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We study transport through a quantum dot side-coupled to two parallel Luttinger liquid leads
in the presence of a Coulombic dot-lead interaction. This geometry enables an exact treatment of
the inter-lead Coulomb interactions. We find that for dots symmetrically disposed between the two
leads the correlation of charge fluctuations between the two leads can lead to an enhancement of
the current at the Coulomb-blockade edge and even to a negative differential conductance. Moving
the dot off center or separating the wires further converts the enhancement to a suppression.

PACS numbers: 71.10.Pm, 73.21.-2b, 73.63.Kv, 73.63.Nm

I. INTRODUCTION

Quantum dots and single-molecule devices reveal many
quantum phenomena of fundamental and perhaps prac-
tical interest.1–3 However, the role of a Coulombic inter-
action between the charges on the dot and on the leads
has been little studied, even though this Coulomb in-
teraction is clearly relevant. Dot-lead interactions were
studied by Boulat and Saleur4, and Boulat, Saleur and
Schmitteckert5 in the context of an interacting resonant-
level model. Goldstein and collaborators presented gen-
eral duality-based results that they noted were applicable
also to models with dot-lead interactions.6 In previous
papers we considered different aspects of quantum dots
Coulomb-coupled to leads, including the relaxational dy-
namics of a quantum dot side-coupled to a single Lut-
tinger liquid lead in equilibrium (in Ref. 7) and the case
of a quantum dot coupled to two one-dimensional leads
subject to a finite bias voltage (in Ref. 8). However, in
the theoretical work to date inter -lead couplings have
not been considered. While inter-lead interactions may
be negligible if the screening of the Coulomb potential
is strong, in general one expects molecular junctions to
involve quantum dots which are very close to the leads,
so that the inter-lead interaction is not negligible. In this
paper we show that this interaction can be of crucial im-
portance, because it suppresses fluctuations which act to
decohere the different states. Thus, electron-electron in-
teractions can enhance transport, leading (in appropriate
circumstances which we define below) to conductances
which peak at the Coulomb-blockade edge and thus ex-
hibit a negative differential conductance.

A lead may be modelled as a quantum wire described
by Luttinger liquid physics.9–11 However, for general ge-
ometries, inter-lead interactions do not fit easily into the
Luttinger liquid formalism, because the boundary breaks
translational invariance and the interactions give rise to
a complicated boundary condition on the charge modes.
In a low energy ’universal’ limit this boundary condi-
tion can be taken into account, at least for short ranged
interactions12, but results at the level of detail needed
in this paper are not, to our knowledge, available in the

drain

dot
d

d
L

R

source

d=d +dL R

FIG. 1: Schematic of a one-dimensional lead-dot-lead system
showing two parallel leads.

literature. In this paper we therefore specialize to the
geometry shown in Fig. 1, for which the inter-lead in-
teraction may be treated by standard Luttinger liquid
methods. This geometry reveals the essential physics of
the inter-lead coupling.
The rest of this paper is organized as follows. Section

II defines the model we study and the methods we use.
Section III gives the basic theoretical results, Sec. IV
presents the experimental consequences, and Sec. V is
a conclusion.

II. MODEL AND METHODS

A. Model

The quantum dot problem sketched in Fig. 1 is de-
scribed by a Hamiltonian of the general form

H = Hlead +Hdot +HCoul +Hmix. (1)

We label the two leads by α = L,R, the lead orbitals by
a and write the lead Hamiltonian as

Hlead =
∑

α=L,R

∑

akσ

ǫαk c
†
αakσcαakσ

+
1

2

∫

dx dx′
∑

αα′=L,R

∑

aa′

Vαα′(x− x′)ραa(x)ρα′a′(x′).

(2)
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The operator c†αakσ creates an electron with momentum
k, energy ǫαk , and spin σ in state a of lead α. The inter-
action V depends on the difference in position x−x′ and
is the sum of two terms, an intra-lead interaction

Vαα(x − x′) =
e2

ǫ|x− x′| (3)

(already considered in Ref. 8), and an inter-lead interac-
tion denoted by

Vαᾱ(x− x′) =
e2

ǫ
√

(x− x′)2 + d2
(4)

with ᾱ = L if α = R and vice versa. ραa(x) is the corre-
sponding operator giving the charge density at position
x, ǫ is a background dielectric constant, and d denotes the
spacing between the leads. The convenient feature of the
geometry we consider is that both intra- and inter-lead
interactions are functions only of the relative distance
along the lead, permitting use of usual bosonisation tech-
niques.
The quantum dot Hamiltonian Hdot may be written as

Hdot = εd nd +
U

2
nd(nd − 1), (5)

where U is the dot charging energy, nd =
∑

σ d
†
σdσ is the

total dot density, and d†σ creates an electron with energy
εd and spin σ on the dot.
The Coulomb interaction between electrons on the

quantum dot and electrons in the leads may be written
as

HCoul = nd

∑

α=L,R

∑

a

∫

dxWα(x)ραa(x) (6)

with

Wα(x) =
e2

ǫ
√

x2 + d2α
(7)

and dα the distance between the quantum dot and lead
α. The dot-lead hybridization is given by

Hmix =
∑

α=L,R

∑

akσ

[

Tα d†σcαakσ + T ∗
α c

†
αakσdσ

]

. (8)

with T the dot-lead hybridization.

B. Bosonisation

We bosonise the system as in our previous papers;7,8

the new feature is the inter-lead coupling, which mixes

the boson modes of the two leads. We consider a system
with linear dimension L and periodic boundary condi-
tions, and combine spin and orbital quantum number
into a superindex β = 1, . . . ,M . The physics is repre-
sented in terms of right (λ = +) and left (λ = −) moving
particle-hole pairs,13 which can be recombined into boson
operators φαβ(q), Παβ(q) that obey the volume commu-
tation relation [φαβ(q),Πα′β′(−q′)] = i(L/π)δαα′δββ′δqq′ .
The total particle density in lead α and state β is given
by ραβ(q) = iqφαβ(q).

The lead electron creation operator ψαλβ may be
rewritten in terms of the bosons as14,15

ψαλβ(x) =
Uαλ√
2πη

eiλkF xei
π
L

∑
q eiqx[λφαβ(q)−

1

iq
Παβ(q)].

(9)
Here the small positive infinitesimal factor η arises from
the correct normal ordering of the operators. The op-
erator Uαλ denotes the Klein factor which carries the
Fermi statistics. Left and right lead electrons are as-
sumed to be at different chemical potentials µα, which
gives rise to a different time evolution of the Klein fac-
tors, Uαλ(t) = eµαtUαλ(0).

The symmetry between the two leads means that their
low-energy physics can be described in terms of a set
of new boson operators φαb,Παb with a parity quantum
number p = e, o as well as a mode label b. The new
operators are related by a linear transformation to the
φαβ ,Παβ defined in terms of the fermions. In terms of
the new operators the lead Hamiltonian becomes

Hlead =
∑

p=e,o

∑

b=1,...,M

∑

q

π

2L
vpb(q)

×
[

Kpb(q)Πpb(−q)Πpb(q) +
q2

Kpb(q)
φpb(−q)φpb(q)

]

(10)

with even (e) and odd (o) boson modes defined by

Πeb(q),Πob(q) =
ΠLb(q)±ΠRb(q)√

2
, (11)

and

φeb(q), φob(q) =
φLb(q)± φRb(q)√

2
, (12)

and Luttinger parameters veb, vob and Keb, Kob deter-
mined by the bare velocities and interactions of the lead
eigenstates. In terms of these boson modes, the electron
operator becomes
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ψLλβ(x) = ULλe
i π√

ML

∑
q
eiqx 1√

2
[λ(φe,b=1(q)+φo,b=1(q))−

1

iq
(Πe,b=1(q)+Πo,b=1(q))] ψrest

Lλβ(x), (13)

ψRλβ(x) = URλe
i π√

ML

∑
q eiqx 1√

2
[λ(φe,b=1(q)−φo,b=1(q))−

1

iq
(Πe,b=1(q)−Πo,b=1(q))] ψrest

Rλβ(x). (14)

with ψrest
αλβ an exponential of a combination of the φα,b,

Πα,b with b ≥ 2
Rewriting the Coulomb potential as

e2

|x| =
e2

L

∑

q

eiqxVαα(q), Vαα(q) = log

(

1 +
1

Λ2q2

)

(15)
with Λ a short-distance cutoff and

1√
x2 + d2

=
1

L

∑

q

eiqxVαᾱ(q), Vαᾱ(q) = log

(

1 +
1

d2q2

)

(16)
we find for the Luttinger parameters in Eq. (10) that

Ke1(q),Ko1(q) =
1

√

1 +MVc[Vαα(q)± Vαᾱ(q)]
, (17)

ve1(q), vo1(q) = vF
√

1 +MVc[Vαα(q)± Vαᾱ(q)](18)

and Keb(q) = Kob(q) = 1, veb(q) = vob(q) = vF for b > 1.
Here we introduced a measure of the Coulomb interaction
strength and defined the dimensionless parameter Vc =
e2/πvF ǫ.

C. Canonical transformation

To treat the dot-lead interaction we use the canoni-
cal transformation methods of Refs. 7,8. Following the
approach of these papers but expressing the dot-lead in-
teraction in terms of even and odd boson fields yields

HCoul =

√

M

2

πvFVc
L

∑

q

iq

(

φe1(q) [WL(q) +WR(q)]

+ φo1(q) [WL(q)−WR(q)]

)

nd (19)

withWα(q) = log(1+1/d2αq
2). We observe that for a dot

placed symmetrically between the two leads, the coupling
to the odd mode vanishes exactly.
The linear coupling between dot occupancy nd and

lead density may now be removed by a canonical
transformation16 which shifts

φα1(q) → φα1(q)− Zα(q)nd/iq
√
2M (20)

with

Ze(q) =
vFKe1(q)

ve1(q)
MVc [WL(q) +WR(q)] (21)

Zo(q) =
vFKo1(q)

vo1(q)
MVc [WL(q)−WR(q)] . (22)

The canonical transformation acts on an operator O by
O → eiSOe−iS with

S = −nd

π√
2ML

∑

p=e,o

∑

q

Zα(q)
Πα1(−q)

iq
. (23)

Under the canonical transformation the dot operator be-
comes

d†σ → d†σe
iπ√
2ML

∑
q

1

iq
[Πe1(q)Ze(q)+Πo1(q)Zo(q)]. (24)

III. ELECTRONIC TUNNELING

The crucial quantities in our considerations are expec-
tation values of the form

Fα(t) =
〈

ξ†αλβ(t)ξαλβ(0)
〉

(25)

with
∑

αλβ Tαξαλβ +h.c. the renormalized hybridization

Hamiltonian eiSHmixe
iS without the dσ operator. We

obtain, say, for α = L

FL(t) = F0(t)e
ΦL(t)e−iµLt (26)

with F0(t) the free-fermion correlation and

ΦL(t) =
2π

ML

∑

q 6=0

1

2|q|

[

1− e−ivF |q|t

−Be(q)
(

1− e−ive1(q)|q|t
)

−Bo(q)
(

1− e−ivo1(q)|q|t
)

]

,

(27)

where we have defined

Be(q), Bo(q) =
1

4

(

Ke1(q) +
[1− Ze(q)]

2

Ke1(q)

+Ko1(q) +
[1∓ Zo(q)]

2

Ko1(q)

)

. (28)

To obtain an idea of the effects of screening, we ap-
proximate the logarithmic functions Ke1(q), Ko1(q) and
ve1(q), vo1(q) by constants Ke1, Ko1 and ve1, vo1. In this
case the decay of electronic correlations is described by

Fα(t) ∝
e−iµαt

[

vF
πTΛ sinh(πT t)

]Yα
(29)

with the Luttinger exponents

YL, YR =
1

M

(

M − 1 +
Ke1 +

[1−Ze]
2

Ke1

+Ko1 +
[1∓Zo]

2

Ko1

4

)

.

(30)
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FIG. 2: (a) Luttinger exponent YL of a symmetric junction
(YR = YL) with nanotube leads as a function of the inter-
lead distance d for different q values. (b) Luttinger exponents
YL, YR as a function of the displacement δ ≡ dL − d/2 of the
quantum dot relative to the leads. [Here δ = 0 represents a
symmetric junction.

This formula plays a crucial role in our subsequent anal-
ysis. We see that the odd-parity channel shift Zo (whose
sign depends on which lead is nearer to the dot) enters
with opposite sign in the two exponents.
Equation (30) implies a strong effect of the geometry

on the electronic tunneling. In the symmetric case with
equal dot-lead distances dL = dR = d/2, we see Zo = 0,
because the odd boson mode does not contribute to the
dot-lead coupling in that case. As the dot is moved off
center, one of the exponents increases and the other de-
creases; we shall see that this has important consequences
for the tunneling. The dependence of the exponents on
inter-lead distance and on the relative position of the lead
is shown in Fig. 2.
It is interesting to compare Eq. (30) to the expressions

obtained for the models studied in our previous work.7,8

Reference 7 considered a dot coupled to a single Luttinger
liquid. In this case we have only one channel, and we
found

Y =
1

M

(

M − 1 +
K + (1−Z)2

K

2

)

, (31)

which can be obtained from our Eq. (30) by dropping,
say, all of the right channel interactions and couplings,

which in practice means replacing Ze and Zo by Z, and
Ke1 and Ko1 by K. The physics is therefore relatively
similar between the two cases, except that because the
odd-channel interactions are weaker than the even chan-
nel ones, the exponent can be a little closer to the non-
interacting value.
However, if the quantum dot is coupled to two leads

but we ignore the inter-lead electron-electron interac-
tions, we may replace Ze by ZL + ZR, Zo by ZL − ZR

and Ke1, Ko1 by K to obtain

YL =
1

M

(

M − 1 +
K + (1−ZL)2

K
+

Z2

R

K

2

)

, (32)

which is consistent with our result for the Luttinger expo-
nent obtained in Ref. 8, except that in this paper bound-
ary rather than bulk exponents appeared. The crucial
differences are the factor of 2 in the denominator and the
factor of Z2

R/K which represented the ’orthogonality’ ef-
fect caused on one lead by adding a charge from the other.
This orthogonality effect acts to suppress electron trans-
port. By correlating the fluctuations in the two leads,
the inter-lead Coulomb interaction acts to suppress this
orthogonality effect; we shall see that the result is an
enhanced tunneling.
These arguments are supported by Fig. 2. The upper

panel shows that the exponent increases with increas-
ing inter-lead distance d, reflecting the weakening of the
inter-lead interaction, the resulting enhancement of rel-
ative fluctuations, and thus an increasing orthogonality
effect. The lower panel shows that there is a relative
dot-lead distance at which the exponent for tunneling
from a given lead is minimized, reflecting the interplay
between the increase in Zo and the decrease in Ze due to
the weakening of one of the couplings. For a very asym-
metric situation we revert to the single-lead case studied
previously.

IV. CURRENT-VOLTAGE CHARACTERISTICS

The assumption of weak hybridization allows us to in-
vestigate the nonequilibrium dynamics of the system us-
ing a master-equation approach. The quantum dot with
a spin-degenerate level is described by the diagonal den-
sity matrix, which contains the occupation probabilities
P0, P1, and P2 of the empty state |0〉, the singly-charged
state |1〉, and the doubly-charged state |2〉. Expanding
the von Neumann equations to lowest order in the hy-
bridization and making use of the Markov approximation
yields a set of master equations as discussed in Refs. 7,8
with the tunneling rates related to the correlation func-
tion in Eq. (25) and to the tunnelling amplitudes Tα. For
example, the rate to move an electron from lead α to the
empty dot is given by Rα

0→1 = 2Re
∫∞

0 dτFα(τ) e
−iε̃dτ .

Evaluating the expression we find that

Rα
0→1 ∝ 1

τα

( |ε̃d − µα|
vcΛ

)Yα−1

θ (µα − ε̃d) (33)
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FIG. 3: Comparison of current-voltage characteristics of
a quantum dot symmetrically side-coupled to two parallel
Luttinger liquid leads (a) for a model including inter-lead
Coulomb interactions and (b) for the same model but with
inter-lead Coulomb interactions set to zero. Voltages and
thermal energies are given in units of the corresponding onsite
energy. For the results shown in (a), the interaction parame-
ters are obtained from Eq. (30) using Eqs. (17)—(18) and (22)
with Vc ≃ 0.9, M = 4 (channels), dα = d/2 = Λ, and with
the logarithms evaluated at q = 0.1Λ−1 (these parameters
were shown in Ref. [8] to be appropriate for a carbon nan-
otube with Λ of the order of the tube diameter). The results
shown in (b) are obtained for the same parameters except
Vαᾱ [cf. Eq. (16)] set to zero. The local Coulomb interaction
is assumed to be twice as large as the onsite energy in both
panels.

in the zero-temperature limit. Here 1/τα ∝
2π|Tα|2/(ve/Λ) is the bare tunneling rate, and the Lut-
tinger parameters have been approximated by constants.
Solving the set of master equations in the steady state

(Ṗi = 0) gives an expression for the steady-state current
in terms of the transition rates. In the limit of very large
U , the rates for the excitation of two electrons on the
dot vanish and the current is described by the simple
expression

〈Iα〉 = 2e
Rα

0→1Rᾱ
1→0 −Rα

1→0Rᾱ
0→1

2R0→1 +R1→0

with Rn→m ≡
∑

α Rα
n→m. Our numerical results are

obtained with the full expression, which is presented in
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FIG. 4: (a) Current-voltage characteristics of a symmetric
junction with nanotube leads for different inter-lead distances
d. (b) Current-voltage characteristics for different displace-
ments δ ≡ dL − d/2 of the quantum dot. [Here δ = 0 repre-
sents a symmetric junction.] We assume the same parameter
values as used in Fig. 3.

Ref. 8. Also in our numerical results we used the param-
eters identified in Ref. 8 as corresponding to a nanotube
with the Coulomb interaction cut off at a momentum
scale of one tenth of the inverse tube diameter. In pre-
senting our results we focus on the dynamical effects due
to coupling and interactions in the leads, ignoring the
over-all scale factor arising from the product of tunnelling
matrix elements.

The two panels of Fig. 3 compare the current-voltage
characteristics of a quantum dot symmetrically side-
coupled to two parallel Luttinger liquid leads with the
inter-lead interactions included (upper panel) and ne-
glected (lower panel). We see that including inter-lead
Coulomb interactions in our model enhances the elec-
tronic tunneling and changes the shape of the Coulomb-
blockade steps qualitatively in comparison to the case of
no inter-lead Coulomb interactions. The enhanced tun-
neling, which manifests itself as regions of negative dif-
ferential conductance, is due to the Coulombic dot-lead
interaction, Eq. (6), as we discussed in Refs. 7 and 8.
However, in the regime of weak electron-electron inter-
actions, this enhancement can be overcompensated by
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orthogonality effects, which results in an effective sup-
pression of the current. In general, the presence of inter-
lead Coulomb interactions increases the total interaction
strength and thus additionally enhances transport. The
value of Yα is thus smaller than it would be if inter-lead
Coulomb interactions were ignored.
In the upper panel of Fig. 4 we demonstrate the effect

of weakening the inter-lead interaction by moving the
wires further apart. Increasing d weakens the strength
of the interaction and thus suppresses the tunneling of
electrons. Increasing the inter-lead distance decouples
the leads, causing the power-law ’divergences’ explained
above to vanish for sufficiently large inter-lead distances.
Mathematically, the Luttinger exponents Yα then assume
values larger than unity. Of course, moving the leads fur-
ther apart will also reduce the tunnelling matrix elements
T , reducing the over-all amplitude. We do not consider
this effect explicitly.
Similarly, the lower panel of Fig. 4 demonstrates that

breaking the spatial symmetry of the lead-dot-lead sys-
tem can cause a suppression of the current near the
Coulomb-blockade threshold, which would not occur in
a quantum dot symmetrically side-coupled to the two
leads. The dependence of the Luttinger exponent YL on
the position of the dot relative to the leads shows that
a displacement of ≃ 10% already suffices to destroy the
effect of enhanced electronic tunneling, since YL then as-
sumes values larger than unity.

V. CONCLUSIONS

We have studied transport through a quantum dot
side-coupled to two parallel Luttinger liquid leads in the
presence of a Coulombic dot-lead interaction. The new
physics considered in this paper is the inter-lead inter-
action. The geometry is chosen to allow a bosonisation
solution to the inter-lead interaction as well as to the
interaction between charge fluctuations on the dot and
the dynamically generated image charge in the leads. A
master-equation approach that treats the hybridization
perturbatively has been applied to compute the tunnel-
ing current.
Our most important finding is that for symmetrical

junctions the inter-lead electron-electron interactions en-
hance the electronic transport and for reasonable in-
teraction strengths may even change the overall sign
of the Luttinger exponent Yα − 1 such that a suppres-
sion (Yα > 1) of the current near the Coulomb-blockade
threshold in the absence of inter-lead interactions turns
into an enhancement (Yα < 1) in the I-V curves. The
enhancement manifests itself as regions of negative dif-
ferential conductance. As the symmetry of the junction
is broken by moving the dot closer to one lead, the effect
decreases.
An important topic for future research is extending

our results to the case of an end-coupled dot, where the
inter-lead interaction breaks the mathematical transla-

tion invariance which is employed in the standard theory
of edge effects in Luttinger liquids.
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