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We develop a one-dimensional, periodic real-space formalism for examining the electronic structure
of charged nanowires from first-principles. The formalism removes spurious electrostatic interactions
between charged unit cells by appropriately specifying a boundary condition for the Kohn-Sham
equation. The resultant total energy of the charged system remains finite, and a Madelung-type
correction is unnecessary. We demonstrate our scheme by examining the ionization energy of P-
doped Si〈110〉 nanowires. We find that there is an effective repulsion between charged P dopants
along the nanowire owing to the repulsive interaction of the induced surface charge between adjacent
periodic cells. This repulsive interaction decays exponentially with unit cell size instead of a power
law behavior assumed in typical charged calculations.
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I. INTRODUCTION

Doping is essential in engineering semiconductors with specific electronic properties for various device applications.
The dopants in such applications can be neutral, but there are numerous circumstances where charged dopants are
of interest. Depending on the experimental conditions, a dopant can be spontaneously ionized. In electronic devices,
where the function of dopants is to provide charge carriers, the dopants need to be ionized such that electrons (holes)
can be introduced into the conduction (valance) band of the host material. In energy storage devices such as batteries,
charged defects are also important. Specifically, the diffusion of charged species are involved during the charging and
discharging process of the device. Here we are interested in the behavior of charged defects or dopants at small length
scales, i.e., in nanowires. Recently, it is shown that charged impurities play an important role on electron scattering
and the electronic transport properties in nanowires1,2.
We will focus on the formation energy of charged dopants in these systems. This is a key property of charged

dopants. However, the formation energy can be a function of the charge state of the dopant and the Fermi level of
the system3 and it can be quite difficult to calculate. Ab initio electronic structure calculations of bulk materials
commonly impose periodic boundary conditions (supercells) on the domain of the calculation in order to make the
calculations tractable. However, the Coulomb interaction between supercells is long-ranged. This results in divergent
total energies when a net charge exists in a cell. The divergence is an artifact, which arises solely from imposing
periodic boundary conditions in the presence of long range interactions. Real systems are not infinite in extent and
such divergences do not exist in experiment. To replicate experimental systems, the long-range Coulomb interactions
between supercells should be removed such that the spurious interaction will not occur. This situation led workers
to introduce a jellium background into a unit cell for charged calculations. Jellium is a uniform charge distribution,
which serves to neutralize the net charge within the unit cell. The jellium screens the long-ranged interactions and
results in a finite total energy, even for a system infinite in extent. However, the added jellium need not be passive
and the introduction of this charge distribution interacts with the rest of the system. The artificial interaction can be
reduced by considering a large supercell as the charge density of the jellium trends to zero as the cell size is increased.
Unfortunately, a concurrent increase of the supercell size is deleterious as the computational load of the calculation
can increase dramatically with the cell size. An alternative approach proposed by Schultz is to introduce Gaussian
charges into the system, instead of a uniform jellium background, to compensate the multipole moments within the
unit cell4,5. A different approach is the Coulomb-cutoff method which truncates the long-ranged Coulomb interaction
along the non-periodic directions6–8. For the case of clusters or molecules, the Coulomb interaction can be truncated
for all the three directions resulting in a finite total energy6. A recent review on this subject can be found in Ref.9.
A widely used prescription to avoid interactions between the jellium and the system has been proposed by Makov

and Payne10. In the Makov-Payne scheme, the electrostatic interaction between the periodic array of net charges
Znet of the system and the introduced jellium is evaluated using the Madelung sum. The resultant electrostatic
energy has the form αZ2

net/2ǫa, which can be used as a correction to the total energy of the system. Here, a is the
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lattice parameter, ǫ is the dielectric constant of the host material, and α is the Madelung constant for the given
lattice. Furthermore, Makov and Payne demonstrated that for the case of a molecule with a quadrupole moment, an
addition term with 1/a3 dependence arises. The screening by the host material is effectively taken into account by
the dielectric constant ǫ as a scaling factor11. Studies reveal that scaling by ǫ is satisfactory only asymptotically as
the cell size increases, or for calculations of molecules well separated by vacuum space, where ǫ is 112,13. Freysoldt
et al. derived more accurate quantum mechanical corrections for charged dopants within a host material based on
first-order perturbation theory14.
In principle, the study of charged dopants in semiconductor nanowires can be treated similarly as a bulk calculation.

The nanowire is placed inside a supercell with sufficient vacuum space in between the periodically repeating array
of nanowires. This poses a conceptual problem for charged calculations because the jellium is supposed to fill the
nanowires, not the vacuum space in between. Secondly, the Makov-Payne correction should now involve a dielectric
tensor instead of a dielectric constant because the charged dopants are separated by the host material only along the
axial direction, but are separated by vacuum in the two perpendicular directions15. In addition, the corrected total
energies still converge slowly with unit cell size16.
In this paper, we approach the calculation of charged dopants in semiconductor nanowires differently. Instead of

using three-dimensional periodic boundary condition as in typical plane wave codes, we adopt only a periodic boundary
condition along the wire axis direction. This way, the interaction between different nanowires is removed. We shall
show that the divergent interaction between the periodic charged dopants along the wire direction can be removed
by appropriately defining the boundary condition for the Kohn-Sham equation without introducing a jellium into the
calculation. Hence, the resultant total energy is finite and free of the ∼ 1/aMadelung error, where a is the periodicity
of the nanowire. When compared to plane-wave calculations, our jellium-free scheme does not require Madelung
corrections, and avoid the need to calculate the diameter-dependent dielectric tensor of the nanowire. In addition,
only a small amount of vacuum space (∼ 5 Å) is necessary in the calculation domain owing to the absence of the
artificial inter-wire interaction. Both features offer practical convenience for theoretical studies of charged nanowires.
Furthermore, our scheme does not modify or truncate the electrostatic potential as in the Coulomb-cutoff method6.
We demonstrate our scheme by studying the ionization energy of P-doped Si〈110〉 nanowires. The convergence rate
of ionization energy with respect to the nanowire periodicity is comparable to that of a Madelung-corrected plane-
wave calculation. We find that there is induced surface charge after an electron is removed from the P dopant. The
induced charge extends far away from P on the nanowire surface. The interaction of induced surface charge between
neighboring unit cells is repulsive and exhibits an exponential decay with periodicity a, which is very different from
the power law behavior assumed in typical charged calculations.

II. THE ONE-DIMENSIONAL PERIODIC KOHN-SHAM PROBLEM WITH A NET CHARGE

A detailed description of our one-dimensional periodic formalism was presented in previous work17. Here, we
present a brief review of the formalism, and elaborate only on the parts that are relevant to charged calculations. The
electronic structure of a one-dimensional periodic system can be obtained by solving the Kohn-Sham equation18,19:

(

−~
2∇2

2m
+ Vion[ρ] + VH [ρ] + Vxc[ρ]

)

ψn,k(r) = εn,kψn,k(r), (1)

where Vion is the ion-core pseudopotential, VH is the Hartree potential, and Vxc is the exchange-correlation potential,
which is a functional of the ground state electron density ρ. We consider a system periodic in the x direction with a
period of a and spatially confined in the y and z directions. A cylindrical domain with radius, L, can be chosen to
enclose such system. By Bloch theorem, an eigenstate can be written in the form ψn,k(r) = exp(ikx)un,k(r) where
n is the band index and k labels a wave vector in the one-dimensional first Brillouin zone (−π/a, π/a). un,k(r) has
a periodicity of a along the x direction and vanishes on the boundary of the cylindrical domain. The Kohn-Sham
equation can be solved self-consistently after specifying the boundary condition on the cylindrical boundary, which
will be explained below.
For the ion-core pseudopotential Vion, we adopt the Kleinman-Bylander form where the pseudopotential is separated

into a short-ranged non-local part, and a long-ranged local part20. The long-ranged local pseudopotential has an
asymptotic behavior of −Zi/r, where Zi is the ionic charge of an atom i. Vion is evaluated by summing over the
atoms within the unit cell and all their periodic images. As explained in Section I, Vion is divergent because the
Coulomb interaction is long-ranged. Here, we adopt an Ewald-like technique to evaluate the infinite sum explicitly21.
For each atom i at position Ri, we add a compensating Gaussian charge−Zi centered on Ri. Instead of evaluating Vion
directly, we evaluate Vion + Vcom, where Vcom is the electrostatic potential corresponding to the set of compensating
Gaussian charges ρcom that we added. Since the long-ranged tail of the local pseudopotential is now canceled by the
compensating potential for each atom, the evaluation of Vion+Vcom involves summing over a finite number of periodic
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images. The result is independent of the width of the Gaussian charges. However, an appropriate choice of the width
(∼the cut-off radius of the pseudopotential) ensures that Vion + Vcom converges with only a few periodic images.
VH is the Hartree potential, which can be solved by the Poisson equation for a given electronic distribution ρ. Since

Vcom is added to Vion, we should solve VH −Vcom instead such that the Kohn-Sham equation is not changed. That is,
the Poisson equation should be solved for ρ−ρcom within the cylindrical calculation domain of radius L and periodicity
a. The boundary condition for the Poisson equation is to specify VH−Vcom on the cylindrical surface. Since ρ−ρcom is
radially localized within the domain, the boundary condition can be evaluated by a cylindrical multipole expansion22.
The monopole contribution to the potential on the surface is V0,0 = 2e

a
Znet

[

ln 2− γ − ln L
a
− (lim2πp→0 ln (2πp))

]

,
where Znet = Zel − Zion is the net charge of the system, γ is the Euler constant, e is the charge of an electron,
and p is an integer. For one-dimensional periodic charged systems, the divergence is logarithmic. The ln L

a
term can

be understood by Gauss’s Law for a line charge with charge density Znet

a
, and the terms corresponding to ln 2 − γ

represent a boundary condition for Gauss’s Law. When the number of electrons Zel equals to the total ionic charge
Zion, Znet is zero, and the monopole will not contribute.
Under our formalism, the specification of the monopole contribution to VH − Vcom is crucial for a charged periodic

calculation, because this is where the divergence in the Kohn-Sham equation lies. To understand the physics involved,
let us consider a one-dimensional periodic array of point charges Znet with periodicity a. We can evaluate the
electrostatic potential V (L) at a distance L away and directly on top of one of the point charges. V (L) is calculated
by summing up the Coulomb potential eZnet

r
from the periodically repeating charges. Asymptotically, V (L) is simply

V0,0. On the other hand, as L → 0, the near-field formula for V (L) is eZnet

L
− 2e

a
Znet(lim2πp→0 ln (2πp)). This

implies that if we are sufficiently close to the system of interest, and drop the logarithmic divergent term, then the
electrostatic potential will look as if it corresponds to a non-periodic system. We adopt such a choice for the reference
level of VH −Vcom, hence the monopole contribution becomes V0,0 = 2e

a
Znet

[

ln 2− γ − ln L
a

]

without the logarithmic
divergence.
There is a corresponding logarithmic divergence in the total energy. The total energy expression is given by:

Etotal =
∑

k

occ(k)
∑

n=1

εn −
1

2
EH +

∫

ρ (r) (εxc [ρ (r)]− Vxc [ρ (r)]) d
3
r+ Eion, (2)

where EH =
∫

VH (r) ρ (r) d3r is the Hartree energy, Eion is the Coulomb interaction energy between the ions,
εxc is the exchange-correlation energy density which is related to the exchange-correlation potential by Vxc =
δ(
∫

ρεxc [ρ] d
3
r)/δρ. Compared to a neutral calculation, there are two additional terms in the total energy:

E0,0 =
2βe2

a
ZelZnet −

e2Z2
net

a
( lim
2πp→0

ln (2πp)), (3)

where β is ln2−γ− ln L
a
. The first term corresponds to the electrostatic energy of the total electronic charge Zel under

the potential of a line charge with charge density Znet

a
given by Gauss’s Law. The second term is the logarithmic

divergence that should be removed from the total energy, as we did in the Kohn-Sham equation. It corresponds
to the electrostatic energy of a periodic array of charges Znet with periodicity a, which is the spurious electrostatic
interaction introduced by imposing the periodic boundary condition along the axis direction.
Our formalism for charged one-dimensional periodic calculation is implemented in PARSEC23,24, which is a real-

space code for density functional pseudopotential calculations. We use the local density approximation(LDA). The
exchange-correlation functional is from Ceperley and Alder25 parametrized by Perdew and Zunger26. We employ
Troullier-Martins pseudopotentials27 for the ion-core potential Vion. We consider a P-doped Si nanocrystal as a test
case for our formalism, and then focus on P-doped Si〈110〉 nanowires. 〈110〉 nanowires are chosen because it was
shown experimentally that they are the most energetically stable configuration for Si nanowires less than ∼ 10 nm in
diameter28. Our Si nanostructures adopt a bulk-like structure and passivated by H atoms on the surface. One of the
Si atoms at the center of the structure is substituted by a P atom. The real space grid is set to be 0.55 a.u., which was
shown to be sufficient for the study of ionization energies of P-doped Si nanocrystals29. For one-dimensional periodic
calculations, only the Γ point is used for the k-point sampling.

III. IONIZATION ENERGY OF A P-DOPED SI NANOCRYSTAL

To test our formalism presented in Section II, we calculate the ionization energy of a small Si34H36P nanocrystal
and compare our result to a calculation without imposing any periodic boundary condition (i.e. confined boundary
condition). The structure of Si34H36P nanocrystal is illustrated in Fig. 1(a). We calculate the ionization energy
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IE by Ei − E0, where Ei is the total energy of the ionized P-doped Si nanocrystal with an electron removed, and
E0 is the total energy of the corresponding neutral nanocrystal. Since LDA underestimates the energy gap, there is
a corresponding error of the defect level derived from the conduction band minimum for shallow n-type dopants30.
According to Ref.31 and32, the eigenvalue of the defect level from a neutral calculation does not properly take into
account the interaction between the defect electron and the induced charge on the nanowire surface owing to LDA self-
interaction error. This error propagates to both E0 and the resultant IE. Hence, the calculation of IE is problematic
in addition to the issue of a charged periodic unit cell. In this paper, we focus on the aspect of evaluating the total
energy for charged unit cells as described in the previous section, and not the LDA error.
We study the dependence of IE both as a function of L and a. L determines the amount of vacuum space between

the nanocrystal surface and the boundary of the cylindrical domain. We find that the total energy Ei is converged
when the vacuum space is ∼ 5 Å. Hence, we adopt the same amount of vacuum space for all the following calculations.
In Fig. 1(b), we illustrate the dependence of IE on periodicity a. a = 26 Å corresponds to ∼ 10 Å of vacuum space
between the periodic images of the nanocrystal. Our result reveals that IE quickly converges to within a few meV
with a modest amount of vacuum space between nanocrystals. The eigenvalue spectrum of the ionized Si34H36P
nanocrystal is depicted in Fig. 1(c). Apart from small numerical noise, the result from our one-dimensional formalism
can reproduce that from the confined boundary condition. Moreover, the eigenvalues are properly referenced with
respect to the vacuum.

IV. IONIZATION ENERGY OF P-DOPED SI〈110〉 NANOWIRES

In Fig. 2, we illustrate the cross section of our 3 Si〈110〉 nanowires with different diameter used in our study. We
also show the radial dependence of the self-consistent potentials VSCF for our smallest diameter nanowire (wire 1) in
Fig. 2(a). Compared to a neutral nanowire, the VSCF of a charged nanowire with an electron removed is lower in
energy. In the vacuum region far away from the nanowire, VSCF of the ionized nanowire exhibits a logarithm behavior
as predicted by the Gauss’s Law, while the VSCF of the corresponding neutral nanowire decays exponentially.
We examine the dependence of IE on periodicity a by varying a from 27.0 Å to 92.7 Å, which corresponds to

repeating the primitive unit cell from 7 to 24 times. Our results are depicted in Fig. 3(a). As a decreases, IE increases,
i.e., Ei increases relative to E0. In the inset of Fig. 3(a), we plot the transition level of wire 1 (E(0/+) = IE−CBM)
as a function of a, where CBM is the energy of the conduction band minimum of wire 1 without doping. For
comparison, the transition level (E(0/−) = EA − V BM) of a Al-doped Si〈110〉 nanowire with a similar diameter
taken from Ref.16 is also shown. EA is the electron affinity of the Al-doped Si nanowire, and V BM is the energy
of the valence band maximum of the wire without doping. Although the dopant in the two studies are different,
the inset illustrates that the convergence rate of IE with respect to a for our scheme is comparable to that of a
Madelung-corrected plane-wave calculation.
There is an effective repulsion between the ionized P within the nanowire. The log-linear plot in Fig. 3(b) exhibits

a linear dependence, which implies that IE as a function of a is exponential, and the repulsive interaction should be
quantum mechanical in nature. This behavior is very different from power laws like 1/a or 1/a3, which are derived from
electrostatics and typically used to extrapolate results for charged calculations. Fig. 3(a) shows that the exponential
curves fit very well to our calculated results. For our largest diameter nanowire (wire 3), the curve deviates from the
exponential fit when the nanowire diameter D is similar or larger than the periodicity a. An exponential decay has
also been observed for the P defect wave function in P-doped Si〈110〉 nanowires33.
In order to understand the repulsion between ionized P dopants, we examine the induced charge ρind in an ionized

P-doped Si〈110〉 nanowire. The induced charge ρind is obtained by taking the difference between the self-consistent
charge density of an ionized P-doped Si〈110〉 nanowire (with an electron removed) and the self-consistent charge
density of the same but neutral un-doped Si〈110〉 nanowire. The total number of electrons are the same for both
calculations. Positive (negative) ρind indicates electron excess (deficiency) compared to the neutral system. A surface
contour plot of ρind is drawn in Fig. 4(a) for wire 3. The contour surface corresponds to a positive value of ρind. The
plot shows that electrons are attracted towards the positively charged P atom. Fig. 4(b) and (c) illustrates the radial
dependence of ρind for different sections of the P-doped Si〈110〉 nanowire. We find that there are electron deficiency
on the nanowire surface, i.e., the nanowire surface is positively charged. For sections further away from the charged
P atom, ρind is smaller in magnitude characterized by negative region near the nanowire surface (the radius of wire 3
is ∼ 14 Å). The overall picture is that electrons are drawn from the nanowire surface towards the positively charged
P atom, and the induced surface charge extends pretty far away from the P atom. In Fig. 4(d), we compare ρind of
wire 3 for two different periodicity: a = 27.0 Å and a = 92.7 Å. For the small periodicity case, ρind along the axial
direction shrinks to fit inside the unit cell. This demonstrates that the effective repulsion between charged P atoms
originates from the repulsion between the induced surface charges from adjacent periodic cells. The behavior of the
induced surface charges and their exponentially decaying repulsive interaction should pertain to charged dopants in
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both nanowires and nanofilms.
In Fig. 3(c), we examine the dependence of IE on nanowire diameter D. The ionization energies are the extrapola-

tions for a→ ∞ from Fig. 3(a), and we denote the asymptotic values by IE∞. In the same figure, we also indicate the
bulk limit obtained by extrapolating the IE of P-doped Si nanocrystals29. Note that IE∞ for nanowires as a function
of D does not necessarily trend to the same bulk value obtained from nanocrystals. This is because the ionization
energy depends on how the facets of a nanostructure are constructed34. Hence, the bulk limit in the figure should be
regarded as a guideline. From Fig. 3(c), we find that IE∞ has a weak dependence on D. By quantum confinement,
the eigenvalue of the defect level −ǫd decreases with decreasing diameter as shown in Fig. 3(c). We therefore expect
that IE∞ should decrease significantly with D. However, it is known that the Kohn-Sham eigenvalue obtained from a
neutral calculation does not capture the ionization energy, and thus polarization energy stored in a nanomaterial31,32.
The size-dependent term of this polarization energy is an effective repulsion between the embedded charged P atom
and its induced surface charge, which acts against the size-dependence of ǫd resulting in a weak size dependence of
IE∞. A similar weak size dependence can also be observed for P-doped Si nanocrystals29.

V. CONCLUSION

We examined the trend of ionization energy of P-doped Si〈110〉 nanowire with respect to periodicity and diameter
using a one-dimensional periodic formalism in real space. The formalism allows us to remove the spurious interaction
of net charges between periodic images, and evaluate the total energy of a charged nanowire. We demonstrate that
it is not necessary to introduce a jellium into the calculation cell that interacts with the rest of the system. Without
such complications, we find that there is an effective repulsion between charged P atoms which originates from the
repulsion between the induced surface charge. The periodicity dependence of the repulsion exhibits an exponential
behavior, rather than a power law. Moreover, we find that the ionization energy has a weak diameter dependence
resulting from the opposite trend of quantum confinement and polarization effect.
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1 R. Rurali, T. Markussen, J. Suñé, M. Brandbyge, and A.-P. Jauho, Nano Lett. 8, 2825 (2008).
2 M. P. Persson, H. Mera, Y.-M. Niquet, C. Delerue, and M. Diarra, Phys. Rev. B 82, 115318 (2010).
3 S. B. Zhang, and John E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).
4 P. A. Schultz, Phys. Rev. B 60, 1551 (1999).
5 P. A. Schultz, Phys. Rev. Lett. 84, 1942 (2000).
6 M. R. Jarvis, I. D. White, R. W. Godby, and M. C. Payne, Phy. Rev. B 56, 14972 (1997).
7 C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, Phy. Rev. B 73, 205119 (2006).
8 S. Ismail-Beigi, Phy. Rev. B 73, 233103 (2006).
9 W. R. L. Lambrecht, physica status solidi (b), doi: 10.1002/pssb.201046327

10 G. Makov, and M. C. Payne, Phys. Rev. B 51, 4014 (1995).
11 M. Leslie, and M. J. Gillan, J. Phys. C 18, 973 (1985).
12 A. F. Wright, and N. A. Modine, Phys. Rev. B 74, 235209 (2006).
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FIG. 1: (a) An atomic model for a Si34H36P nanocrystal. The small spheres on the surface of the nanocrystal are H atoms.
The light-shaded atom at the center is P. The rest are Si atoms. (b) Ionization energy (IE) of the Si34H36P nanocrystal
plotted as a function of the unit cell periodicity a under one-dimensional periodic boundary condition. The dashed line is
obtained by a separate calculation without imposing any periodic boundary condition (confined boundary condition). (c) The
eigenvalue spectrum of an ionized Si34H36P nanocrystal with an electron removed. The vertical lines represent the energies
of the eigenvalues. Solid lines are for occupied states, and dashed lines are for empty states. Different color corresponds to
results using different boundary condition: black for confined boundary condition, gray for one-dimensional periodic boundary
condition.
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are fitting parameters. The inset compares the a dependence of the transition level E(0/+) of wire 1 with the transition level
E(0/−) of a Al-doped Si〈110〉 nanowires from Ref.16. (b) A log-linear plot of (a). The asymptotic value IE∞ is subtracted out
from IE first before it is plotted. (c) The diameter D dependence of IE∞ for P-doped Si〈110〉 nanowires (�). The dashed line
indicates the bulk limit of IE extrapolated using the data points for P-doped Si nanocrystals29. The diameter dependence of
the Kohn-Sham eigenvalue of the defect level (−ǫd) is also shown (•).
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FIG. 4: Induced charge density ρind for a P-doped Si〈110〉 nanowire (wire 3). Positive (negative) ρind indicates an excess
(deficiency) of electrons. (a) The side view of a surface contour plot of ρind (gray in color). The surface contour corresponds
to a positive ρind value. Only the atomic bonds are drawn, but not the individual atoms. The P atom is close to the center
of the plot, and surrounded by the gray contour surface. (b) and (c) The radial r variation of ρind is illustrated for 5 different
segments of the nanowire calculated with periodicity a = 92.7 Å. The P atom is at r = 0 and x = 0, where x is the axial
coordinate. The segment x = 0 − 9 Å contains the charged P atom, while the x = 36 − 45 Å segment is furthest away. The
radius of the nanowire is ∼ 14 Å. (d) The axial variation of ρind is depicted for two different periodicity calculated using wire
3.


