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A theory of thermal transport in a two-channel Kondo system, such as the one formed by a small
quantum dot coupled to two leads and to a larger dot, is formulated. The interplay of the two
screening constants allows an exploration of the Fermi liquid and non-Fermi liquid regimes. By
using analytical, as well as numerical renormalization group methods, we study the temperature de-
pendence of the thermal conductance and the Lorentz number. We find that in the low-temperature
limit, the Lorentz number attains its universal value, irrespective of the nature of the ground state.
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I. INTRODUCTION

Quantum dots (QD) have long been recognized by ex-
perimentalists and theorists alike for their ability to em-
body several important theoretical paradigms. Some of
the most important refer to the possibility to replicate
in a tunable structure the Kondo effect. First associ-
ated with the anomalous resistivity values in metals, the
Kondo effect originates in the antiferromagnetic interac-
tion of conduction electrons with a local magnetic mo-
ment of spin 1/2. In this respect, the degenerate ground
state of the electron liquid in the quantum dot functions
as a magnetic impurity, while the electrons in the leads
connected to the dot behave as the surrounding normal
metal1. The multi-channel Kondo problem involves two
or more electron modes in the screening of the magnetic
impurity. The QD representation of this situation has
been realized several years ago and is based on the dif-
ferent interactions established between an electron in a
small dot, that functions as a magnetic impurity, with
the electrons in two leads and with those located in a
larger dot2. The relative strength of the screening real-
ized by these two channels determines the characteristic
behavior of the system.

If in the case of a single-channel Kondo (1CK) effect,
at temperatures below the characteristic Kondo tempera-
ture, TK , the system behaves like a Fermi liquid (FL) and
is characterized by analytic functions of temperature, the
interplay between the two screenings in the case of two
channel Kondo (2CK) problem, permits the realization of
a FL, when one screening dominates the other one, or of
a non-Fermi liquid (NFL), when the screenings are equal.
Then each reservoir is trying to screen the magnetic im-
purity, but in the symmetric limit J1 = J2, no one suc-
ceed. This leads to a NFL type of ground state, where, in
contrast to the single-channle Kondo problem, the local
impurity is only partially screened. The impact of the
Kondo correlations on electronic transport has long been
an area of active research. Considerably less is known
about their effect on thermal transport, which only re-
cently has been discussed in several theoretical3–8 and
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FIG. 1: (color online) The universal behavior of the thermal
conductance of a 2CK model (corresponding to channel 1).
Three regimes are clearly visible when J1 6= J2. For T ≪

T ⋆ the system is in the Fermi liquid regime, followed by a
crossover (T ⋆ < T < TK) to the perturbative (T ≫ TK)
regime. The non-Fermi fixed point is realized for J1 = J2. α
and γ are two numerical constants of order 1, and G0 is the
universal conductance G0 = 2 e2/h.

experimental9 studies that focus on the 1CK model. In
this paper we extend such considerations to the study of
the thermal conductivity of a double quantum dot sys-
tem that can exhibit a two-channel Kondo state10. In
this picture, the single electron in the small dot interacts
with the electrons in the leads, with a screening integral
J1 and with the electrons in the bigger dot with a screen-
ing integral J2. Besides the Kondo temperature itself,
TK , the relationship between J1 and J2, expressed by
K = (J1 − J2)/J

2 sets another energy scale of the prob-
lem through the characteristic temperature T ⋆ = K2TK ,
smaller than TK . For the particular experimental setup
realized in Ref. 10 the Kondo temperature ranges be-
tween 30 and 130 mK.
In an approach that combines analytical arguments

with Wilson’s numerical renormalization group (NRG)
method, we calculate the thermal conductivity and the
Lorentz number of this system, and investigate their be-
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havior as a function of temperature. In this algorithm,
the thermal conductance κ(T ) corresponding to channel
1 is obtained as

κ (T )

T
=

2

h

π2

3







θ(K)− sgn(K)α (T/T ⋆)
2

if K 6= 0

1/2− γ
√

T/TK if K = 0

,

(1)
where θ(K) is the Heaviside function and sgn(k) is the
signum function; α and γ are two numerical constants11

of order 1. A sketch of this result is presented in Fig. 1.
We find that when J1 6= J2, at temperature T < T ∗, the
ground state of the system is a Fermi liquid (FL) and

the thermal conductance varies as κ(T )/T ∝ (T/T ⋆)2.
The symmetric channel problem, when J1 = J2, corre-
sponds to a NFL behavior when the only energy scale in
the problem is set by TK . Then, κ(T )/T ∝

√

T/TK.
In the large temperature regime, when T ≫ TK , a
1/ log2 (T/TK) behavior is obtained for κ(T )/T .
The nature of the ground state strongly affects the

Lorentz number, namely, L(T ) = κ(T )/TG(T ), with
G(T ) the charge conductance. In the Fermi liquid regime,
quasiparticles transport both charge and energy and
the Lorentz number attains a universal value L(T ) =
π2k2B/3e

2 ≡ L0. This statement is the essence of the
Wiedemann-Franz law12, formulated long time ago for
normal metals. Deviations of L(T ) from this behavior
are attributed to non-Fermi liquid behavior13.
The process used in deriving Eq. (1) adopts the some

of the methods that have been previously developed in
investigations of the ground state and the transport prop-
erties of the 2CK model14,15.

II. THERMAL TRANSPORT

The minimal Hamiltonian that describes the system
discussed above is written as H = H0 +Hint

16. Here,

H0 =
∑

r={L,R},σ

∫

dǫ ǫ c†r,σ (ǫ) cr,σ (ǫ) , (2)

represents the electrons in the non-interacting leads,
where a single particle state of energy ǫ, spin σ and lead
index r = {R,L} for left, right respectively, is associ-
ated with the Fermionic operator c†r,σ (ǫ). The interact-

ing Hamiltonian contains two terms, Hint = H
(1)
int +H

(2)
int ,

which describe the coupling of the local spin in the
smaller dot with the conduction electrons in the exter-
nal leads and to those in the second dot. The first term,

H
(1)
int , is

H
(1)
int =

1

2
J1

∑

r,r′=L,R

∑

σσ′

ηrηr′ Sψ
†
rσ σσσ′ ψr′σ′ . (3)

Here σ stands for the Pauli matrices σ = {σx, σy, σz}
and ψ†

rσ’s are the creation field operators, constructed
from the creation operators of the electronic states in

the leads, ψ†
rσ =

√
̺
∫D

−D
dǫ c†r,σ (ǫ). Here ̺ is the con-

duction band density of states, which is electron-hole
symmetric, ̺(ω) = 1/2D, −D < ω < D. The cou-
pling of the local spin with the electrons in the leads
is considered to be anisotropic, and will be expressed
through some dimensionless hybridization parameters,
ηL/R, of the form, ηL/R = vL/R/(v

2
L + v2R), with vL/R

the amplitude of the hopping between the dot and the
corresponding external lead. An asymmetry parame-
ter, φ, allows a more elegant description of the hy-

bridization, ηL = cos
(

φ
2

)

and ηR = sin
(

φ
2

)

. An

even/odd basis emerges, with new annihilation operators,

{Ψ, Ψ̃}, defined as, Ψ = cos
(

φ
2

)

ψL + sin
(

φ
2

)

ψR and

Ψ̃ = sin
(

φ
2

)

ψL − cos
(

φ
2

)

ψR. By this unitary transfor-

mation, the local spin remains coupled only to the even
channel, while the odd channel becomes decoupled, and
then, can be treated as a non-interacting one.
The coupling with the larger dot,

H
(2)
int =

1

2
J2

∑

σσ′

Sψ†
2σσσσ′ψ2σ′ (4)

is considered to be isotropic, with a dimensionless ampli-

tude J2. The field operators, ψ†
2σ, describe the electron-

hole excitations in the larger dot.
Our theory permits the calculation of the thermal con-

ductance of a 2CK system by starting from the heat op-
erator, Q(Q),

Q(Q) =
∑

σ

∫

dǫ ǫ
(

c†L,σ(ǫ)cL,σ(ǫ)− (c†R,σ(ǫ)(cR,σ(ǫ)
)

,

(5)
which describes the heat transfer under a temperature
gradient between the leads. We implicitly assume that
the leads are in equilibrium, µL = µR = 0. The
heat current is defined through the usual expression

I(Q) = i
[

H
(1)
int , Q

(Q)
]

. We introduce the so-called com-

posite fermion operators,17,18 Fσ =
∑†

σ′ Ψ
†
σ′σσ′σS, and

h̃†σ = 2 ̺3/2
√
3
∫D

−D
dǫ ǫ c̃†(ǫ), to rewrite the heat current

as

I(Q) =
1

2
√
3
J1 sin (φ)

∑

σ

(

iF†
σ h̃σ + h.c.

)

. (6)

The prefactor in the definition of h̃σ was fixed, such
that it satisfies the canonical anticommutation relations.
Moreover, h̃σ describes electrons in the odd-channel.
Since this channel is decoupled it may be treated as a
non-interacting Fermi system.
When the system approaches the equilibrium, the heat

current through the dot can be calculated with the Kubo
formalism. For that purpose, we consider a temperature
gradient being applied between the external leads. At
temperature T , the Hamiltonian acquires an additional
term, HT = Q(Q)∇T/T , with T the temperature itself,
and ∇T the temperature gradient between the external
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leads. Then the average heat current, in its most general
form, can be expressed as

〈

I(Q)(t)
〉

=

∫ t

−∞

Tκ(T, t− t′)
∇T
T

(t′) dt′, (7)

with κ(T, t) denoting the thermal conductance. While
this formalism is general enough to allow the calcula-
tion of the ac-thermal conductance, κ(T, ω), here, we
will focus on the dc-limit only. Algebraic manipulation
of Eq.(7) permits expressing the thermal conductance in
terms of heat current operators,

Tκ(T ) = −i

∫ ∞

0

dt
〈[

I(Q)(0), I(Q)(t)
]〉

. (8)

Finally a simple, analytical form can be derived,

Tκ(T ) =
2

h

sin2 (φ)

4
√
3

∑

σ

∫

dω ω2ℑm {T (ω, T )} ∂f(ω, T )
∂ω

(9)
In Eq. (9) we can identify the rescaled Green’s func-
tion of the composite operator as the T-matrix, T (ω) =
J2
1GR

Fσ

(ω).
Eq. (9) allows us to estimate the thermal conductivity

of the 2CK model. We define the Kondo temperature TK
through the equation, ℑmT (ω = TK) = 1

2ℑmT (ω = 0),
at the symmetric point, J1 = J2. In this situation, the
screening of the local spin in the smaller dot is equally
performed by both channels, their competition leading
to an NFL quantum critical state. Away from the sym-
metric point, J1 6= J2, the screening is realized by the
stronger coupling channel.
In the following, we will always focus on the temper-

ature dependence of the thermal conductivity for chan-
nel 1. In the FL regime, for T ≪ T ⋆, the T-matrix is
analytical16,

ℑmT (ω, T ) ≃ 1

π̺

(

θ(K)− sgn(K)
3ω2 + π2T 2

T ⋆2

)

. (10)

At the symmetrical point, and finite temperatures, the
non-Fermi liquid character is manifested by a

√
T contri-

bution,

ℑmT (ω, T ) ≃ 1

2π̺

(

1− a
√

ω/TK − b
√

T/TK + . . .
)

.

(11)
Here a and b are two universal constants. In this case
the T-matrix is purely imaginary and is reduced by half
from the unitary value in the Fermi liquid regime. Simple
integrations leads to the qualitative behavior presented
in Fig. 1.
Although this is a perturbative calculation, in the FL

regime, the ratio of the thermal conductance and the elec-
trical conductance recovers the Lorentz number exactly
in the T → 0 limit. It is interesting to point out that
this also happens for J1 = J2, when again, for limT→0,
L(T ) = L0. This result is somewhat contradictory to
the general conclusion that attributes deviations of the
Lorentz number from its constant value L0 to non-Fermi
liquid behavior.
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FIG. 2: (color online) Thermal conductance as function of
T/TK on a logarithmic scale. The NFL fixed point result,
J1 = J2, corresponds to the solid line, while dashed and dash-
dotted lines correspond to J1 6= J2. K is the anisotropy
factor (J1 − J2)/J

2. In both cases the average coupling is
J = (J1 + J2)/2 = 0.2.
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FIG. 3: (color online) The thermal conductance in the Fermi
liquid regime for K > 0 (upper panel) and for K < 0 (lower
panel). κ(T )/T given by Eq. (1) is plotted as a function of
T/T ∗ on a scaled temperature axis.

III. NUMERICAL RESULTS

The analytical results obtained in Eq. (1) above were
subjected to a numerical test produced with the numer-
ical renormalization group (NRG) method. Within the
NRG framework, the spectral function of the T-matrix
is given as a weighted sum of δ-functions of the form
ℑmT (ω, T ) ∼

∑

iwiδ(ω − ωi). This expression replaces
the integral over frequency in Eq. (9). The numerical
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FIG. 4: (color online) The universal behavior of the Lorentz
number as function of T/T ⋆ in the Fermi liquid regime. In
the low temperature limit T ≪ T ⋆, L(T ) converges to L0.
The inset presents L(T ) as function of T/TK . At the NFL
fixed point, for T ≪ TK the same universality is recovered.

results were obtained with the Flexible-DMNRG code19,
which allows the explicit use of the symmetries of the
Hamiltonian. In our particular case we built in the
SUc1(2) ⊗ SUc2(2) ⊗ SUs(2) with SUca(2) the charge
SU(2) symmetry in channel a and SUs(2) the global spin
symmetry. For every run we have kept 1000 multiplets
and we fixed Λ = 2. In Fig. 2 we represent the results
for the thermal conductance κ(T ) as function of T/TK.
At the symmetric point, J1 = J2, the curves for differ-
ent J ’s are scaling one on top of each other and we have
found that the thermal conductance is a universal func-
tion of T/TK , with the behavior predicted by Eq. (1).
In Fig. 3 we have represented κ(T )/T as function of
T/T ⋆. For temperatures T ≪ T ⋆, the universal behavior
κ(T )/T ∝ (T/T ⋆)2, obtained analytically in Eq. (1) was
also recovered. Thus the numerical results confirm the
universal behavior found analytically.

Finally, the universality of the Lorentz number was
checked numerically. In Fig. 4, main panel, we present
the results for the Lorentz number as function of temper-
ature in the FL regime. The conductance G(T ) employed
in the calculation was previously shown14 to have a uni-
versal behavior for T ≪ T ⋆, when G(T ) ∝ G(T/T ⋆).
Since both the electric and thermal conductance have
a similar behavior, L(T ) ∝ L(T/T ⋆) is found to be
a universal function. At the NFL fixed point, when

G(T ) ≃ G0

(

1−
√

π T/TK

)

/2, the Lorentz number be-

comes a universal function of T/TK . As can be seen in the
inset of Fig. 4, this universal behavior is valid well below
TK , while the scaling in the FL regime goes up to temper-
atures as large as T ⋆. In the limit T → 0, L(T )/L0 → 1
in all cases. Similarly, a large violation of the WF law
is observed at large temperatures, T ≫ TK , mostly on
account of the suppression of the thermal transport.

In conclusion we have constructed a general frame-

work for the calculation of the thermal conductance. The
method can be easily extended to the computation of the
thermopower, as well as the ac-thermal properties of any
quantum dot system. The NRG method was used to nu-
merical evaluate the conductance, thermal conductance
and the Lorenz number in the 2CK model as function of
temperature. Our findings point towards a universal be-
havior of all these quantities, similar with the electrical
conductance, studied previously14. In the limit of zero
temperature we have found that L(T → 0) = L0 both in
the FL and NFL ground states.
This research has been supported by Hungarian grants

OTKA No. K73361, Romanian grant CNCSIS PN II ID-
672/2008, the EU-NKTH GEOMDISS project, and DOE
grant number DE-FG02-04ER46139.



5

1 D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu,
D. Abusch-Magder, U. Meirav, and M. A. Kastner, Na-
ture (London) 391, 156 (1998).

2 Y. Oreg and D. Goldhaber-Gordon, Phys. Rev. Lett. 90,
136602 (2003).

3 T. A. Costi and V. Zlatic, Phys. Rev. B 81, 235127 (2010).
4 B. Dong and X. L. Lei, J. Phys.: Condens. Matter 14,
11747 (2002).

5 J. Koch, F. von Oppen, Y. Oreg, and E. Sela, Phys. Rev.
B 70, 195107 (2004).

6 M. Krawiec and K. I. Wysokinski, Phys. Rev. B 75, 155330
(2007).

7 A. V. Andreev and K. A. Matveev, Phys. Rev. Lett. 86,
280 (2001).

8 K. A. Matveev and A. V. Andreev, Phys. Rev. B 66,
045301 (2002).

9 R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and
L. W. Molenkamp, Phys. Rev. Lett. 95, 176602 (2005).

10 R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and

D. Goldhaber-Gordon, Nature 446, 167 (2006).
11 A. Roman, C. P. Moca, and D. C. Marinescu, unpublised

(2010).
12 R. Franz and G. Wiedemann, Ann. Phys. (Berlin) 165,

497 (1853).
13 A. Garg, D. Rasch, E. Shimshoni, and A. Rosch, Phys.

Rev. Lett. 103, 096402 (2009).
14 M. Pustilnik, L. Borda, L. Glazman, and J. von Delft,

Phys. Rev. B 69, 115316 (2004).
15 A. I. Toth, L. Borda, J. von Delft, and G. Zarand, Phys.

Rev. B 76, 155318 (2007).
16 I. Affleck and A. W. W. Ludwig, Phys. Rev. B 48, 7297

(1993).
17 T. A. Costi, Phys. Rev. Lett. 85, 1504 (2000).
18 G. Zarand, L. Borda, J. von Delft, and N. Andrei, Phys.

Rev. Lett. 93, 107204 (2004).
19 We have used the open access Flexible-DMNRG code,

available at http://www.phy.bme.hu/∼ dmnrg.


