressed in the medium
to the same pressure range.69 Another possibility is that
the broadened high frequency peaks might appear due
to the non-hydrostatic nature of the PTM. We also ob-
tained data using N2 as a PTM [Fig. 17(b)]. In this case
the high frequency modes resemble more closely those re-
ported by Zerr,29 but there is still a significantly broad-
ened feature in the 900-1150 cm−1 range.

The appearance of this broad feature, occurring
throughout the range expected for Si-N stretching vibra-
tions is, might be due to some disordering mechanism oc-
curring within the Si3N4 sample, experienced as it under-
goes its “β→δ” transition. Theoretically, a metastable
phase with P3 symmetry (P3′ phase) was found to be
competitive with the P 6̄′ structure in the vicinity of the
pressure-induced transition from the β-Si3N4 structure.
Competition between the two potential structure solu-
tions could result in disorder in the N-sites and perhaps
also Si positions, resulting in broadening of the high fre-
quency vibrational bands. Any deviations from a hy-
drostatic compression environment could significantly af-
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FIG. 17. Raman spectra of (a) the compression and decom-
pression of β-Si3N4 phase up to 43 GPa, using 4:1 methanol-
ethanol as the pressure-transmitting medium (PTM). (b) the
compression of β-Si3N4 phase up to 52 GPa, using N2 as the
PTM.

FIG. 18. Pressure dependencies of the observed Raman peaks
for compression of the β-Si3N4 up to 43 GPa. Additional Ra-
man peaks above ∼34 GPa are associated with the formation
of the δ phase.

fect such slight modifications to sampling the stable vs.
metastable structures predicted to be present, and we
believe that this is the case here. Interestingly, however,
the methanol-ethanol pressure medium used in our first
study is expected to remain a hydrostatic fluid until ∼10
GPa, whereas N2 and Ar undergo solidification transi-
tions that result in non-hydrostatic behavior above the
2-3 GPa range.70,71

F. Thermal properties

Using our first-principles calculated thermodynamic
potentials, we further derived thermal properties of Si3N4

over a wide T -P range. Since currently the experimental
thermal properties data are only available for β- and γ-
Si3N4, we mainly focus on discussion of these two phases.

Fig. 19 shows the volume thermal expansion coeffi-
cient (TEC) of β-Si3N4 as a function of temperature at
zero pressure. The experimental data (measured at am-
bient pressure) are widely scattered in both low T and
high T regions which may be attributed to the differ-
ences in samples and experimental techniques. Above
room temperature, our predicted TEC is closer to the
measured data of Schneider (except a couple of scattered
data points above 1200 K), which is the lower bound
of all the reported experimental data. Compare with
Kuwabara et al.’s calculation,22 our predicted TECs are
slightly lower. Nevertheless, the difference is noticeable
at both low and high temperatures. At present, there
is only one experimental report on the TECs at low
temperatures.36 However, the measured data are signifi-
cantly higher than both calculations at low temperatures.
And more importantly, no trend of negative TEC is re-
vealed near 0 K, which is questionable. Negative TEC at
low T is predicted by both calculations, and is related to
the instability of β phase under pressure, as discussed in
the later text. The difference between the two calcula-
tions at high temperatures can be partially attributed to
the fact that static energies are fitted to the 2nd-order and
3rd-order BM-EOS respectively in Kuwabara’s and our
calculations (in both calculations, the thermal free ener-
gies are fitted to the 2nd-order BM-EOS). The 2nd-order
BM-EOS model assumes that the pressure derivative of
the bulk modulus is fixed to 4. Adopting the same type
of 2nd-order BM-EOS for the static energies, we find our
calculated TECs (not shown in the figure) increase mod-
erately at high temperatures, about the half way between
the two calculated TECs shown in the figure. At the
same time, the order of BM-EOS for the static energies
does not affect the prediction below room temperature.
Therefore, the discrepancy between the two theoretical
TEC curves likely also origins from the differences in the
calculated phonon density of states.

Another thermal property that closely relates to TEC
(α) is bulk Grüneisen parameter (γ): α = γCV /(BTV ),
where CV , BT , and V are heat capacity, bulk modulus,
and volume respectively. Fig. 20 shows our calculated
Grüneisen parameter of β-Si3N4, together with reported
experimental data.35 Our calculated bulk Grüneisen pa-
rameter is in excellent agreement with Bruls’ measure-
ment. The estimated percentage difference between ex-
periment and calculation is within 10% for 300 K<
T <500 K and the difference is gradually reduced
to about 2% at T = 1300 K. The excellent theory-
experiment agreement in the temperature range between
300K to 1300K validates our calculation and supports our
theoretical prediction that the bulk Grüneisen parameter
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FIG. 19. Temperature dependence of volume thermal ex-
pansion coefficient of bulk β-Si3N4 at zero pressure. Solid
line denotes present work, dashed line (red) denotes the first-
principles calculation from Kuwabara et al.22, and discrete
symbols denote experimental data.33–36

(γ) turns negative below 200 K in β-Si3N4. Since CV , BT

and V are all positively defined, TEC (α) always has the
same sign as the bulk Grüneisen parameter (γ). Within
the quasi-harmonic approximation, γ is the weighted av-
erage of mode Grüneisen ratios (Eq. 4). At low temper-
ature, only low-frequency phonons are thermally excited
and contribute to the bulk Grüneisen ratios. In the case
of α and β phases, many low-frequency phonons have
negative mode Grüneisen ratios (Fig. 5). This yields the
negative overall bulk Grüneisen parameters, and conse-
quently leads to the negative TEC at low temperatures.
For the β phase, the two branches that correspond to
the most negative mode Grüneisen parameters are found
to be the softening M-point TA and Γ-point Bu modes,
which are responsible for the instability of β-Si3N4 at
high pressures.
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FIG. 20. Temperature dependence of bulk Grüneisen param-
eter of β-Si3N4 at zero pressure. Solid line denotes present
work, and discrete symbols denote experimental data.35

We also examined the pressure effects on TEC of β-
Si3N4. As pressure increases from 0 to 30 GPa, our cal-
culated TEC decreases from 1.11 × 10−5 to 0.69× 10−5

K−1 at 2000 K (Fig. 21). At the same time, the nega-
tive TEC range extends from below 150 K at 0 GPa to
220 K at 30 GPa. The magnitude of the negative TEC
value also increases from −3.11× 10−7 to −5.09× 10−7

K−1. This pressure effect of TEC in β-Si3N4 is in agree-
ment with the calculated pressure effect on low frequency
phonon modes and the soft-phonon associated structural
instability discussed in earlier sections.
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FIG. 21. (Color online) Temperature dependence of volume
thermal expansion coefficient of bulk β-Si3N4 at pressures of
0, 10, 20 and 30 GPa.

Fig. 22 shows the experimental and calculated TEC
of γ-Si3N4 at ambient pressure.22,39–41 As a contrast, we
also plot the calculated TEC of the two hexagonal phases
of Si3N4. Although the cubic γ phase is nearly 20 %
denser and more than 20 % less compressible than the
two hexagonal phases, its TEC is more than twice as
large as those of the hexagonal phases, indicating that
there is a significantly stronger lattice anharmonicity in
the cubic γ phase. This may also be related to the fact
that the Si-N bond lengths in the γ phase is larger those
in the α and β phases.
The TEC of γ-Si3N4 remains significantly larger than

those hexagonal phases over the wide T -P ranges in our
calculations. For example, at 30 GPa, the TEC of the
most stable γ phase is still about twice as large as that
of the β phase. It is also interesting to mention that,
although our calculation predicts that the ground state
β phase has lower TEC than the meta-stable α phase at
zero pressure, the order of the TECs in the two hexagonal
phases switches upon compression, At 30 GPa, the α
phase is predicted to have the lowest TEC.
The two sets of experimental data TEC of γ-Si3N4

are relatively close below 500 K, but they differ signifi-
cantly at higher temperatures, which may originates from
the differences in samples and measurement methods.
Overall, our calculation is in better agreement with the
experimental data of Paszkowicz et al.40, and the the-
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FIG. 22. (Color online) Temperature dependencies of volume
thermal expansion coefficient of α-, β- and γ-Si3N4 at zero
pressure. The inset shows the low-temperature TEC of the γ
phase from 0 to 300 K.

oretical data of Fang et al.41 The calculation reported
by Paszkowicz et al., which is based a simplified Debye
model to approximate the phonon density of states,40

is consistent with our data at temperatures below 500
K. However, their predicted TEC at high temperatures
is apparently lower than all other three calculations that
are based on the first-principles phonon density of states.
At low temperatures, the prediction of γ-Si3N4 from
Kuwabara et al. is noticeably larger than other calcu-
lations, including ours. The same type of overestimation
also occurs for the low-T TEC of the β phase (Fig. 19).

As illustrated in the inset of Fig. 22, Paszkowicz et al.
reported that the measured TEC of γ-Si3N4 drops below
zero for T < ∼70 K.40. However, this is in disagree-
ment with all the reported calculations. From discussion
in the above text, the TEC at low temperatures is af-
fected by the mode Grüneisen ratios of the low-frequency
phonon modes. As shown in Fig. 5(c), no negative mode
Grüneisen ratios are found in the γ-Si3N4. The bulk
Grüneisen parameter of γ-Si3N4 must be positive at all
temperatures, and consequently, TEC of γ-Si3N4 must
be positive at all temperatures.

IV. CONCLUSION

In this paper, first, we have theoretically studied the
equilibrium thermodynamic stability and high-pressure

phase transitions among the α-, β- and γ-Si3N4 within
the frame of density functional theory (DFT) and quasi-
harmonic approximation (QHA). We find that α-Si3N4

remains as a metastable phase at temperatures up to
2000 K and pressures up to 10 GPa. The equilibrium
β→γ transition pressure is predicted as 7.5 GPa at 300K
and it increases to 9.0 GPa at 2000K, and the α→γ tran-
sition pressure is about 0.5 GPa lower than that of the
β→γ transition.
Next we have combined first-principles calculation and

high-pressure experiments (X-ray diffraction and Ra-
man) to understand the pressure-induced β→δ transition
at room temperature. From our calculated phonon dis-
persion, both α- and β-Si3N4 are dynamically stable at
low pressure. However, two competing phonon-softening
mechanisms are found in the β phase at high pressures.
β-Si3N4 is predicted to undergo a first-order β→P 6̄′ tran-
sition above 38.5 GPa, while α-Si3N4 shows no signs of
dynamical instability. The predicted metastable high-
pressure P 6̄′ phase is structurally related to β-Si3N4.
The enthalpy barrier height is estimated as only 67.23
meV/atom. The predicted results are consistent with the
observed β→δ transition at room temperature. Our ex-
perimental X-ray diffraction and Raman scattering mea-
surements confirm the transition at about 34 GPa, and
support the post-phenacite nature of the structure of the
δ phase. The β→δ transition in Si3N4 is analogous to the
β→δ transition in Ge3N4. The possibility for the δ phase
to adopt the post-spinel structure has been excluded.
Furthermore, we clearly demonstrate that softening of

phonon modes upon compression also affects the ther-
mal properties at low temperature. We show that the
low-frequency phonon modes that have negative mode
Grüneisen ratios lead to negative calculated TEC in both
α- and β-Si3N4, and we predict no negative TEC exists
in γ-Si3N4. Our predicted thermal properties, includ-
ing TEC and bulk Grüneisen parameters, are in good
agreement with available experimental data at ambient
pressure.
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