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Monte Carlo study of the honeycomb structure of anthraquinone molecules on
Cu(111)

Kwangmoo Kim and T. L. Einstein
Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA

Using Monte Carlo calculations of the two-dimensional (2D) triangular lattice gas model, we
demonstrate a mechanism for the spontaneous formation of honeycomb structure of anthraquinone
(AQ) molecules on a Cu(111) plane. In our model long-range attractions play an important role,
in addition to the long-range repulsions and short-range attractions proposed in Science 313, 961
(2006). We provide a global account of the possible combinations of long-range attractive coupling
constants which lead to a honeycomb superstructure. We also provide the critical temperature of
disruption of the honeycomb structure and compare the critical local coverage rate of AQ’s where
the honeycomb structure starts to form with the experimental observations.

PACS numbers: 68.43.Hn,68.43.De,05.70.Np,73.20.-r

I. INTRODUCTION

The self-assembly of some adsorbed molecules on surfaces has garnered considerable interest. Examples include
DNA-base molecules,1 thiol molecules,2 oligomers,3 tetrahydroxyquinone molecules,4 rubrenes.5 This phenomenon
has many useful applications such as in nanoscale molecular devices6–8 and in patterning of films.9–13

Pawin et al.14 observed the spontaneous formation of honeycomb structures of anthraquinone (AQ) molecules
on a Cu(111) surface at temperatures between 10 and 200 K with local coverages above ∼ 15 molecules per 1000
substrate Cu atoms. The “diameter” of one hexagon is about 50 Å, which is rather large compared to the constituent
molecules. Hydrogen bonding apparently occurs between oxygens of each AQ and hydrogens of neighboring AQ’s.
Pawin et al. claimed that this spontaneous formation is due to the balance between short-range attractions and
long-range repulsions.
The interplay between attractions and repulsions has been widely used for decades to explain many self-organized

structures. They can be a 2D dipolar lattice gas,15 a 2D dipolar Ising model without vacancies16–21 and with random
vacancies,22 a 2D frustrated system,23 a bidimensional fluid system,24 a 2D quantum Heisenberg model,25 a density
anomaly,26 a spin-glass state,27 correlations in fluids,28 compositional patterns on bulk-immiscible alloy films,29 and
a colloidal fluid.30 Our work is also based on this method. Balancing attractions and repulsions appropriately, we can
get the particular lattice structure we want.
The object of this work is to simulate with Monte Carlo (MC) the spontaneous self-organization of AQ’s on a

Cu(111) surface in the framework of a rather simple lattice gas model. While the highly regular honeycomb structure
observed in Ref. 14 is most dramatic, we will also consider the straight branches budding out from the vertices of
hexagons into regions of lower coverage. Our challenge is to find possible combinations of interactions which produce
the honeycomb structure and straight branches. We then seek the transition temperature from the honeycomb
structure to a disordered state, i. e., we determine the phase diagram. Furthermore, we compare the percentage of
hexagons as a function of the local coverage in our model with that in Ref. 14 through an appropriate mapping.
The remainder of this paper is organized as follows. Section II presents the formalism. In this section, we provide

the Hamiltonian of our system, mappings of our system to the lattice gas model, and Monte Carlo (MC) calculations
of the conserved-order-parameter model, the non-local algorithm. Section III presents our numerical results from the
MC calculations. We discuss our results and present our conclusions in Sec. IV.

II. FORMALISM

The Hamiltonian of our system is from the lattice gas model combined with the competition between attractions
and repulsions. It has the general form15

H = −
∑

〈ij[k]〉
α

Eαninj [nk] +A

′
∑

〈ij〉

ninj

|Ri −Rj|3

−µ
∑

i

ni, (1)
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where ni is the occupation number (0 or 1) of site i, Eα is a two or three adsorbate interaction energy (with the Eα

assumed to be positive; the leading minus sign indicates that these interactions are attractive), Ri is the position
vector of the site i, and µ is the chemical potential. The positive coupling constant A gives the strength of the
long-range |R|−3 dipolar interactions due to electrostatic and elastic repulsions.15–21 The ′ in the second sum means
that i = j term is excluded, and 〈ij[k]〉 in the first term can be three- or more-site interactions31,32 as well as pairwise
interactions.32

Experimentally, in a single hexagon there are three AQ molecules on a side, with a shared vertex of pinwheel shape
also composed of three AQ’s as shown in Fig. 1(b). The most straightforward way to simplify the experimental
structure is to map one AQ molecule to one occupied site in our triangular lattice. (This procedure is reminiscent
of Berker’s prefacing transformation.33) Then we need some fundamental interactions between sites. To do that we
divide the attractive coupling constant in Eq. (1) into several terms, the nearest-neighbor attraction E1, the linear
trio attraction ELT, the isosceles trio attraction EIT, and the long-range attractions E6, E12, or E19. E6, E12, and
E19 are the attractions from the sixth, twelfth, and nineteenth nearest-neighbors, respectively. They are 2

√
3a, where

a is the lattice constant, 3
√
3a, and 4

√
3a, respectively, away from the reference site as in Fig. 1. We also posit an

equilateral trio repulsion, without which a clustered domain appears. This is because only one type of pinwheel is
observed experimentally. All the other three types are not observed as in Fig. 2. These three not observed pinwheels
are derived from an AQ dimer which is a part of a side of an AQ hexagon. Since AQ’s are on Cu(111) to align along
the principal axes of Cu, there are only three allowed configurations which the third AQ can have. They are not just
from a mere contemplation of O–H hydrogen bonds and H–H steric repulsion. Therefore Eq. (1) becomes

H = −E1

∑

〈ij〉
1

ninj − ELT

∑

〈ijk〉
LT

ninjnk

−EIT
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〈ijℓ〉
IT
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6
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+A

′
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〈ij〉

ninj

|Ri −Rj|3
− µ

∑

i

ni, (2)

where E6 can be replaced with E12 or E19.
For atoms chemisorbed on metals, it is now possible in many cases to compute the shorter-range interactions like

E1 and ELT.
34–37 However, in our problem, the adsorbates are relatively large (from a physics perspective) organic

molecules, and adsorption is primarily based on van der Waals bonding. To the best of our knowledge, benzene on
Cu(111) is the largest molecule on a metal substrate for which lateral interactions have been computed from first
principles.38 We did gauge the size of E1 by computing the attraction between unsupported AQ molecules at the
proper orientation and separation with hybrid Hartree-Fock DFT using the CBSB7 basis with the B3LYP functional
within Gaussian 03. This approach is generally satisfactory for H-bonding. The resulting rough estimate of E1 was
0.15 eV, but we did not take basis set superposition error (BSSE) into account in this crude computation.
The long-range attractions are attributed to indirect interactions mediated by the Shockley surface states on the

(111) facet of a noble metals such as Cu. In the asymptotic limit, these experimentally observed39,40 oscillatory
interactions take the form41

Easym
pair (R) ∝ −

(

4ǫF
π2

)

sin(2kFR+ 2Θ)

(kFR)2
, (3)

where R is the interatomic separation, Θ is the effective interaction phase shift, kF the Fermi wavevector (0.21 Å−1

for Cu) of the isotropic surface state, and ǫF the Fermi energy (0.38 eV for Cu). The proportionality constant gives
the consequences of scattering into bulk states.41 The very slow R−2 decay of these interactions allow them to play
a role at large separations. These interactions have been invoked to explain remarkable behavior in several surface
systems.39,40,42 Early on, one of us noted that the distance across the hexagonal pore in the experiment14 corresponds
to a minimum of Eq. (3).
Given the large number of possible interactions and the difficulty in computing all but those of shortest range, we

thought it wisest to conduct this initial study in terms of a minimal set of generic parameters. The interactions that
we include should be viewed as effective interactions which incorporate some effects of omitted interactions as well as
the neglected degrees of freedom due to replacing organic molecules by simple “atoms”. The theme, then, is to find
what range of these manageable effective interactions can reproduce the salient features observed in the experiment.
In our system

∑

i ni is a constant with a given particle density, so this is called a conserved-order-parameter (COP)
model since si = 2ni − 1, si = ±1 in the equivalent Ising model. To deal with the COP model, we can use the
“Kawasaki algorithm.”43 We choose at random a pair of adjacent spins, then propose to exchange their values. To
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FIG. 1: (Color online) (a) Long-range attractions E6, E12, and E19 and (b) mappings of the attractive coupling constants (E1,
ELT, EIT) and the trio repulsion constant (ET). Without the trio repulsion, very dense, compact clusters appear, contrary to
experiment.

FIG. 2: (Color online) Pinwheels experimentally (a) not observed and (b) observed. Note that they are on Cu(111).
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decide whether to accept this exchange or not, we calculate the energy change ∆E = Ef − Ei between the states i
and f of our system before and after, and then follow the standard Metropolis acceptance probability

A(i → f) =

{

e−β∆E if ∆E > 0
1 otherwise.

(4)

The implementation of the Kawasaki algorithm is not difficult, but this algorithm only moves a particle one lattice
spacing at a time, so it is slow if the particles have to move a long distance. Since we are interested only in equilibrium
results (not the dynamics), we do not need to confine ourselves to such local MC moves; we can do better with non-local
moves.
In the “non-local algorithm,”43 we choose two lattice sites at random and exchange their spins with the probability

given in Eq. (4). When we do this, there is a reasonable chance that the two chosen spins are aligned (i. e., both
occupied or both vacant in the lattice gas model), so that exchanging them is unproductive. For randomly chosen
spins the probability of their being aligned is

p‖ = (1− ρ)2 + ρ2, (5)

where the minimum value is 1/2 when ρ = 1/2. Therefore at least 50% of our moves are unproductive. By picking
one spin from the set of up-pointing spins and one from the set of down-pointing ones and exchanging their values
with Eq. (4), no move is wasted on aligned pairs of spins. This makes an immediate improvement in efficiency by a
factor of 1/(1− p‖), which is at least 2.
The implementation of this algorithm is a little more complex than it was for the Kawasaki algorithm since we need

to know where all the up- and down-spins are. In order to reap the full benefit of this algorithm, we need to keep a list
of all the up- and down-spins and choose our pairs of spins at random from these lists. Since the number of up- and
down-spins does not change during simulation, two arrays of fixed length can store those lists, and when the values of
two spins are exchanged, we also exchange their entries in the lists. This non-local algorithm is a huge improvement
over the Kawasaki algorithm for two reasons. One is the non-diffusive nature of the particle motion. The second
is that the non-local update move always picks pairs of spins anti-aligned. The Kawasaki algorithm is particularly
inefficient in the phase coexistence regime because most adjacent pairs of spins, which the Kawasaki algorithm only
picks, are aligned in the coexistence regime. Although the non-local algorithm is more complicated to implement, it
is about 20 times faster than the Kawasaki algorithm.43

However, this non-local algorithm is still not optimal. If the acceptance ratio is low, CPU time is wasted in selecting
pairs and failing to exchange their values. These non-productive cycles can be eliminated by using a rejection-free
“continuous time algorithm.”43 Since it is much more complicated to implement than the non-local algorithm and
saves only about a factor of two compared to the non-local algorithm,43 we use the non-local algorithm in this work.

III. MONTE CARLO RESULTS

In our Monte Carlo calculations, we use the standard Metropolis algorithm with periodic boundary conditions in
both the x̂ and (x̂ +

√
3ŷ)/2 directions of a 50 × 50 triangular lattice.44 This size lattice is comparable to the size

of defect-free regions in the experimental system.45 In particular, the steps on this surface have a spacing on this
order. This size also allows easy visual inspection without undue finite-size effects, as well as affording reasonable
computational costs. Specifically, we mostly take 100,000 MC steps per site through the entire lattice to equilibrate
the system, after which we take an additional 250,000 MC steps to get the ground state of the system. Near the
transition temperature, we use 5 times as many MC steps for equilibration and 4 times as many steps for averaging.
For the particle density ρ, we use mostly ρ = 0.4, sometimes ρ = 0.3 and ρ = 0.33. We usually set the temperature

T = 0.001ǫ/kB, where ǫ is the unit energy of our system, but sometimes we vary T . For the attractions, we use
E1 = 0.07ǫ− A, ELT = 0.05ǫ, EIT = 0.06ǫ, E6 = 0.06ǫ, E12, and E19. For the repulsions, we use mostly ET = 0.06ǫ
(sometimes ET = 0.03ǫ) and A = 0.03ǫ, where we summed up to the 6th nearest-neighbors. Note that the signs are
already included in the Hamiltonian (2), so these coefficients specify only the magnitudes of interactions.
When E19 attraction is used at ρ = 0.4, we get E6 hexagons, three particles on a side, for several values of E19, as

in Fig. 3. E19 = 0.06ǫ has the most E6 hexagons (116, 65.9%). When ρ = 0.3, E19 = 0.08ǫ there are E19 hexagons,
five particles on a side, as shown in the inset to Fig. 3. However, for most values of E19 at ρ = 0.4 there are E6

hexagons, but for particular values of E19 (such as E19 = 0.08ǫ) with ρ = 0.3 there are E19 hexagons.
E12 attractions lead to E12 hexagons, with four particles on a side, for 0.03ǫ ≤ E12 ≤ 0.12ǫ with ET = 0.06ǫ and for

0.02ǫ ≤ E12 ≤ 0.15ǫ (but missing at some values such as 0.05ǫ, 0.12ǫ, and 0.14ǫ) with ET = 0.03ǫ, when ρ = 0.33, and
for 0.03ǫ ≤ E12 ≤ 0.15ǫ (except E12 = 0.14ǫ) with ET = 0.06ǫ when ρ = 0.4 as illustrated in Fig. 4. E12 = 0.11ǫ leads
to the most E12 hexagons, 45 (60.0%) with ET = 0.06ǫ and 41 (54.7%) with ET = 0.03ǫ when ρ = 0.33, 12 (16.0%)
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FIG. 3: (Color online) Percentage of E6 hexagons as a function of the magnitude of E19 at ρ = 0.4. The ground state site
configuration is also shown for E19 = 0.06ǫ. The other ground state site configuration shown is for E19 = 0.08ǫ, ρ = 0.3, where
E19 hexagons form.

with ET = 0.06ǫ when ρ = 0.4. For ρ = 0.4 there are less E12 hexagons than for ρ = 0.33 overall. For E12 = 0.11ǫ
with ET = 0.06ǫ and ρ = 0.33, there are long straight branches as well. Curiously, there is one particle at the center
of each E12 hexagon, which seems to be a byproduct of this model.
When both E12 and E19 attractions are present, there are E6 hexagons when E12 < E19, e. g., for E12 = 0.05ǫ,

E19 = 0.08ǫ, ρ = 0.4 with ET = 0.06ǫ. Otherwise, there are E12 hexagons with combinations such as shown in Fig. 5.
For E12 = 0.06ǫ, E19 = 0.03ǫ, ρ = 0.33 with ET = 0.06ǫ, there are 73 (97.3%) E12 hexagons out of a possible 75, so
near perfection. Overall, there are more E12 hexagons for ρ = 0.33 than for ρ = 0.4.
For E6 attraction there are E6 hexagons, as shown for ρ = 0.4 in Fig. 6 with E6 ranging from 0.01ǫ to 0.10ǫ in

increments of 0.01ǫ. More E6 hexagons form at E6 = 0.05ǫ or higher. E6 = 0.10ǫ, ρ = 0.4, T = 0.001ǫ/kB makes
143 (81.3%) E6 hexagons (out of a possible 176 E6 hexagons), while for E6 = 0.06ǫ, ρ = 0.4, T = 0.1ǫ/kB, there
are 141 (80.1%) E6 hexagons. In contrast, when E6 is taken as repulsive, only straight branches form, as shown for
E6 = −0.06ǫ and for E6 = −0.03ǫ in Fig. 7. Therefore, the long-range repulsion seems inconsistent with the formation
of a honeycomb structure.
When there are both E6 and E19 attractions, E6 hexagons form as shown in Fig. 8. With a fixed E6 = 0.06ǫ, there

are a lot more E6 hexagons for ρ = 0.4 than for ρ = 0.3. For E6 = 0.06ǫ, E19 = 0.07ǫ, ρ = 0.4 there are 156 (88.6%) E6

hexagons, in comparison to only 28 (15.9%) when E6 = 0.06ǫ, E19 = 0.02, ρ = 0.3. When E6 repulsion is combined
with E19 attraction, irregular shapes and long straight branches form, as verified for E6 = −0.03ǫ, E19 = 0.06ǫ,
ρ = 0.4 (not depicted).
When E6 and E12 attractions are present, E6 hexagons dominate, as seen in Figs. 9 and 10. E6 is fixed at 0.06ǫ in

Fig. 9 but is allowed to vary in Fig. 10. The latter is an extension of the former. In both figures, there are generally
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FIG. 4: (Color online) Percentage of E12 hexagons as a function of the magnitude of E12 at ρ = 0.33 with ET = 0.06ǫ and
with ET = 0.03ǫ, and at ρ = 0.4 with ET = 0.06ǫ. The ground state site configurations are also shown at E12 = 0.11ǫ, ρ = 0.33
with ET = 0.06ǫ and with ET = 0.03ǫ.

more E6 hexagons for ρ = 0.4 than for ρ = 0.33. Moreover, long straight branches as well as E6 hexagons are observed
at E6 = 0.04ǫ, E12 = 0.01ǫ, ρ = 0.33 whereas both E6 and E12 hexagons are observed at E6 = 0.03ǫ, E12 = 0.03ǫ,
ρ = 0.33.
When E6, E12, and E19 attractions are all present, only E6 hexagons form with ρ = 0.33 or ρ = 0.4 as in Table I.

The ground state site configurations for the two cases E6 = E12 = E19 = 0.06ǫ, ρ = 0.4; E6 = E12 = E19 = 0.03ǫ,
ρ = 0.4 are shown in Fig. 11. The former makes the most (160, 90.9%) E6 hexagons throughout this work. There are
generally more E6 hexagons for ρ = 0.4 than for ρ = 0.33. Even when E12 and E19 repulsions in the dipolar repulsion
term are included to these combinations, little differences are observed due to negligible contributions from these
repulsions in the A term because of R−3 factor. These three-parameter combinations work fine when the interaction
strength is not too large altogether or gradually decreases with distance as expected. When ET = 0.03ǫ, it also works
well even though there are generally fewer E6 hexagons than when ET = 0.06ǫ.
Next we try different values of ELT and EIT, as shown in Fig. 12. They all work well as long as ELT and EIT are not

small at the same time. Also there are a lot more E6 hexagons for ρ = 0.4 than for ρ = 0.3. For ELT = EIT = 0.05ǫ,
ρ = 0.4 and ELT = EIT = 0.04ǫ, ρ = 0.4 there are the same number, 128 (72.7%) of E6 hexagons while for ELT = 0.06ǫ,
EIT = 0.03ǫ, ρ = 0.3 there are just 67 (38.1%) E6 hexagons.
For different values of A, such as from A = 0.01ǫ to A = 0.08ǫ with the increment of 0.01ǫ when ρ = 0.33 or ρ = 0.4,

all work fine as long as A is in the range of reasonable strength as in Fig. 13. There are a lot more E6 hexagons for
ρ = 0.4 than for ρ = 0.33. For A = 0.02ǫ, ρ = 0.33 leads to 35 (19.9%) E6 hexagons, in comparison to 143 (81.3%)
for A = 0.08ǫ, ρ = 0.4.
To consolidate these findings for the coupling constants, we draw a Venn diagram in Fig. 14 to show which compo-

nents are necessary to make which hexagons. Typically, E1, ELT, EIT attractions and A, ET repulsions are needed.
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FIG. 5: (Color online) Percentage of E12 hexagons as a function of the magnitudes of E12 and E19 at ρ = 0.33 with ET = 0.06ǫ
and with ET = 0.03ǫ, and at ρ = 0.40 with ET = 0.06ǫ. The ground state site configuration is shown at E12 = 0.06ǫ,
E19 = 0.03ǫ, ρ = 0.33 with ET = 0.06ǫ, of which data point (73 E12 hexagons, 97.3%) is not shown in the percentage plot since
it is too big compared to the others. The other ground state site configuration is at E12 = 0.05ǫ, E19 = 0.08ǫ, ρ = 0.40 with
ET = 0.06ǫ, where E6 hexagons form instead of E12.

For clarity the repulsions are denoted with a negative sign. The diagram also shows which hexagons form when two
or three long-range attractions are combined together. When there are both E6 and E12 attractions, E6 hexagons
occur mostly, but in some cases both E6 and E12 hexagons appear. When there are both E6 and E19 attractions, only
E6 hexagons arise. When both E12 and E19 attractions are present, E12 hexagons occur mostly, but in some cases
there are E6 hexagons instead. The presence of all three E6, E12, and E19 attractions leads to only E6 hexagons. In
contrast, E6 repulsion leads to only straight branches.
In Fig. 15 we show the effect of varying the temperature when ρ = 0.4. Here each point is an average over 100

different runs. The ground state site configurations are also shown at the temperatures T = 0.1ǫ/kB, T = 0.495ǫ/kB,
and T = 0.7ǫ/kB. The honeycomb structure breaks down at Tc = 0.495ǫ/kB, which is a transition temperature.
Finally, we see the particle density change at T = 0.001ǫ/kB in Fig. 16. Here also each point is an average over

100 different runs. Experimentally it is observed that there are 18 AQ molecules on top of 444 Cu substrate atoms.
In our system there are 12 occupied sites out of 19 sites. Since we are mapping one AQ molecule to one occupied
site, there must be some equivalence between these two as 18/444 = 12/296 ≡ 12/19. From here we can derive
a conversion factor as f = 296/19 = 15.579. Experimentally it is claimed that the honeycomb structure starts to
appear at the local coverage of 15 AQ molecules per 1000 substrate Cu atoms, thus, using this conversion factor,
15/1000 ≡ 15/64.189 = 0.234 in our system. Also Fig. 3 of Ref. 14 shows a honeycomb structure up to 35 AQ
molecules per 1000 substrate atoms, which is 35/1000 ≡ 35/64.189 = 0.545 in our system. Therefore it would be
useful to look into the particle density change from ρ = 0.23 to ρ = 0.55 in our system. Unlike the prediction,
hexagons start to appear at ρ = 0.3 in our system. However the honeycomb structure remains up to ρ = 0.55. As
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FIG. 6: (Color online) Percentage of E6 hexagons as a function of the magnitude of E6 at ρ = 0.4 (T = 0.001ǫ/kB). The
ground state site configuration is also shown at E6 = 0.10ǫ, which makes 143 (81.3%) E6 hexagons. The other ground state
site configuration shown is at E6 = 0.06ǫ, ρ = 0.4, T = 0.1ǫ/kB , where also many E6 hexagons (141, 80.1%) form.

ρ increases, the percentage of E6 hexagons reaches a maximum around 0.4 and then decreases slightly as clustered
domains appear. This slight decrease of hexagons is in contrast to the plateau in the experimental histogram around
35/1000 (cf. Fig. 3 of Ref. 14). We think this is due to the finite size effect of our system since 12 out of 19 is too
large compared to 18 out of 444. Other than this, our results generally agree well with the experimental observations.

IV. DISCUSSION & CONCLUSIONS

In this paper, we have simulated the spontaneous formation of honeycomb structures of AQ molecules on a Cu(111)
surface in terms of a simple lattice gas model. Within this model, we find that long-range attractive interactions
are necessary to make honeycomb structures, a scenario that differs from the predictions of Ref. 14. Among these
attractions, the E6 attraction is the most important to the formation of honeycomb structures. The addition of E12

and/or E19 attractions to the E6 attraction enhances the formation of E6 hexagons. When there are only E12 and/or
E19 attractions, larger hexagons and longer straight branches form. When E6 is repulsive, only straight branches
form. The trio repulsion ET (or some equivalent) is crucial to prevent compact, dense clusters. Varying temperature
at ρ = 0.4, we find the transition temperature Tc = 0.495ǫ/kB. Varying the particle density at T = 0.001ǫ/kB, we
find that the honeycomb structure starts to form at ρ = 0.3, peaks at ρ = 0.4, and exists up to ρ = 0.55, with a slight
decrease of the number of E6 hexagons after the peak.
One of the benefits of using this kind of simplified model is that we can reduce a complicated system into a system of

manageable size. A system such as ours, which cannot be understood with any high-level methods or would demand an
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FIG. 7: (Color online) The ground state site configurations for E6 repulsions of (a) E6 = −0.06ǫ and (b) E6 = −0.03ǫ. Only
straight branches form.

enormous amount of computing power as it is, can be at least approached with this kind of model. Another benefit is
that we can get a global accounting of the given system with the introduction of just a few basic interaction parameters.
These basic interaction parameters can be easily replaced with others when they do not reproduce the ordering. The
complicated mechanism of the system can be easily understood with minimal interactions. A shortcoming of our
model is that we cannot probe the detailed mechanism at work at the atomic level since the complicated system is
simplified by grouping many atoms into one entity. Since some degrees of freedom of individual atoms are lost in
the simplification process, it is necessary to consider whether these losses affect the overall mechanism of the whole
system before adopting this kind of procedure.
There could be other possible choices of combinations of coupling constants, or even completely different coupling

parameters, than used in this work to simulate the formation of honeycomb structures. However, within the type
and range of coupling parameters in our investigation, the results given in this work are the best of our knowledge
as long as the unit energy is kept constant as in this work. Most notably, our calculations provide strong evidence
that the long-range attractive interactions are important (this does not mean that the short-range interactions are
not necessary. They are assumed to be already included.) to explain the spontaneous formation of AQ’s honeycomb
structure.
We could compare the percentage of E6 hexagons as a function of the particle density ρ with the experimental

observation as in Ref. 14 but had no way to compare our transition temperature Tc = 0.495ǫ/kB at ρ = 0.4 with
a corresponding experimental observation since the value of our unit energy ǫ was not known. Ref. 14 reports
observations of the spontaneous formation of honeycomb structures between 10 and 200 K, To obtain an estimate of
ǫ, we suppose that Tc is 200 K; then ǫ ≈ 35 meV, so much less than the crude estimate of E1 noted after Eq. (2). The
actual value might turn out to be somewhat larger, but in any case the long-range attractions are then of order just
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FIG. 8: (Color online) Percentage of E6 hexagons as a function of the magnitude of E19 with a fixed E6 = 0.06ǫ at ρ = 0.3
(green asterisks) and at ρ = 0.4 (red solid circles). ET = 0.06ǫ for both cases. The solid circles are scaled to the right axis
while the asterisks to the left. The ground state site configurations are shown at E6 = 0.06ǫ, E19 = 0.02ǫ, ρ = 0.3 and at
E6 = 0.06ǫ, E19 = 0.07ǫ, ρ = 0.4, where there are 28 (15.9%) and 156 (88.6%) E6 hexagons, respectively. There are a lot more
E6 hexagons for ρ = 0.4 than for ρ = 0.3.

a couple meV, consistent with an interaction mediated by the metallic surface state of Cu(111).
Our mapping of one AQ molecule onto one occupied site (done to make our simulations manageable) assumes

one occupied site at a vertex of a hexagon; this is a simplification of the actual experimental system since three AQ
molecules form a vertex of a hexagon as a pinwheel shape. Therefore it is not clear whether it is more appropriate
to say that there are three or four molecules on a side of a hexagon. Our E6 hexagon invariably has three occupied
sites on a side while our E12 hexagon has four on a side. While the actual AQ hexagon is midway between our E6

and E12 hexagons, we assumed it is closer to the E6 hexagon since only one configuration of the pinwheel shape was
experimentally observed in a domain. This is also one reason why we introduced the trio repulsion to our model. It
is likely that the neglected degrees of freedom of the internal structure of the AQ molecule in our simplified model
affect the coverage at which compact clumped clusters appear at high ρ in our simulations (cf. ρ = 0.55 in Fig. 16);
while not reported in Ref. 14, dense regions do occur experimentally at high enough coverages. To include all the
internal degrees of freedom of the AQ molecule, we would have to turn to large-scale molecular dynamics, which is
beyond the scope of our investigation. Since our model does not specify that the adsorbed molecule be an AQ, it can
serve as a possible framework for analyzing experiments involving different adsorbates.
While we did not go beyond the lattice gas model regarding the role of a substrate on the formation of a honeycomb

structure of adsorbed AQ molecules, this effect is already included implicitly in the variables of the long-range
attractions and the dipolar repulsions, since the origin of the long-range attractions is the indirect interaction mediated
by metallic (partially occupied) surface states and the elastic and electrostatic dipoles depend on local relaxations.
Thus, if we replace the current substrate with another substrate (e. g., Ag(111)), we would need to adjust all the
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FIG. 9: (Color online) Percentage of E6 hexagons as a function of the magnitude of E12 with a fixed E6 = 0.06ǫ at ρ = 0.33
(green asterisks) and at ρ = 0.4 (red solid circles). ET = 0.06ǫ for both cases. The ground state site configurations are shown
at E6 = 0.06ǫ, E12 = 0.03ǫ, ρ = 0.33 and at E6 = 0.06ǫ, E19 = 0.02ǫ, ρ = 0.4, where there are 108 (61.4%) and 101 (57.4%) E6

hexagons, respectively. Generally there are more E6 hexagons for ρ = 0.4 than for ρ = 0.33.

values of long-range attractions and dipolar repulsions accordingly.
Our choice of a 50×50 lattice throughout this work stems from the report Ref. 14 that the total number of hexagons

in the scanning tunneling microscopy images is under 150 due to lattice defects, notably steps. With our lattice size,
the perfect number of E6 hexagons can be 176, which is more than enough to accommodate 150 hexagons. Moreover,
our primary objective was to see whether our simplified model could produce a honeycomb structure spontaneously,
not to try to extrapolate to the thermodynamic limit by using lattices much larger than the defect-free regions in the
experiments. A 50×50 lattice is large enough to hold enough hexagons without introducing spurious finite-size effects.
In addition, the computational cost of dealing with the lattice size of 50× 50 was reasonable except for Figs. 15 and
16, where each point is an average over 100 different runs, costing much more than the other calculations. Even so,
the overall computing cost was generally reasonable.
The ground-state image of the site configuration of each case is that of a particular run. Another run would

produce a slightly different site configuration. Since we are not looking into the average value of a thermodynamic
variable in these cases, it is not problematic to inspect just a single run. When we needed thermodynamic averages
of many different runs, as in Figs. 15 and 16, we did perform many runs. Even in these many different runs, taking
thermodynamic averages of different site configurations is not meaningful.
In summary, we have simulated the spontaneous formation of honeycomb structures of AQ molecules on a Cu(111)

surface with the lattice gas model and MC calculations, identifying which long-range interactions are significant. In
future work we will study the statistical mechanics and finite-size-limited phases of CO molecules confined within a
hexagon of AQ molecules.
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FIG. 10: (Color online) Percentage of E6 hexagons as a function of the magnitudes of E6 and E12 at ρ = 0.33 (green asterisks)
and at ρ = 0.4 (red solid circles). ET = 0.06ǫ for both cases. The ground state site configurations are shown at E6 = 0.04ǫ,
E12 = 0.01ǫ, ρ = 0.33 and at E6 = 0.03ǫ, E12 = 0.03ǫ, ρ = 0.33. For the former there are E6 hexagons and long straight
branches (marked with red ovals) while for the latter both E6 and E12 hexagons are present. Here also there are generally
more E6 hexagons for ρ = 0.4 than for ρ = 0.33.
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TABLE I: Combinations of E6, E12, and E19 which make E6 hexagons. For ρ = 0.4 there are generally more E6 hexagons than
for ρ = 0.33. We found the most (160, 90.9%) E6 hexagons for E6 = E12 = E19 = 0.06ǫ, ρ = 0.4 (see Fig. 11).

E6(ǫ) E12(ǫ) E19(ǫ) ρ # E6 hexagons

0.06 0.06 0.06
0.33 69
0.40 160

0.06 0.03 0.01
0.33 81
0.40 119

0.03 0.03 0.03
0.33 84
0.40 140

0.03 0.02 0.01
0.33 84
0.40 128

0.05 0.05 0.05
0.33 76
0.40 108

0.04 0.04 0.04
0.33 84
0.40 98

0.02 0.02 0.02
0.33 88
0.40 121

0.06 0.05 0.04
0.33 109
0.40 105

0.06 0.04 0.02
0.33 109
0.40 103

0.05 0.04 0.03
0.33 72
0.40 101

0.04 0.03 0.02
0.33 113
0.40 120
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FIG. 11: (Color online) The ground state site configurations for (a) E6 = E12 = E19 = 0.06ǫ and (b) E6 = E12 = E19 = 0.03ǫ.
ρ = 0.4 for both cases. For the former there are 160 (90.9%) E6 hexagons, the most in our investigation.
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and at ρ = 0.4 (red solid circles). ET = 0.06ǫ for both cases. The ground state site configurations are shown at ELT = 0.04ǫ,
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are the same 128 (72.7%) E6 hexagons, while for the latter there are 67 (38.1%) E6 hexagons. Obviously, there are more E6

hexagons for ρ = 0.4 than for ρ = 0.3.
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ρ = 0.33.
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FIG. 14: (Color online) Venn diagram of coupling constants summing up all of our results. Which components are necessary
to make which hexagons. Also which hexagons form when two or three long-range attractions are present at the same time.
For clarity the repulsions are denoted with a negative sign.
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FIG. 15: (Color online) Percentage of E6 hexagons as a function of temperature at ρ = 0.4. The ground state site configurations
are also shown at the temperatures T = 0.1ǫ/kB , T = 0.7ǫ/kB , and T = 0.495ǫ/kB . Tc = 0.495ǫ/kB is the transition
temperature. Each point is an average over 100 different runs.
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