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The strength of light emission near metallic nanostructures can scale anomalously with 

frequency and dimensionality. We find that light-matter interactions in plasmonic systems 

confined in two dimensions (e.g., near metal nanowires) strengthen with decreasing 

frequency owing to strong mode confinement away from the surface plasmon frequency. 

The anomalous scaling also applies to the modulation speed of plasmonic light sources, 

including lasers, with modulation bandwidths growing at lower carrier frequencies. This 

allows developing optical devices that exhibit simultaneously femto-second response times 

at the nano-meter scale, even at longer wavelengths into the mid IR, limited only by non-

local effects and reversible light-matter coupling. 

 

I. INTRODUCTION 

The search for ultrafast, compact and efficient light sources drives contemporary 

photonics toward new regimes where light-matter interactions are strongly enhanced. While the 

orders of magnitude discrepancy between electronic length scales and the wavelength of the light 

imposes spatial and temporal limitations, the emission of optical devices can be enhanced by 

diminishing the photonic mode volume and increasing the photonic density of states (DOS) [1]. 

For example, dielectric based pillar [2,3], photonic crystal [4,5] and microdisc [6,7] cavities  

have emerged as the means to achieve substantial enhancements in spontaneous emission, 

stimulated Raman scattering and non-linear frequency conversion. Having reached near 

diffraction limited sizes, the main route to further enhancement is through the cavity quality 

factor (Q-factor) [2-7]. While this approach is promising for some applications, it increases the 
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photon lifetime in the cavity, thereby limiting the response time and bandwidth of the emitter-

cavity system [5].  

Surface Plasmons (SPs), the quasi-particles arising from the coupling of light with electrons 

at metal-dielectric interfaces opens the possibility to enhance light-matter interactions even with 

low DOS (or low Q- factor) by accessing mode sizes below the diffraction limit that are closer to 

the length scales of electronic wavefunctions [8, 9]. Surface plasmons have been also used to 

observe naturally weak physical effects with enhanced sensitivity, such as fluorescence [10, 11] 

and Raman spectroscopy [12, 13], and very recently were investigated as potentially new types 

nanolaser systems and ultrafast light sources at optical and infrared frequencies [14-17].  

This paper shows that the strength of light-matter interactions in low dimensional 

plasmonic systems manifests unique spatial and temporal scalings with frequency that are highly 

unusual when compared to conventional optics. We find that the light-matter interaction strength 

in plasmonic systems confined in two dimensions e.g., metal nanowires, scales anomalously with 

frequency and exhibits improved confinement and emission rates away from the surface plasmon 

frequency, despite the diminishing role of electron oscillations in the confinement. Strong light-

matter interactions in such systems are shown to provide simultaneously femto-second and nano-

meter regimes of operation, even at longer wavelengths into the mid IR. Furthermore, coherent 

SP sources [17, 18] are now viable with recent demonstration of SP lasers at optical and infrared 

frequencies [19-21]. 

The rest of this paper is organized as follows: in Sec. II we set the theoretical method 

used to calculate the SPs modal characteristics and interaction with dipolar emitters, in Sec. III 

we study the frequency scaling of mode confinements and spontaneous emission rates related to 

SPs with various degrees of confinement, in Sec. IV we investigate a prospective Surface 

Plasmon Laser (SPL) and extract it relevant characteristics such as modulation bandwidths. The 

effects of SP mode dimension, cavity Q-factors and carrier frequency are addressed. Conclusions 

are provided in Sec. V. 

 

II. MASTER EQUATION: SURFACE PLASMONS MODAL VOLUMES AND 

SPONTANIOUS EMISSION RATES 

We analyze the electromagnetic interaction between a two level dipole emitter in close 

proximity to metal-dielectric systems exhibiting mode confinement in one, two and three 
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dimensions, shown in Fig. 1. A planar metal-dielectric interface [22-24] and a thin metal 

nanowire [25-27] represent plasmonic systems with one (1D) and two (2D) dimensional 

confinement, respectively, where collective electron oscillations are bound to the surface or wire 

but are free to propagate in the remaining unbound directions as surface plasmon polaritons 

(SPPs). These systems are non-resonant and support SPPs at energies below the plasma 

frequency. On the other hand, a metal nanoparticle supports a resonant localized Surface 

Plasmon (SP) confined in all three dimensions (3D) [28].  

For the sake of simplicity we assume that the 3D SP resonance frequency ߱௦ is tuned to 

that of the emitter, ߱. In general, the emitter couples to an electric field composed of a variety of 

modes from unconfined (0D) radiation to cavity modes confined in all 3 dimensions. The 

emitter-field interaction, under the rotating wave approximation [29], is then described by the 

master equation: ߩሶ ൌ 1݅ ൣ, ൧ߩ   ߛ መࣦሺ ොܽሻߩ  ߛ መࣦሺߪොേሻ(1) ,ߩ

where  ൌ ݅݃൫ߪොି ොܽற െ ොାߪ ොܽ൯  is the interaction Hamiltonian describing the coupling 

between emitter and SP modes confined in D dimensions; ߛ describes non-radiative emitter 

loss, ߛ describes loss for mode confined in D dimensions; ߩ is the density matrix; ොܽறሺ ොܽሻ and ߪොേ 

are the SP creation (annihilation) and Pauli spin-flip operators, respectively; and መࣦ൫ܣመ൯ߩ ൌሺ2ܣመܣߩመற െ ߩመܣመறܣ െ  .መሻ is the Liouville operator describing the system’s irreversible lossesܣመறܣߩ

In the following, we examine the partial emitter-field interactions for each dimensionality 

separately. The emitter-mode coupling strength ݃ depends on the overlap of electronic wave-

functions and the local electric field, ࡱሺ࢘ሻ , and for emission averaged over all dipole 

orientations is given as ݃ሺ࢘ሻ ൌ 1 .ࢊ|1ۦ ሻ|2ۧ࢘ሺࡱ ൌ ߨ1 ቆ2߱ܥ߁݂ሺ࢘ሻߦଷି ቇଵ/ଶ ൬ ߱൰ሺଷିሻ/ଶ, (2)݊ܿߨ

where ࢊ is the dipole moment, ࢘ is the dipole position and ߁ ൌ ݊߱ଷ|ࢊ|ଶ/3ߝߨܿଷ is 

the natural spontaneous emission rate of the emitter in an open lossless medium of refractive 

index ݊. To avoid rapid non-radiative decay of emitters in close proximity to metal surfaces we 

set the position dependence of the coupling strength, ݂ሺ࢘ሻ ൌ ,ாሺ߱ݑ ,ாሺ߱ݑሻ/Maxሼ࢘ ሻሽ࢘ ൌ ݁ିଵ, 
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where ݑாሺ߱, ଷିߦ ሻ is the modal electrical energy density [18, 26]. In equation (2), the࢘  is a 

quantization (3-D)-volume accounting for the unbound dimensions and the confinement factor is, ܥ ൌ Maxሼ2ݑாሺ࢘ሻሽ ݀ݑ࢘ாெሺ࢘ሻ ൬ ߱൰. (3)݊ܿߨ

Here, the electromagnetic energy density,  ݑாெሺ߱, ሻ࢘ ൌ ,ாሺ߱ݑ ሻ࢘  ,ெሺ߱ݑ ሻ࢘  ൌሺ݀߱ߝሺ߱ሻ ݀߱⁄ ሻ|ࡱሺ߱, ሻ|ଶ/2࢘  ,ሺ߱ࡴ|ߤ ሻ|ଶ/2࢘ , is normalized to the vacuum energy ߦଷି  ݀ݑ࢘ாெሺ߱, ሻ࢘ ൌ ߱.  

In this paper we will utilize the solutions of the master equation modified only through 

the loss rates and coupling coefficients as expressed in Eq. (1) [30]. The atom-cavity dynamic 

involves both reversible and irreversibly emission by the atom, where energy is exchanged 

between light and matter states at the Rabi flopping frequency Ω ൌ ඥെߤଶି  |݃|ଶ  with a 

transition rate ்߁ ൌ െߤା േ ݅Ω , where ߤേ ൌ ሺ1/2ሻሺ߁ூ േ ூ߁ ;ሻߛ ൌ ∑ ஷ߁  ߛ  is the decay 

rate due to all the irreversible loss channels; and ߛ ൌ  ୀ is the cavity loss rate. The highߛ

losses, encountered in most SP systems, ߛ ب  ூ, result in an irreversible coupling regime, with߁

an emission rate into the SP mode of |݃|ଶ/ߛ without vacuum Rabi Oscillation.  

In the absence of cavity feedback, the emitter couples irreversibly to a continuum of 

modes, which allows the use of Fermi’s Golden rule to describe the emission rate, ߁ ൌ2/ߨ|݃|ଶߦଷିܩ, where ܩ is the density of states (DOS) of modes confined in ܦ dimensions. 

For free space radiation modes (ܦ ൌ 0), the DOS is ܩ ൌ ݊ଷ߱ଶ/ߨଶܿଷ, hence ߁ ൌ  Increasing .߁

the confinement dimensionality modifies the DOS: ܩଵ ൌ ݊݊߱/2ܿߨଶ for confinement in 1D 

(propagation on a metal plane) and ܩଶ ൌ ݊/ܿߨ for confinement in 2D (propagation along a 

metal wire), where ݊ and ݊ are respectively the phase and group indexes of SP modes (see 

Auxiliary information). The partial spontaneous emission rate enhancements are therefore ܨ ൌ ߁/߁ ൌ ᇱܩܥ , where we have introduced the normalization, ܩᇱ ൌ ߨܩ߱ ൬ ߱൰ଷି. (4)݊ܿߨ

We note that this is similar to normalizing the SP DOS to the DOS of non-dispersive modes of 

effective index ݊  with the same confinement dimensionality. However, this is only true for ܦ ൌ 0, where ܩᇱ ൌ ܦ ሺ݊ሻ. Forܩ/ሺ݊ሺωሻሻܩ ൌ ଵᇱܩ ,1 ൌ ܦ ଵሺ݊ሻ and forܩଵሺ݊ሺωሻሻ/2ܩ ൌ 2, 

we find  ܩଶᇱ ൌ  ଶሺ݊ሻ. The additional factors account for the reduction in availableܩߨ/ଶሺ݊ሺωሻሻܩ

modes for low dimensional modes compared to free space. As evident from DOS (equation 4), 
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plasmonic systems confined in 1 and 2 dimensions are capable of emission enhancements over a 

broad range of frequencies without the need of a cavity [22,23].  

 Conversely, 3D confined SP systems act as effective cavities and exhibit a resonance 

condition and must be tuned to match the emitter’s spectrum. Furthermore, the optical feedback 

onto the emitter can introduce both irreversible and reversible energy exchange between light 

and matter states. However, as pointed above the high metal loss, encountered in most SP 

systems, ߛଷ ب ߛ  ∑ ஷଷ߁ , results in irreversible coupling with a total emission rate ்߁ ൌߛ  ∑ ஷଷ߁  |݃ଷ|ଶ/ߛଷ . The emission rate enhancement for the cavity mode is therefore ܨଷ ൌ ଷᇱܩଷܥ , where the 3D cavity DOS, ܩଷ ൌ ଷߛߨ/2 ൌ 2ܳ௦/߱ߨ, is the peak value of the cavity 

lineshape function. Substituting the modal confinement ܥଷ ൌ ሺܿߨ/݊߱ሻଷܸିଵ , we recover the 

well-known Purcell enhancement factor for a cavity with volume ܸ  and quality factor ܳ௦ ܨ , ൌ  .ሺܿ/݊߱ሻଷܳ௦/ܸ [1]ߨ2

 

III. FREQUENCY SCALING OF PLSMONIC SYSTEMS WITH VARIOUS DEGREES 

OF CONFINMENT  

 A unique spectral scaling of dipole emission rates into surface plasmons modes arises 

from the underlying dependence of their optical density of states (DOS) and mode confinement 

factors on frequency, as shown in Fig. 2. In these calculations, we consider air/silver 

configurations for different system dimensionalities. To describe the metal permittivity we use 

the Drude model, ߝሺ߱ሻ ൌ ߝ െ ߱ଶ/ሺ߱ଶ െ ݅߱߱ఛሻ , where ߝ ൌ 5  is the contribution due to 

bound electrons,  ߱ ൌ 9.1 eV  is the bulk plasma frequency, and ߱ఛ ൌ 21 meV  is the 

relaxation rate due to electron-phonon scattering [31]. In 1D and 2D confined plasmonic 

systems, the intrinsic densities of states dramatically increase near the surface plasmon 

frequency, ߱௦, where a larger proportion of the modal energy resides in the dispersive metal. 

The redistribution of the modal energy from the metal into the dielectric at lower frequencies 

results in a DOS similar to that of free photons. While the DOS of both 1D and 2D confined 

surface plasmon polaritons (SPPs) scale similarly with frequency, the spectral dependences of 

their confinement factors exhibit opposing trends. 1D SPPs weakly confined to metal-dielectric 

interfaces for ߱ ا ߱௦, have a confinement factor that scales as ܥଵ ൌ ߱/߱݊ߨ2 ൏ 1, indicating 

that such SPPs extend to sizes substantially larger than the diffraction limit. However, the most 
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intriguing behavior is found for SPPs confined in 2D, whose mode confinement factor scales 

anomalously with frequency and actually rapidly increases at low frequencies. In contrast to 

exponential decay of plasmonic modes confined in 1D, the electric field of 2D confined 

plasmonic modes decays ן ଵିݎ  near the nanowire and ן exp ሺെݎߢሻିݎଵ/ଶ  for large distances 

from the nanowire, ݎ ب  Consequently, the mode confinement area is related to the nanowire’s .ߣ

radius, ܽ, when ܽ/ߣ ا 1, and is independent of the wavelength, due to the ିݎଵ near-field decay 

[26]. This peculiar phenomenon can be physically explained in terms of electromagnetic energy 

storage in surface electron oscillations screened by the core of the metal nanowire. When the 

nanowire is much narrower than the wavelength, the electromagnetic field associated with these 

charge oscillations is geometrically constrained to scale inversely with distance. A significant 

portion of the SP mode energy therefore resides near the metal-dielectric interface over a broad 

range of frequencies, similar to the charge storage in a capacitor. The confinement factor, ܥଶ ൎ  .ሺܿ/߱ܽሻଶ, therefore intensifies strongly with diminishing frequency and nanowire radiusߨ

In is important to mention that apart of the fundamental nanowire mode ሺ݉ ൌ 0ሻ studied here, 

one may also consider higher order modes. However, as shown by Chang et al.  [27], these 

modes experience either a cutoff for a given nanowire radius ܽ or for ݉ ൌ 1 have modal volume 

that exponentially increases with decreasing ܽ . Thus, the fundamental mode is the mode of 

choice should one pursue fast optical response and small modal volumes. We note that 

anomalous scaling with frequency may also be found in other types of metallic nanostructures, 

e.g., two parallel metal planes separated by a dielectric gap exhibit a more moderate scaling of 

the confinement factor as ߱ିଵ. 

The limits of nano-plasmonics are manifested in 3D-confined systems, i.e., metal nano-

particles [17, 28]. The smallest nanoparticles exhibit very little radiative loss [32] and are well 

understood by a quasi static description where the particle’s shape determines its resonance 

frequency, while its density of states is set by the metal’s permittivity alone;  ܩଷ ൌ ଷߛߨ/2 ൌReሾ݀ߝ/݀߱ሿ/ߨImሾߝሿ [33]. However, inhibitive metal loss due to non-local phenomena, such 

as Landau damping and the anomalous skin effect, can further limit both DOS and mode 

confinement for very small particle sizes [34].  

 We define the limit of plasmonics at the breakdown of the continuous theory of metals, 

when the permittivity becomes dependent on the spatial frequency ݇. This naturally introduces 

a minimal particle size, ܽ ൌ ݇/ߨ2 ൏ ߱/ிݒ , where ݒி  is the Fermi velocity, through the 
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constraint ߜ ൌ ,ሺ߱ߝ| ݇ሻ/ߝሺ߱ሻ െ 1| ا 1. We describe the non-local permittivity using the 

Klimontovich-Silin-Lindhart formula [34]. To estimate the Purcell factor for the resonant SP 

modes (3D confinement) we again use the general result for the emission rate enhancement ܨଷ ൌ ଷᇱܩଷܥ ଷܳଷܥଶିߨ2= , where ܳଷ ൌ ଷߛ/߱  is the Q-factor of the SP resonances (we tune the 

particle morphology to be at resonance for the operation frequency ߱ ) [33]. Finally, in the 

calculations we set the particle size such that ݇ݒி/߱ ൌ 0.13 and the deviation in Eq. (5) from 

the bulk metal permittivity is less then 1%.  

The limit of non-local effects manifested in 3D-confined (resonant) systems is illustrated 

in Figs. 2a and 2b with solid lines, where we span the frequency range by modifying a 

nanoparticle’s shape to tune its resonance frequency. At low frequencies, the mode confinement 

is given as ܥଷ ൎ  ଶሺܿ/ܽ߱ሻଷ, and at the onset of nonlocal effects the particle size must scaleߨ12

as ܽ ൎ  ி is the Fermi velocity. Concurrently, the mode confinement saturate at aݒ ி/߱  whereݒ

finite value proportional to ሺܿ/ݒிሻଷ. At high frequencies, we observe a different behavior with 

the mode confinement decreasing drastically due to the metal’s transparency ߝ ՜ 1. 

The intrinsic characteristics of SPs alone can lead to dramatic enhancements in the 

spontaneous emission rates (Purcell effect) of emitters near plasmonic systems as shown by the 

solid lines in Fig. 3. In general, the enhancement factor is proportional to the product of the DOS 

and mode confinement factors discussed above and shown in Figs. 2(a) and 2(b), respectively. 

As the DOS of 2D confined systems maintains a nearly constant value at low frequencies, it is 

the anomalous scaling of the mode confinement with frequency that drives the scaling of the 

spontaneous emission rates. Namely, the rate of spontaneous emission in 2D confined systems 

rapidly increases at lower frequencies, in sharp contrast to plasmonic systems confined in one 

dimension and the onset of non-local effects in 3D confined SPs.  

Light matter interactions of 1D and 2D confined SPPs can be further enhanced by 

introducing a cavity, where the interference between multiple reflections within the cavity can 

substantially modify the intrinsic DOS. The emission rates will therefore be further enhanced by 

a factor proportional to the cavity finesse, ࣠ ൌ ܳ/݊ ൌ  where ݊ is the mode order, in ,ܮ2݊/ܳߣ

exchange for a modest reduction of the bandwidth. Namely, an emitter near 1D SPPs resonating 

between appropriately spaced mirrors will emit at a rate ห݃,ଶหଶ/ߛ ൌ  and for 2D SPPs ߨ/ଶ࣠߁2

in a square cavity of side ܮ the emission rate is ห݃,ଵหଶ/ߛ ൌ ଶ√݊ଶߨ/ଵ࣠߁4  1, where ݃, and 
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  are the generalized coupling coefficient and loss rate for cavity enhanced SPPs confined in Dߛ

dimensions. In both 1D and 2D confined systems, additional confinement is also possible near 

the surface plasmon frequency, where the increased phase index, ݊ , of the SPPs allows a 

reduction in the cavity length. However, when cavities are longer than the SP propagation 

distance, ࣠ ՜ 0, we recover the non-resonant intrinsic emission rates. 

The broken lines in Fig. 3 show the emission rate enhancement of 1D and 2D systems 

with first order cavities added, i.e. ݉ ൌ 1. Here, reduced mode sizes and moderate Q-factors, 

limited by the intrinsic dissipation (ܴ ൌ 99% ب ݁ିఈ, where ߙ ൌ 2ሺ߱/ܿሻImሺ݊ሻ is the SP’s 

dissipation along the cavity length ܮ), allow for improved emission characteristics. Spontaneous 

emission rates are ultimately limited by the onset of reversible light-matter coupling and cannot 

exceed half the intrinsic cavity loss rate, when ห݃,ห  ߛ ൌ ሺܿ/2݊ܮሻlnሺ1/ܴ݁ିఈ ሻ [29,30]. 

While the Purcell factors in 3D confined SP systems approach six orders of magnitude at the 

onset of non-local effects, reversible light matter coupling is likely to be the limiting factor, 

where |݃ଷ|   ଷ. Nevertheless, this is sufficient to access sub-picosecond spontaneous emissionߛ

lifetimes. 

 

IV. SURFACE PLASMON LASER (SPL) 

Emission in strongly confined plasmonic systems is typically dominated by intrinsic SPP 

loss [28,32,35] inhibiting them from realizing practical light sources. However, the feedback of 

1D/2D confined SPPs in cavities and 3D confined SPs can induce stimulated emission resulting 

in nano-plasmonic lasers with restored out-coupling efficiency and coherence [19-21]. In what 

follows, we examine how the spectral scaling of both mode confinement and density of states 

impact the temporal dynamics of plasmonic laser systems. While it is widely accepted that the 

speed of plasmonic lasers based on 3D confinement is governed by the short passive lifetimes of 

SPs [14], here we identify a new regime where the speed of 2D-confined plasmonic lasers is 

governed by the anomalous scaling of mode confinement with frequency. This finding makes 

SPPs confined in just two dimensions extremely favorable for fast laser systems without relying 

on high gain to compensate high mode loss.  

Laser action of SPPs is described by the master equations for an ensemble of four level 

emitters with rapidly depleting ground state coupled to a single cavity mode under the 

assumption of fast emitter-photon de-phasing dominated by SP cavity loss, ߛ, such that, 
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ሶܰ ൌ ܬ െ ߁் ܰሺ1  ሻ,ሶܵܵߚ ൌ ߁்ߚ ܰሺ1  ܵሻ െ  ܵ, (5)ߛ

where ߚ ൌ ห݃,หଶ/ߛ்߁  is the spontaneous emission factor - the probability that emission 

couples into the cavity mode;  ܬ and ܰ are the pump rate and population inversion, respectively; 

and ܵ is the number of SPP quanta inside the cavity. These expressions are valid within the weak 

coupling limit, (ߛ ب ߁்ߚ ). 

Nano-scale SPP lasers differ from their conventional counterparts in their ability for 

threshold reduction. The threshold pump rate is the ratio of the cavity loss rate and the 

spontaneous emission factor, ܬ௧ ൌ ߚ While conventional lasers, having .ߚ/ߛ ا 1, require low 

cavity losses to ensure realistic thresholds, SPP lasers can operate at much higher cavity losses 

owing to their high ߚ-factor (ߚ ൎ 1). The high ߚ stems from the increased light matter coupling 

strength, inducing enhancements of both spontaneous and stimulated emission rates beyond that 

available to diffraction limited light. This opens the possibility to achieve laser action of SPPs 

with realistic pump rates despite high cavity loss and the capability for very fast response times. 

To explore the temporal characteristics of SP lasers, we examine their response to small 

signal modulations, ܵ ൌ ܵ  ሺ߱ሻ݁ఠ௧ݏ ܬ , ൌ ܬ  ݆ሺ߱ሻ݁ఠ௧  and ܰ ൌ ܰ  ݊ሺ߱ሻ݁ఠ௧ , where ܵ ܬ , , and ܰ  are the steady state SPP mode number, pump rate, and population inversion, 

respectively. The SPL response to the pump modulation in first order of perturbation is described 

by the spectral response function  Θሺ߱ሻ ൌ ቤݏሺ߱ሻ݆ሺ߱ሻቤ ൌ ߁்ߚ ሺ1  ܵሻඥሺ߱ଶ െ ߱ଶሻଶ  ߱ଶ߱ଶ (6) 

where ߱ ൌ ߛ  ߁் ሺ1 െ ߚ ܰ  ሻ and ߱ଶܵߚ ൌ ߁் ሺߛሺ1  ሻܵߚ െ ሺ1ߚ െ ߁ሻ்ߚ ܰሻ are related to 

the resonance frequency ߱௦ ൌ ඥ߱ଶ െ ߱ଶ/2. Fig. 4(a) depicts the response functions for 1D 

and 2D confined SPPs of Semiconductor/Silver nanostructures at the telecoms wavelength λ ൌ  ,The time response of the laser is characterized by the modulation bandwidth, ଷ݂ௗ .݉ߤ1.5

defined as the frequency at which the response function decays to half of its zero-frequency 

value. For SP cavities, one has ߚ ൎ 1 and at low pump rates, ݎ ൌ ௧ܬ/ܬ  1, the modulation 

bandwidth is limited by relaxation oscillations, ଷ݂ௗ  √3߱/2ߨ, where ߱ ൌ ඥ்߁ ݎߛ ൏  . Atߛ

high pump rates, ݎ ب 1, a damping dominated response occursሺ߱  ሻ, and we have ଷ݂ௗߛ 
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ߨ/2ߛ3√ . In general, we find that for high loss cavities, inherent to SP systems, the 3dB 

bandwidth can be completely described through a single universal parameter   

ଷ݂ௗ ൌ ߨߛ Ωሺ߱/2ߛሻ, (7) 

where Ωሺߞሻ ൌ ൫1ߞ െ ଶߞ2  2ඥ1  ଶߞଶሺߞ െ 1ሻ൯ଵ/ଶ
, and the laser’s maximum response rate 

depends on pump rate and is in the range, ߱ ൏ ߨ2 ଷ݂ௗ/√3 ൏  . The modulation capability ofߛ

the SPL over visible and near IR frequencies, as shown in Fig. 4 (b), exemplifies why plasmonic 

systems confined in two dimensions are highly suitable for such devices. Figure 4(b) shows the 

improvement in the bandwidth of SPP lasers compared with conventional ones with the same 

cavity feedback, ଷ݂ௗ௦ / ଷ݂ௗ௩. While at high frequency the short passive lifetimes of plasmonic 

cavity modes govern the modulation speed, at low frequency and for nominal pump rates, ݎ, it is 

the confinement that is important, 2ߨ ଷ݂ௗ௦ /√3 ൌ ඥ்߁ ݎߛ ൎ ඥ2ܥ߱ݎଷߨ/߁, and the modulation 

speed is independent of the passive cavity mode lifetime. For high pump rates, ݎ, the modulation 

speed continues to increase up to the cavity loss rate 2ߨ ଷ݂ௗ௦ /√3 ൏  ,. For nominal pump powerߛ

we find that the maximum modulation speed inherits the anomalous scaling of SPPs confined in 

2D and scales as ~ωିଵ/ଶ. This behavior suggests that fast plasmon lasers are possible without 

the need to rely on short passive SPP lifetimes and correspondingly high gain to achieve lasing. 

By minimizing the cavity losses in this way, more gain will be available for driving such lasers 

faster. On the other hand 1D confined SP lasers have a reduced bandwidth due to diminishing 

mode confinement at longer wavelengths, hence these systems are only advantageous near the 

surface plasma frequency, where passive mode loss is high, and the corresponding large gain 

requirement for lasing makes high bandwidth 1D confined SP lasers difficult to achieve [16].  

In practical SP lasers the cavity losses should be as low as possible with an enhancement 

factor that scales as,  ଷ݂ௗ௦ / ଷ݂ௗ௩ ൌ  ଷܳ. While SP lasers with high cavity loss rates couldܥଵඥ2ିߨ

be modulated faster, these devices would ultimately be limited by high thresholds and the gain 

available in natural materials. For example, under realistic conditions where gain suppression 

effects are included, the maximum modulation bandwidth cannot exceed, ଷ݂ௗ ൏ ߁3்√ ߨ2/ ሺ3/4ߨଶሻଷ/ଶሺߣଷ/߳݊ଷሻܳ߁, for ߛ  ߁் , where ߳ is a gain suppression factor [36]. For typical gain 

materials at telecoms wavelengths, ߳ ൌ 10ିଶଷ m3, ߁ ൌ 1 GHz and ݊ ൌ 3.5 which, along with 
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ܳ ൌ 20, gives an upper bandwidth limit of ଷ݂ௗ ൏ ߨ/2߁3√  3.3 THz. Gain suppression is 

likely to limit the response time of SPP lasers to ൏ 10 THz. 

 

V. CONCLUSION 

In conclusion, we have shown that SPs confined in 2D exhibit anomalous mode 

confinement that rapidly increases with decreasing frequency away from the surface plasmon 

frequency. This enables ultra small mode sizes even at telecomm and mid-IR wavelengths 

which, along with their coherent and guided radiation, makes 2D confined plasmonic systems 

ideal candidates for future laser devices. The anomalous spectral scaling of mode confinement 

also extends to the speed of plasmonic lasers where modulation bandwidths can exceed those of 

spontaneous emission based light sources, limited only by reversible light-matter coupling. 

Plasmonic lasers can bridge the size-gap between electronics and optics to deliver optical energy 

to nanometer length scales on femtosecond time scales, hence providing improved information 

throughputs and substantial size reduction of optical light sources. This unprecedented control 

over the speed of light-matter interactions holds the potential to greatly impact the development 

of highly compact optoelectronic circuits and ultrafast signal processing devices as well as 

introduce a new regime of intense field laser physics.  
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FIG. 1. (color online) Metal nanosctructures supporting surface plasmon modes with varying 
degrees of confinement. The 1D system is planar Silver/Air interface supporting surface plasmon 
polaritons (SPP) confined in one dimension. The 2D system is a 40 nm diameter Silver nanowire 
in air and supports the symmetric zero-order SPP confinement in two dimensions. The 3D 
system (red) corresponds to a nanosize Silver particle confined in all three dimensions.  
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FIG. 2. (color online) Intrinsic characteristics of the Surface Plasmons (SPs). (a) Normalized 
densities of states, ܩᇱ , and (b) effective mode confinement factors, ܥ. While the 1D (dotted) 
and 2D (dashed) lines show the response for a single calculated structure, the red line (solid) 
identifies the onset of non-local effects in metal nanoparticles (ߜ ൌ 0.01) which have been 
morphologically tuned to provide localized Surface Plasmon resonances at the sampled 
frequencies. 
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FIG. 3. (color online) Spontaneous emission rate enhancement for emitters coupled to SPs with 
confinement in a varying number of dimensions. This is the product of the confinement factor, ܥ, and normalized DOS, ܩᇱ , as shown in Figs. 2a and 2b. The responses for the 1D and 2D 
confined SPPs are divided into intrinsic (broken lines) and cavity-enhanced (solid lines) 
enhancement factors, where feedback has been introduced through cavity mirrors in a Fabry-
Perot configuration with reflectivity, ܴ ൌ 99%. The red line shows the limits of plasmonics 
where non-local effects become significant. This limit could be reached with metallic nano-
particle SP resonators.  In these calculations silver/air configurations are considered. 
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FIG. 4. (color online) Temporal response of Surface Plasmon Lasers. (a) The response functions 
for 1D (light curves) and 2D (dark curves) confined SPP cavities (݊ ൌ 1, ܴ ൌ 99.9%) for ideal 
four level emitters at telecoms frequency (߱ ൌ 0.83 eVሻ. We consider three different pump rates: ݎ ൌ 10  (solid lines), ݎ ൌ 200  (dashed lines) and ݎ ՜ ∞ (dotted line). The 3dB modulation 
bandwidth follows a universal function (insert). At low pump rates, the bandwidth is limited by 
relaxation oscillations, ଷ݂ௗ ൌ √3߱/2ߨ, saturating at ଷ݂ௗ ൌ  for high pump rates due ,ߨ/2ߛ3√
to cavity damping. (b) The enhancement of the 3dB bandwidth compared to diffraction limited 
lasers in the optical and near infrared, for the same pump rates as in Fig. 4(a). A relaxation 
oscillation dominated response (solid lines) is observed at low pump rates and near the surface 
plasmon frequency where loss rates are high. A transition into cavity relaxation dominated 
response occurs when ߱ ب ߛ . In these calculations, the cavities’ host permittivity is set to ߝ ൌ 2.25. 
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