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The D band Raman intensity is calculated for armchair edged graphene nanoribbons using an
extended tight-binding method, in which the effect of interactions up to the 7th nearest neighbor is
taken into account. The possibility of a double resonance Raman process with multiple scattering
events is considered by calculating a T-matrix through a direct diagonalization of the nanoribbon
Hamiltonian. We show that long range interactions play an important role in the evaluation of
both the D band intensity and that the main effect of multiple scattering events on the calculated
D band is an overall increase in intensity by a factor of four. The D band intensity is shown to
be independent of the nanoribbon widths for widths larger than 17 nm, leading to the well known
linear dependence of the ID/IG ratio on the inverse of the crystallite size. The D band intensity
was shown to be nearly independent of the laser excitation energy and to have a maximum value
for incident and scattering photons polarized along the direction of the edge.

PACS numbers:

1. INTRODUCTION

The D-band Raman spectra in both graphene and sin-
gle wall carbon nanotubes (SWNTs) has been widely
used to characterize defective carbon-based samples. It
has been known that the D band intensity depends both
on the crystallite size and on the laser excitation energy
(Elaser) in such a way that the D band intensity is in-
versely proportional to the in-plane crystaline size1,2 (for
d larger than 20 nm) and the D band to G band rela-
tive intensity (ID/IG) is proportional to E−4laser.

2 Exper-
imental evidence suggests that the main dependence of
the ID/IG ratio on the laser excitation originates mainly
from an increase in the IG intensity with increasing laser
excitation energy as IG = E4

laser while the D band inten-
sity ID would be mainly independent of the laser exci-
tation energy.3 A recent independent experimental work
by Narula et al.4 investigating the Raman scattering ma-
trix elements of the D and G bands observed that the D
band intensity increases nearly linearly with laser excita-
tion for graphene (Elaser < 2.6 eV). Also, different Elaser

dependences were found for the D and G band intensities
for monolayer graphene on Si/SiO2 and pencil graphite.4

Furthermore, Sasaki et al. have studied the polarization
dependence of the D band intensity for nanoribbons, ob-
serving that the D band intensity has a maximum when
both the incident and the scattered photons are polarized
along the direction of the armchair edge.5

The D band intensity is usually explained consid-
ering a double resonance Raman scattering (DRRS)
mechanism6,7 in which the defect acts as an elastic scat-
terer for the photo-excited electron in the second-order
scattering processes in k space. In order to estimate the
role of the defect on the double resonance process, it is
necessary to calculate the elastic scattering amplitude

between two k states in the Brillouin zone. Formally,
the scattering amplitude for a given scattering potential
can be expressed by the so-called T matrix, in which
the modification of the electronic states by scattering is
taken into account in an infinite series expansion.8 Sato
et al. calculated the D band intensity for armchair-edged
graphene ribbons in which they consider the first-order
term of the scattering matrix and they obtained a de-
pendence for the D band integrated intensity on Elaser.

9

In the previous calculation, the electron-defect scatter-
ing matrix elements were obtained within a simple tight-
binding method (STB) for the nearest-neighbor atoms in
which the scattering at an armchair edge is taken into ac-
count as missing transfer integrals of the nearest neighbor
atoms at the edges.

Although these approximations can give insight into
the overall properties of the D-band Raman peak, the
modification of the electronic wave functions by the scat-
tering wave was not considered by higher order terms
in the perturbation expansion. Furthermore, in the pre-
vious calculation, we considered only the first nearest
neighbor interactions for the scattering potential which
does not always represent the full range of the scattering
potential.

In the present paper we will evaluate both of these
missing effects by considering farther neighbors and by
considering the effect of multiple scattering processes on
the total elastic scattering amplitude. The effect of con-
sidering other neighbors can be taken into account by us-
ing the extended tight-binding method (ETB), where the
tight-binding parameters dependence on the interatomic
distance was obtained from density functional theory.10

Furthermore, the effect of multiple scattering processes
can be taken into account by considering a T matrix.

In §2 we briefly describe the T matrix formalism in
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the scattering theory and then introduce the scattering
potential for the armchair edged graphene nanoribbon.
Also in §2, we show the calculated results for the elastic
scattering amplitude within the ETB method, which is
compared with the previous STB models. In §3 we intro-
duce the model used for the D band Raman intensity cal-
culation and in §4 we discuss the calculated results of the
D band intensity as a function of Elaser, the nanoribbon
width and on the incident and scattered light polariza-
tions. Finally, in §5 a summary of the present calculation
is given.

2. THEORETICAL BACKGROUND

Within scattering theory, an elastic scattering ampli-
tude between the initial (i) and final (f) states of the
unperturbed system due to an arbitrary perturbation is
given as

Sf←i = δfi − 2πδ(Ef − Ei)Tfi(E) (1)

where the first kronecker delta function (δfi) becomes
unity for identical initial (i) and final (f) states, and
the second delta function corresponds to the conservation
of energy. The T-matrix, Tfi(E), can be calculated in
terms of the T operator which can be expressed in terms
of Green’s function for the perturbed system, G(E) =
(E −H)−1, as

T (E) = V + V G(E)V, (2)

where H = H0 + V is the perturbed Hamiltonian
(graphene ribbon with edges), H0 is the unperturbed
Hamiltonian (infinite graphene sheet) and V is the scat-
tering potential associated with the edge.
The T operator can also be expressed by an unper-

turbed Green’s function G0(E) = (E − H0)
−1 as the

following series expansion:

T (E) = V + V G0(E)V + V G0(E)V G0(E)V + ... (3)

Each of the terms in the series expansion can be inter-
preted as processes with a fixed number of scattering
events. There are several difficulties related to using the
method given by the expansion of Eq.(3). The first dif-
ficulty is the fact that for most scattering potentials it
is not possible to know a priori how fast the series con-
verges and thus the series is usually truncated at a finite
number of scattering processes.
Such difficulty is avoided if the Hamiltonian H for the

perturbed system can be diagonalized, so that G(E) is
expanded in terms of its eigenfunctions, and then the T
matrix can be obtained explicitly. This formalism takes
into consideration all the possible scattering events and
does not depend on the convergence of the series. How-
ever, there is a requirement that the eigenfunctions and
eigenenergies of the perturbed system must be known in
order to allow for the calculation of the T matrix.

In the present work we will apply the T matrix formal-
ism to calculate the scattering amplitude for armchair
edges in graphene (the choice of the armchair edges is
based on the fact that purely zigzag edges will not con-
tribute to the D band Raman scattering).11 To calculate
the scattering matrix elements T (E) in Eq.(2) for the
case of armchair-edged graphene ribbons, the super-cell
shown in Fig. 1(a) is considered. The ribbon width L is
given by the number of 4 atom unit cells (shown by a rect-
angle in the figure) used to construct the super-cell (Ny).
Figure 1(b) shows the real space structure of graphene
where the 4 atom unit cell mentioned above is depicted
by a light blue (Color Online) rectangle. The graphene
reciprocal space structure is shown in Fig. 1(c), where
the Brillouin zone corresponding to the 4 atom unit cell
in (b) is also shown in a light gray rectangle. In order to
calculate the electronic properties of graphene, it is suf-
ficient to consider only the wavevectors which are within
the dark gray area shown in Fig. 1(c). We are mainly
interested in the T matrix for large values of L for which
we can disregard quantum confinement effects.

2.1. Calculation of the scattering amplitude

The electronic structure of both the graphene ribbon
and the infinite graphene layer can be calculated using
an extended tight-binding method, where several nearest
neighbor interactions are taken into account. For both
an infinite graphene sheet and a graphene ribbon, the
wavefunctions can be written by considering a unit cell
consisting of 2N carbon atoms as

ψb(~k, r) =
∑

l

Cb
l (
~k)

1√
U

∑

u

exp(−i~k · ~Rul)ϕ(~r − ~Rul),

(4)

where Cb
l (
~k) is the coefficient of the Bloch function, and

ϕ(~r − ~Rul) is the atomic orbital at the l-th atom of the
u-th supercell. Here l and u go over 2N atomic sites in
a unit cell and over all U unit cells in the lattice. The
infinite graphene plane is obtained by making U → ∞
and 2N → ∞. The Hamiltonian matrix for ψb is written
in terms of tight-binding wavefunctions as

〈ψb(~k, r)|H0|ψb(~k, r)〉 =
∑

l′l

Cb∗
l′ (
~k)Cb

l (
~k)H0

l′l(
~k), (5)

where H0
l′l(
~k) is given by

H0
l′l(
~k) =

∑

u

exp[i~k · (~Rul − ~Ru′l′)]H
0
uu′ll′ , (6)

where

H0
uu′ll′ = 〈ϕ(~r − ~Rul)|H0|ϕ(~r − ~Ru′l′)〉, (7)

are the atomic matrix elements. The values for the
atomic matrix elements and for the overlap parameter
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FIG. 1: (Color online)(a) Schematics of a graphene ribbon unit cell for Ny = 5, corresponding to L ∼ 1.1 nm. The filled
symbols represent the atoms in the ribbon unit cell, while the open symbols represent adjacent unit cells in the x direction.
The box shows a 4 atom unit cell which is used to generate the graphene ribbon. (b) and (c) show, respectively, the real and
reciprocal space structures of graphene, highlighting the 4 atom unit cell and its corresponding Brilluoin zone.

(S0
uu′ll′), defined as

S0
uu′ll′ = 〈ϕ(~r − ~Rul)|ϕ(~r − ~Ru′l′)〉, (8)

were obtained from the DFT calculations of Porezag et

al.10. A cutoff radius of 10a0 ∼ 0.53 nm (where a0 is
the Bohr radius) is used for the calculation of H0

uu′ll′

and S0
uu′ll′ parameters in order to save computation time,

which corresponds to considering interactions of up to the
seventh nearest neighbors. This choice of parameters has
been shown to reproduce well the electronic properties of
graphene and single-wall carbon nanotubes.12

For the graphene ribbon, we set to zero the values of
H0

uu′ll′ and S
0
uu′ll′ between atoms in the edge and missing

atomic positions outside of the edge. Then we can define
the single scattering amplitude between two eigenfunc-

tions (〈ψb′ (~k′, r)|V |ψb(~k, r)〉, where V denotes the poten-
tial change at the edges relative to a bulk atomic site),
as

〈ψb′(~k′, r)|V |ψb(~k, r)〉 =
∑

dl

Cb∗
d (~k)Cb

l (
~k)Vdl(~k

′, ~k) (9)

and

Vdl(~k
′, ~k) =

∑

u

exp(i~k· ~Rul−i~k′· ~Ru′d)H
0
uu′ldδ(

~k−~k′+ ~Q),

(10)
where d represents a missing atom position outside the

edge. The vector ~Q in Eq.(10) represents the reciprocal

lattice vectors for the super-cell, and the delta function
in Eq.(10) represents the conservation of momentum.
Since both the perturbed and unperturbed Hamilto-

nians are defined for the same unit cell, the wavefunc-
tions of the graphene ribbon φn(k, r) will also be written
in terms of the same atomic orbitals as those of the un-
perturbed graphene structure, but having different tight-
binding coefficients Pn

l (k) such that

φn(k, r) =
∑

l

Pn
l (k)

1√
U

∑

u

exp(−ikRul)ϕ(r −Rul),

(11)
which can be obtained by diagonalizing the Hamiltonian
for the graphene ribbon. Since the electronic states in the
graphene ribbon are confined by the edges, the coefficents
Pn
l (k) are defined only for k values along the direction of

the edges, while when writing the Cb
l (
~k) coefficients for

the infinite graphene sheet we note that the vector ~k is
defined in a two dimensional reciprocal space.

The complete T matrix 〈ψb′(~k′, r)|T (E)|ψb(~k, r)〉 can
be obtained from Eq. (2) by expanding G(E) in terms
of the eigenfunctions of the graphene ribbon |φn(k, r)〉
which results in the following equation:

Tfi(E) = Vfi +
ΩfnΩni

E − En + iǫ
(12)

where Tfi is the total scattering amplitude between the
initial (i) and final (f) pristine graphene states

Tfi(E) = 〈ψb
f (
~kf , r)|T (E)|ψb

i (
~ki, r)〉, (13)
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Vfi is the value of the 1st Born approximation term

Vfi = 〈ψbf (~kf , r)|V |ψbi(~ki, r)〉, (14)

and

Ωni = 〈φn(k, r)|V |ψbi(~ki, r)〉 (15)

is the matrix element for the scattering between the i-
th state to an n-th eigenstate (φn(k, r)) of the graphene
ribbon. Similarly

Ωfn = 〈ψbf (~kf , r)|V |φn(k, r)〉 (16)

is the matrix element for the scattering from this same
eigenstate n of the graphene ribbon to a final state f . The
broadening factor ǫ appears in Eq.(12) in order to remove
the singularity in the denominator of this equation and is
related to the timescale of the electron-defect interaction.

3. THE D BAND RAMAN INTENSITY

CALCULATION

After calculating the elastic scattering matrix ele-
ments, it is possible to calculate the D band Raman inten-

sity. According to the work of Martin and Falicov13 the
differential cross-section for the Raman scattering pro-
cess is given by

dσ

dΩ
=
ǫ20V

2E2
e

4π2~4c4
|Kλ,λ′

ea (Ea, Ee)|2, (17)

where Ea and Ee are the energies of the incident (ab-
sorbed) and scattered (emitted) photons with λ and λ′

polarizations, respectively. Ω is the solid angle for the
collection of the scattered light and ǫ0 is the vacuum per-
mittivity, c is the speed of light and V is the quantization
volume for the irradiated field. According to the model
for a double resonance Raman process6,7 the value of the
kernel Kλ,λ′

ea (Ea, Ee) can be obtained as

∣

∣

∣
Kλ,λ′

ea (Ea, Ee)
∣

∣

∣

2

=
∑

i

∣

∣

∣

∣

∣

∣

∑

f

Mλ
a (
~ki)M

c
ep(
~ki, ~kf )M

c
elas(

~kf , ~ki)M
λ′

e (~ki)

(∆Eki
+ iγ)(Ec

~ki

− Ec
~kf

− ~ωph + iγ)(Ec
~kf

− Ec
~ki

+ iγ)

∣

∣

∣

∣

∣

∣

2

, (18)

where

∆E~ki
= Ea − (Ec

~ki
− Ev

~ki
), (19)

and

~ωph = Ea − Ee, (20)

For the matrix elements M c
ep, which correspond to the

electron-phonon matrix elements for electrons in the con-
duction (c) band, we have used the previously calculated
expression by Jiang et al.14. The factor γ was consid-
ered to be equal to 0.06 eV for all the processes, which
corresponds to the assumption that the timescale of the
Raman process is mainly governed by the lifetime of elec-
trons due to the electron-phonon interaction15. This as-
sumption is only valid for a low density of elastic scat-
tering centers, for which the mean distance between the
scattering centers is well below the mean-free path for
electron-phonon scattering processes. Using the uncer-
tainty relation for 0.06 eV and the Fermi velocity of
graphene 106 m/s, we roughly estimate the value of this
low density of elastic scattering centers as n = 1011/cm2

and by assuming the effective cross section for elastic

scattering in the two dimensional system to be of the or-
der of σ = 1.0 nm. This value is consistent with the ex-
periment by Lucchese et al.16 in which the D-band spec-
tral width changes when the scattering densities increase
and reach values of around 1012 1/cm2. Formally, the
value of γ due to the electron-phonon scattering should
also depend on the laser excitation energy and on the
density of defects. However, for simplicity, a constant
value for γ is considered in this work. Further studies
of how electron-phonon related resonance broadening ef-
fects change the laser excitation energy and crystallite
size dependence of the D band intensity should be the
subject of future work. For the calculations shown in
this paper we chose a particular process for which the
defect scattering takes place between initial and final
states in the conduction band. Other processes involving
hole scattering are also possible, and similar results are
obtained (not shown here) by considering hole scatter-

ing processes. The matrix elements Mλ
a and Mλ′

e cor-
respond to the light absorption and light emission ma-
trix elements, respectively.17 In such a Raman process it
is expected that a stimulated absorption of the photons
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takes place while the emission should be usually sponta-
neous, such that the matrix elements for the absorption
and emission are, respectively18:

Mλ
a (k) = i

e~

mEa

√

I

ǫ0c
~Pλ · ~D(k), (21)

and

Mλ′

e (k) = i
e~

mEe

√

Ee

2πǫ0
~Pλ′ · ~D(~k), (22)

where Pλ and Pλ′

are the polarization vectors, I is the in-

tensity of the incident beam and the dipolar vector D(~k)
is given, within the dipolar approximation (exp(ika) ∼ 1)
by17

~D(~k) = 〈ψc(~k)|~∇|ψv(~k)〉. (23)

To evaluate the importance of considering the long
range scattering potential and the effect of the multiple
scattering processes on the D band intensity calculation,
the electron-defect matrix element (Melas) in Eq. (18)
was calculated in three different ways:
(1) STB - the simple tight-binding is used for the scat-

tering potential, for which only the 1st nearest neighbor
interaction is taken into account. Also, only single scat-
tering processes (1st Born approximation) are considered.
(2) ETB-s - the long-range scattering potential is taken

into account using the extended tight-binding model.
However only single scattering processes are considered
(3) ETB-m - both the long-range interactions and mul-

tiple scattering processes are taken into account.
To calculate the Raman scattering cross section a full

calculation was performed for initial and final states in a
256 x 256 mesh of points centered at the K and K’ points,
respectively, and spanning a 10π/6

√
3a x 10π/6

√
3a area

of the Brillouin zone. For the STB based calculation, the
defect scattering matrix element was obtained directly
from the expression derived by Sato et al.9. For the ETB-
s and ETB-m models, the defect matrix element for some
given k states were obtained by a linear interpolation of
the calculated T matrix in each case. The same set of
initial and final points were used for all the three models.

4. RESULTS

4.1. Full T matrix calculations

In order to calculate the T matrix (Eq.(12)) we adopt
a finite value for ǫ to account for the uncertainty of the
energy during the scattering process. To verify that our
choice of ǫ is physically sound, we note that it is ex-
pected that small variations of ǫ should not change the
calculated value for the T matrix significantly. Figure 2
shows the calculated values for the Tkk′ matrix elements
as a function of ǫ for a graphene ribbon with Ny = 16
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T
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FIG. 2: Dependence of the scattering amplitude Tkk′ for
k = 0.86π/a and k′ = −0.86π/a on the broadening factor ǫ.
Squares (circles) are for scattering within the valence (con-
duction) band. In both cases the T matrix converges for
ǫ > 0.4 eV.

(∼ 0.38 nm). The value for the T matrix shown in
Fig. 2 was calculated for k = 0.86π/a and k′ = −0.86π/a

(a =
√
3acc = 2.460 Å) electronic states in either the

valence band (shown as blue squares) or the conduction
band (shown as red circles).

In Fig. 2 it can be seen that, for both the valence and
the conduction bands, the value of Tkk′ converged for ǫ >
0.4 eV. The value of ǫ = 0.4 eV was then used to calculate
the T matrix for all possible scattering amplitudes for the
Ny = 16 graphene ribbon. The value of ǫ for which the T
matrix converges was found to decrease with increasing
ribbon size following a ǫ = 6.4/Ny eV power law. This
dependence is of the same order of magnitude as the value
ǫ = ~vF /L ∼ 16.6/Ny eV, which represents the value for
ǫ for which those electrons that are scattered by one of
the edges are not scattered by the other edge within the
time t ∼ ~/ǫ, in which vF ∼ 106 m/s denotes the Fermi
velocity. The validity of this power law was explicitly
verified in the present work for graphene ribbons ranging
from Ny = 8 to Ny = 64.

In Fig. 3(a) we plot the absolute value of Tkk′ for dif-
ferent nanoribbon widths ranging from ∼2 nm (Ny=8) to
∼20 nm (Ny=80). The left and right panels of Fig. 3(a)
show Tkk′ for two different initial states ky, one along
the KΓ, which only scatters towards the opposite KΓ
direction (left panel) and one along the KM direction,
which correspondingly only scatters to the opposite KM
direction (right panel). The values of k′y vary along the
kx = 0 line which crosses the center of the Brillouin zone.
It can be clearly seen that as the graphene ribbon width
increases, the shape of the T matrix converges to a sin-
gle curve, indicating that for Ny > 64 (corresponding to
a ∼17 nm wide nanoribbon), the confinement effects can
be disregarded and the scattering amplitude can be inter-
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FIG. 3: (a) Comparison between the T matrix calculated for
different nanoribbon sizes (number of atoms varying between
32 and 320) for an initial state k = (0,−5.5/a)) and final
states in the KΓ direction (left) and for an initial state, k =
(0, 4.6/a)) and final states in the KM direction (right). (b)
Dependence of the normalized single scattering (square) and
multiple (triangles) matrix elements on the nanoribbon width
L (Ny).

preted as coming only from the edge scattering. For this
reason, for most of the following discussion on the D band
intensity, the T matrix was calculated using Ny = 96, in
order to guarantee a minimum effect of quantum confine-
ment. In Fig. 3(b) we show the absolute value of Tkk′ for
a particular set of initial and final states (kx = k′x = 0
and ky = −k′y = 0.86π/a) as a function of the nanorib-
bon width for the single (ETB-s) and multiple scattering
(ETB-m) models. It can be clearly seen that for the
ETB-m model, the value of the T-matrix converges to a
constant value. On the other hand, it is interesting to
comment on the effects of the confinement on the scat-
tering amplitude. Within multiple scattering theory, one
expects that as the ribbon width decreases, the probabil-
ity that the electron is consecutively scattered by the two
edges should increase, thus affecting the final scattering
rate. In this sense, it can be seen in Fig. 3 that the T ma-
trix decreases with decreasing nanoribbon widths. It is

possible to understand this effect by noting that we are
taking into consideration a backscattering process, for
which the wavevectors of the initial and final states have
opposite signs. The effect of the two edges regarding the
second order process can be interpreted as consecutive
scatterings of the electron from each of the edges. Since
the two edges are on opposite sides of each other, it is
not possible for the electron to undergo two backscat-
tering processes and still end up with a wavevector of
the opposite sign, and thus the probability of having a
backscattering process should thus be reduced due to the
presence of the two edges. In Fig. 3(b) we also show the
same plot for the scattering amplitude calculated within
the 1st Born approximation. In this case, as the multiple
scattering effect is not taken into account, the scattering
amplitude does not change with decreasing ribbon width.
We should point out that this effect is not caused by the
amorphization of the graphene ribbon edges nor by the
creation of sp3 bonding, as suggested by Jorio et al.19

or by Ferrari and Robertson20, respectively, but to the
destructive interference between the multiple scattering
processes involving the two edges. However, the exper-
imental observation of this effect should present several
challenges, including the difficulty of obtaining perfectly
edged graphene ribbons and the fact that for ribbons
which are much larger than the mean free path of the
electron due to the electron-phonon interaction, the mul-
tiple scattering effects involving the two edges will be
strongly suppressed. One possible option is to perform
the experiment at low temperatures.

4.2. D Band intensity Calculation

Figure 4(a) shows the calculated Raman spectra for
different excitation energies. Two characteristic behav-
iors can be observed as the laser excitation energy is in-
creased: The frequency of the D band increases, while
the overall intensity remains fairly constant as Elaser in-
creases. The D band frequency dependence is well known
to be a consequence of the resonance selection of particu-
lar states near the K point. To better probe the laser en-
ergy dependence of the D band intensity and to evaluate
the effect of long range and multiple scattering effects to
the D band intensity we show in Fig. 4(b) the calculated
D band intensity as a function of the laser excitation en-
ergy for the STB (green circles), ETB-s (black squares)
and ETB-m (red triangle) models. It can be seen that
the D band intensity remains almost constant within this
energy range. A more detailed analysis shows that for
the ETB-m and ETB-s models, there is a weak linear
dependence which, however, is very small compared to
the overall intensity and would thus be very difficult to
observe experimentally. For a better comparison with ex-
periments, we also show in Fig. 4(c) the expected value
for the ID/IG intensity ratio (logarithimic scale) depen-
dence on the excitation laser energy. Since the calcu-
lation of the G band intensity dependence on the laser
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FIG. 4: (a) Laser Excitation Energy dependence of the D-
band Raman spectra for the ETB-m model. Dependence of
(b) the D band integrated intensity and (c) ID/IG ratio on
the laser excitation energy (logarithmic scale). The lines are
a guide to the eyes showing the expected E−4

laser
dependence.

excitation energy is still not well established in the liter-
ature, we considered the IG to be given by IG ∝ E4

laser,
and adjusted the values so that the calculated ID/IG ra-
tio for the ETB-m model fits the expected dependence
for a ∼50 nm crystallite sized nanographite3. The solid
lines show the expected ID/IG = AE−4laser dependence,
indicating that for the ETB-s and ETB-m models, the
calculated results are in good agreement with the exper-
imental results.3,4 It is important to note that, although
this E4

laser behavior is well known for non-resonant Ra-
man scattering, the G band Raman process involves res-
onant electronic states, and thus the Elaser dependence
of the G band intensity should deviate from this behav-
ior. This point has been discussed in the literature by
D. M. Basko21 where he concludes that for very low ex-
citation energies (Elaser << 3eV ) the G band should
follow a E2

laser. This different G band intensity behav-
ior would change the ID/IG ratio evaluation performed
in the present work. Also, recent experimental work
indicates that both the D and G band intensities be-
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FIG. 5: (Color Online) Dependence of the calculated D band
intensity on the scattered light polarization (Θe) for (a) Θa =
0 and (b) Θa = 90. The polarization scheme is shown for each
case. The green arrow represents the direction of Θa.

have differently for graphene and graphite as a function
of the laser excitation energy.4 Further experiments on
graphene nanoribbon edges and G band intensity cal-
culations for graphene ribbons are needed in order to
improve our understanding of this effect. It is impor-
tant to comment on the fact that in our calculations,
we have assumed spontaneous photon emission, which is
a reasonable assumption for the low laser power regime
used in Ref.3. For higher laser powers it is possible that
a stimulated emission process may take place,22 which
should have an altogether different laser excitation de-
pendence. Also, we would like to point out that when
comparing the ETB-s and ETB-m models, there is little
change in the energy dependence of the D band intensity
and ID/IG ratio calculation, indicating that for large rib-
bons, the main effect of considering multiple scattering
processes is an overall increase in the D band intensity
by a factor of 4. In the case of the STB model, the
D band intensity does not show a weak linear depen-
dence on Elaser, being mostly constant throughout this
energy range. However, this difference between the STB
and the ETB models has little effect on the ID/IG ra-
tio dependence on Elaser, which is dominated by the fact
that IG increases rapidly with the excitation laser energy.
Another important point is that the electron-phonon in-
teraction is expected to increase for higher laser exci-
tation energies, and this should cause a change to the
electron-phonon lifetime and consequently to the value
of γ thereby adding an extra effect to the dependence of
both the D band intensity and the ID/IG ratio on Elaser.
This effect has not been taken into account in the present
calculation and should be the focus of further studies.
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We have also investigated the dependence of the D
band intensity on the polarization of the incident and
the scattered light with respect to the orientation of the
edge. The calculated results can be well described by the
following equation

I = I0[cos
2 Θa cos

2 Θe + 0.14 sin(Θa +Θe) +

+0.11 sin2(Θa) sin
2(Θe)], (24)

where I0 is the maximum intensity and Θa and Θe are the
angles between the direction parallel to the edge and the
absorbed and emitted light polarization, respectively. It
can be seen that the leading term shows a cos2 Θa cos

2 Θe

dependence, as predicted by Sasaki et al.5. In Fig. 5(a)
and (b), we show the intensity dependence on the polar-
ization of the scattered light (Θe in polar coordinates for
Θa = 0o and Θa = 90o, respectively). It can be seen that
for Θa = 90o the D band intensity is almost independent
of Θe and about 10 times weaker than the intensity for
Θa = Θe = 0o. This result is in good agreement with
the experimental results of Cong et al.23 who obtained a
ratio of 0.2 between the maximum value (Θa = 0o and
Θe unpolarized) and the minimum value (Θa = 90o and
Θe unpolarized) of the D band intensity.23

Finally, in Fig. 6(a) we show the D band intensity de-
pendence on the nanoribbon width (Elaser = 2.0 eV). For
comparison, we show the results obtained using the ETB-
s (black square) and ETB-m (red triangle) models. For
the ETB-m model the D band intensity seems to be inde-
pendent of the ribbon width for Ny > 64. For such large
ribbon widths the two edges act as independent scatter-
ing centers, and thus the scattering amplitude is indepen-
dent of the width. In this regime, the D band intensity
is localized in the nanoribbon edges and its localization

is dominated by the phase coherent length.24 For thinner
nanoribbons, multiple scattering processes involving the
opposite edges become increasingly important, causing
a decrease in the D band intensity, as explained above.
In the case of the ETB-s model, the D band intensity
is independent of the nanoribbon width since it disre-
gards the multiple scattering processes. In order to al-
low for a comparison with experiments, we also show in
Fig. 6(b) the expected ID/IG ratio by taking into consid-
eration that the D band intensity is proportional to the
ribbon length, while the G band intensity is proportional
to the total ribbon area, thus leading to an ID/IG ratio
which is proportional to 1/Ny. Once more, we scaled the
ID/IG ratio in order to fit the experimental results from
Cançado et al.3 In Fig. 6(b), the solid lines are a guide
to the eye, showing the expected 1/Ny behavior. A de-
viation of the ID/IG ratio from the 1/Ny dependence for
smaller nanoribbons can be clearly seen for the ETB-m
model as a result of the fact that for nanoribbons with
widths L < 17 nm multiple scattering processes involv-
ing both edges start to play an important role in the
scattering amplitude. For this reason, the scattering rate
ceases to be independent of the nanoribbon size causing
a departure from the 1/Ny behavior.”

5. CONCLUSION

In this work we have studied the calculation of the D
band intensity for edge scattering in graphene nanorib-
bons using three different models for the elastic scatter-
ing amplitude. The effect of considering the number of
nearest neighbors in the tight-binding model and of mul-
tiple scattering processes was analyzed. The D band in-
tensity was shown to be weakly dependent on the laser
excitation energy, indicating that the E−4laser dependence
observed experimentally for the ID/IG ratio is mainly
due to changes in the G band intensity, which is in agree-
ment with the latest experiments on nanographite.3 Also,
we have shown that for nanoribbons with a width larger
than 17 nm, the D band intensity is independent of the
nanoribbon width, which leads to the conclusion that for
these ribbons the D band intensity is localized at either
of the edges. For smaller nanoribbons, we have shown
that multiple scattering processes involving the two op-
posite edges cause a decrease in the D band intensity.
This effect indicates that the ID/IG ratio should start
decreasing even if the crystalllite sizes are larger than
the phonon mean free-path. The dependence of the D
band intensity on the polarization of incident and scat-
tered light was also investigated.
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