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We present an implementation of the linear density response function within the projector-
augmented wave (PAW) method with applications to the linear optical and dielectric properties
of both solids, surfaces, and interfaces. The response function is represented in plane waves while
the single-particle eigenstates can be expanded on a real space grid or in atomic orbital basis for
increased efficiency. The exchange-correlation kernel is treated at the level of the adiabatic local
density approximation (ALDA) and crystal local field effects are included. The calculated static and
dynamical dielectric functions of Si, C, SiC, AlP and GaAs compare well with previous calculations.
While optical properties of semiconductors, in particular excitonic effects, are generally not well
described by ALDA, we obtain excellent agreement with experiments for the surface loss function
of graphene and the Mg(0001) surface with plasmon energies deviating by less than 0.2 eV. Finally,
the method is applied to study the influence of substrates on the plasmon excitations in graphene.

PACS numbers: 73.20.Mf, 71.15.-m, 78.20.-e.

I. INTRODUCTION

Time-dependent density functional theory (TDDFT)1

has been widely used to calculate optical excitations in
molecules and clusters as well as the optical and electron
energy loss spectra of bulk semiconductors, metals and
their surfaces2. The excitation energies and oscillator
strengths of both single-particle and collective electronic
excitations are determined by the frequency-dependent
linear density response function χ(r, r′, ω) giving the den-
sity response at point r to first order in a time-dependent
perturbation of frequency ω applied at point r′,

δn(r, ω) =

∫

drχ(r, r′, ω)δVext(r
′, ω). (1)

For finite systems, χ can be efficiently calculated by in-
verting an effective Hamiltonian in the space of particle-
hole transitions. For the practically relevant case of
frequency-independent exchange-correlation kernels this
formulation leads to the well known Casida equation3.
For extended systems, it is more convinient to express χ
in a basis of plane waves4–6 where it has the generic form
χGG′(q, ω), with G being reciprocal lattice vectors and
q being wavevectors in the first Brillouin zone (BZ).
In this paper we focus on the electronic response func-

tion of extended systems treating electron-electron in-
teractions at the level of the random phase approxi-
mation (RPA) and the adiabatic local density approx-
imation (ALDA). For many extended systems such a
description is insufficient to account for optical excita-
tions because the electron-hole attraction is not prop-
erly accounted for. However, dielectric properties, in
particular collective plasmon excitations, are generally
accurately reproduced by this approach7,8, and quanti-
tative agreement with electron energy loss experiments
have been reported for bulk metals9,10, surfaces11,12,
graphene-based systems13,14, semiconductors15,16 and

even supercondutors17. Furthermore, the accurate eval-
uation of the density response function at the RPA or
ALDA level is a prerequisite for implementation of most
post-DFT schemes, such as RPA correlation energy18,
exact-exchange optimized-effective-potential methods19,
the GW approximation for quasi-particle excitations20,21,
and the Bethe-Salpeter equation21,22 for optical excita-
tions.

Here we present an implementation of the density
response function within the electronic structure code
gpaw

23,24 which is based on the projector augmented
wave (PAW) methodology25,26 and represents wave func-
tions on real space grids or in terms of linear combina-
tions of atomic orbitals (LCAO)27. Within the PAW for-
malism one works implicitly with the all-electron wave
functions and has access to the (frozen) core states. This
makes the method applicable to a very broad range of sys-
tems including materials with strongly localized d or f
electrons which can be problematic to describe with pseu-
dopotentials. An additional advantage of the PAW for-
malism, with respect to linear response theory, is that the
optical transition operator in the long wavelength limit
can be obtained directly due to the use of all-electron
wavefunctions28. The non-interacting response function,
χ0, is built from the single-particle eigenstates obtained
either on a real space grid, which is the standard repre-
sentation in the GPAW code, or in terms of a localized
atomic orbital (LCAO) basis. We have found that the
latter choice reduces the computational cost of χ0 con-
siderably while still preserving the high accuracy of the
grid calculation.

The method is used to calculate the macroscopic di-
electric constants of a number of bulk semiconductors,
showing very good agreement with previous calculations
as well as experiments. For the surface plasmons of the
Mg(0001) surface we find, in agreement with previous
studies, that the ALDA kernel lowers the plasmon en-
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ergies by around 0.3 eV relative to the RPA values and
thereby reduces the deviation from experiments from 4%
to 1-2%. Very good agreement with experiments is also
found for the plasmon energies of graphene which are
shown to exhibit a linear dispersion with a value of 4.9 eV
in the long wave length limit. The deposition of graphene
on a SiC substrate is shown to have little effects on the
plasmon energies but leads to significant broadening of
the plasmon resonances. In contrast deposition on an Al
surface completely quenches the graphene plasmons due
to strong non-local electronic screening.

The rest of this paper is organized as follows. Section
II introduces the theoretical framework, where the PAW
methodology, the density response function for both fi-
nite q and q → 0, and the ALDA kernel in the PAW
method are discussed. The details of the implementation
and parallelization in gpaw and other technical details
are presented in section III. Section IV presents appli-
cations for optical properties and plasmon excitations of
bulk and surfaces, where comparison with other calcula-
tions and experiments are given. Our recent investigation
on the effect of a semiconducting and metallic substrate
on the plasmon excitations in graphene is also briefly
discussed in this section. Finally, a summary is given in
section V.

II. METHOD

A. Basics of the PAW formalism

In the PAW formalism25,26, a true all-electron Kohn-
Sham wavefunction ψnk is obtained by a linear trans-
formation from a smooth pesudo-wave-function ψ̃nk via
ψnk = T̂ ψ̃nk. The transformation operator is chosen in
such a way that the all-electron wavefunction ψnk is the
sum of the pseudo one ψ̃nk and an additive contribution
centered around each atom written as

ψnk(r) = ψ̃nk(r)+
∑

a,i

〈p̃ai |ψ̃nk〉[φai (r−Ra)− φ̃ai (r−Ra)]

(2)

The pseudo-wave-function ψ̃nk matches the all-electron
one ψnk outside the augmentation spheres centered on
each atom a at position Ra. Their differences inside the
augmentation region are expanded on atom-centered all-
electron partial waves φai and the smooth counterparts

φ̃ai . The expansion coefficient is given by 〈p̃ai |ψ̃nk〉, where
p̃ai is chosen as a dual basis to the pseudo-partial wave
and is called a projector function. A frequently occuring
term is the all-electron expectation value for a semilocal
operator A written as

〈ψnk|A|ψnk〉 = 〈ψ̃nk|A|ψ̃nk〉
+
∑

a,ij

〈ψ̃nk|p̃ai 〉〈p̃aj |ψ̃nk〉[〈φai |A|φaj 〉 − 〈φ̃ai |A|φ̃aj 〉] (3)

B. Density response function and dielectric matrix

A key concept in TDDFT is the density response func-
tion χ. It is defined as χ(r, r′, ω) = δn(r, ω)/δVext(r

′, ω),
where Vext is the external perturbing potential and δn is
the induced density under the perturbation. For periodic
systems, χ can be written in the form

χ(r, r′, ω) =
1

NqΩ

BZ
∑

q

∑

GG′

ei(q+G)·rχGG′(q, ω)e−i(q+G′)·r′ ,

(4)
where G,G′ are reciprocal lattice vectors, q is a wave
vector restricted to the first Broullion Zone (BZ), Nq is
the number of q vectors and Ω is the volume of the real
space primitive cell.
The density response function of the interacting elec-

tron system, χ, can be obtained from the non-interacting
density response function of the Kohn-Sham system, χ0,
and a kernel, K, describing the electron-electron interac-
tions by solving a Dyson-like equation

χGG′(q, ω) = χ0
GG′(q, ω)

+
∑

G1G2

χ0
GG1

(q, ω)KG1G2
(q)χG2G′(q, ω). (5)

The expression for the non-interacting density re-
sponse function in the Bloch representation of Adler and
Wiser4,5, is

χ0
GG′(q, ω) =

2

Ω

∑

k,nn′

(fnk − fn′k+q)

×
nnk,n′k+q(G)n∗

nk,n′k+q(G
′)

ω + ǫnk − ǫn′k+q + iη
, (6)

where

nnk,n′k+q(G) ≡ 〈ψnk|e−i(q+G)·r|ψn′k+q〉 (7)

is defined as the charge density matrix. Its evaluation
within the PAW formalism is explained in detail in the
following subsection. ǫnk, fnk and ψnk are the Kohn-
Sham eigen-energy, occupation and wave function for
band index n and wave vector k, and η is a broadening
parameter. The summation over k runs all over the BZ
and

∑

k fnk = 1 is satisfied for the occupied states. The
factor of 2 accounts for spin (we assume a spin-degenerate
system).
The kernel in Eq. (5) consists of both a Coulomb and

an exchange-correlation(xc) part. The Coulomb kernel is
diagonal in the Bloch representation and written as

KC
G1G2

(q) =
4π

|q+G1|2
δG1G2

, (8)

while the xc kernel evaluated within ALDA is given by

Kxc−ALDA
G1G2

(q) =
1

Ω

∫

drfxc[n(r)]e
−i(G1−G2)·r, (9)
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with

fxc[n(r)] =
∂2Exc[n]

∂n2

∣

∣

∣

∣

n0(r)

. (10)

Details on the evaluation of the xc kernel in the PAW
method can be found in a following subsection.
The Fourier transform of the microscopic dielectric ma-

trix, defined as ǫ−1(r, r′, ω) = δVtot(r, ω)/δVext(r
′, ω), is

related to the density response function via

ǫ−1
GG′(q, ω) = δGG′ +

4π

|q+G|2χGG′(q, ω) (11)

where χ is obtained from χ0 according to Eq. (5). The
off-diagonal elements of the χ0

GG′ matrix describes the
response of the electrons at wave vectors different from
the external perturbing field and thus contain informa-
tion about the inhomogeneity of the microscopic response
of electrons known as the ’local field effect’6. The macro-
scopic dielectric function is defined as

ǫM (q, ω) =
1

ǫ−1
00 (q, ω)

, (12)

and is directly related to many experimental properties.
For example, the optical absorption spectrum (ABS) is
given by ImǫM (q → 0, ω). The electron energy loss spec-
trum (EELS29) is propotional to −Im(1/ǫM ). Both spec-
tra reveal information about the elementary electronic
excitations of the system. EELS is especially useful in
probing the collective electronic excitations, known as
plasmons, of bulk and low-dimensional systems29.

C. Charge density matrix in the PAW method

In this subsection, we will discuss the charge density
matrix nnk,n′k+q(G), which is defined in Eq. (7) and is
a crucial quantity for the evaluation of χ0. Care must
be taken for the long wavelength limit (q → 0) since the
Coulomb kernel, 4π/|q + G|2, diverges at q → 0 and
G = 0; while the charge density matrix approaches zero
at this limit. As a result, we separate the discussion into
two parts: finite q and q → 0.

1. Finite q

Considering the transformation between the pseudo-
wavefunction and the all-electron wavefunction in Eq. (2)
and employing Eq. (3) yields

nnk,n′k+q(G) = ñnk,n′k+q(G) (13)

+
∑

a,ij

〈ψ̃nk|p̃ai 〉〈p̃aj |ψ̃n′k+q〉Qa
ij(q+G)

with

ñnk,n′k+q(G) ≡ 〈ψ̃nk|e−i(q+G)·r|ψ̃n′k+q〉 (14)

Qa
ij(K) ≡ 〈φai |e−iK·r|φaj 〉 − 〈φ̃ai |e−iK·r|φ̃aj 〉 (15)

and K ≡ q+G.
The pseudo-density matrix in Eq. (14) is calculated

using a mixed space scheme. First, the cell periodic func-
tion ψ̃∗

nk(r)ψ̃n′k+q(r)e
−iq·r is evaluated on a real-space

grid; then it is Fourier transformed to get

ñnk,n′k+q(G) = F
[

ψ̃∗
nk(r)ψ̃n′k+q(r)e

−iq·r
]

(16)

The augmentation part in Eq. (15) is calculated on
fine one-dimensional radial grids centered on each atom.
Such fine grids are required to represent accurately the
oscillating nature of the all-electron partial wave in the
augmentation region. The plane wave term e−iK·r is ex-
panded using real spherical harmonics by

e−iK·r = 4π
∑

lm

(−i)ljl(|K|r)Ylm(r̂)Ylm(K̂), (17)

where jl is spherical Bessel function for angular momen-
tum l and K̂ = K/|K|. Combining the above equa-
tions and the expression for the partial wave |φai 〉 =
φanili

(r)Ylimi
(r̂), we can write

Qa
ij(K) = 4πe−iK·Ra

∑

lm

(−i)lYlm(K̂)

∫

dr̂ YlmYlimi
Yljmj

×
∫

dr r2jl(|K|r)
[

φanili
(r)φanj lj

(r) − φ̃anili
(r)φ̃anj lj

(r)
]

(18)

2. Long wave length limit

In the long wave length limit, the G 6= 0 components
of the density matrix nnk,n′k+q(G) remain the same as
that for finite q. Only the G = 0 components need to be
modified and are written as

nnk,n′k+q(0)|q→0 ≡ 〈ψnk|e−iq·r|ψn′k+q〉q→0. (19)

In Ref. 30, the above so called longitudinal form is de-
rived in the PAW framework by using Taylor expansion
of the eiq·r to the first order. Here we adopt an alter-
native but equivalent form which can be derived using
the second order k · p perturbation theory31 as described
below.
Expressing the wavefunction using Bloch’s theorem as

ψnk(r) = unk(r)e
ik·r, where unk(r) is the periodic Bloch

wave, the dipole transition element in Eq. (19) becomes

〈ψnk|e−iq·r|ψn′k+q〉 = 〈unk|un′k+q〉. (20)

For vanishing q, the wavefunction for |un′k+q〉 can be
obtained in terms of those for |umk〉 through second order
perturbation theory:

|un′k+q〉 = |un′k〉+
∑

m 6=n′

〈ψmk|Ṽ |un′k〉
ǫn′k − ǫmk

|umk〉 (21)
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The perturbing potential Ṽ in the above equation is ob-
tained through

Ṽ = H(k+ q)−H(k) = −iq · (∇+ ik), (22)

where

H(k) = −1

2
(∇+ ik)2 + V (r) (23)

is the k · p hamiltonian31 and V (r) is the effective Kohn-
Sham potential.
Combining Eq. (20) - (22), the charge density matrix

at the long wavelength limit becomes

nnk,n′k+q(0)|q→0 =
−iq · 〈nnk|∇+ ik|un′k〉

ǫn′k − ǫnk
,

=
−iq · 〈ψnk|∇|ψn′k〉

ǫn′k − ǫnk
. (24)

The above expression for the charge density matrix in the
PAW method has an advantage over the pseudopotential
method, where the nabla operator has to be corrected by
the commutator of the non-local part of pseudopotential
with the position operator r28. In the PAW method, the
matrix element 〈ψnk|∇|ψn′k〉 is given by

〈ψnk|∇|ψn′k〉 = 〈ψ̃nk|∇|ψ̃n′k〉

+
∑

a,ij

〈ψ̃nk|p̃ai 〉〈p̃aj |ψ̃n′k〉
[

〈φai |∇|φaj 〉 − 〈φ̃ai |∇|φ̃aj 〉
]

,

(25)

In GPAW, where the pseudo wave functions, ψ̃nk, are
represented on a real space grid, the first matrix element
is calculated using a finite difference approximation for
the nabla operator. The augmentation part is evaluated
on fine one dimensional radial grids. The nabla operator
combined with partial waves φai (r) = φan1l1

(r)Yl1m1
(r̂)

and φaj (r) = φan2l2
(r)Yl2m2

(r̂) is written as

〈φai |∇|φaj 〉

= 〈φai |
∂

∂r
(
φan2l2

rl2
)
∂r

∂r
rl2Yl2m2

〉+ 〈φai |
φan2l2

rl2
∇(rl2Yl2m2

)〉.
(26)

Since real spherical harmonics are employed, we get

∂r

∂r
= (

x

r
,
y

r
,
z

r
) =

√

4π

3
(Y1mx

, Y1my
, Y1mz

) (27)

Substitute the above equation into Eq. (26) and split the
integration into radial and angular parts,we get for the
x-component

〈φai |
∂

∂x
|φaj 〉

=

√

4π

3

∫

dr r2φan1l1

∂

∂r
(
φan2l2

rl2
)rl2

∫

dr̂ Yl1m1
Yl2m2

Y1mx

+

∫

dr r2φan1l1

φan2l2

r

∫

dr̂ Yl1m1
r1−l2

∂

∂x
(rl2Yl2m2

)

(28)

The derivation for the y- and z-component and for the
pseudo-partial-wave follows in a similar way.

D. The ALDA xc kernel in the PAW method

The ALDA xc kernel, expressed in Eq. (9), is evaluated
using the all-electron density, which takes the form

n(r) = ñ(r) +
∑

a

[na(r−Ra)− ña(r−Ra)], (29)

where

ñ(r) =
∑

nk

fnk|ψ̃nk(r)|2 +
∑

a

ña
c (|r−Ra|), (30)

na(r) =
∑

ij

Da
ijφ

a
i (r)φ

a
j (r) + na

c (r), (31)

ña(r) =
∑

ij

Da
ij φ̃

a
i (r)φ̃

a
j (r) + ña

c (r), (32)

with Da
ij =

∑

nk〈ψ̃nk|p̃ai 〉fnk〈p̃aj |ψ̃nk〉. Here na
c (r) is the

all-electron core density and ña
c (r) can be chosen as any

smooth continuation of na
c (r) inside the augmentation

sphere since it will be canceled out in Eq. (30).
The ALDA xc kernel can also be separated into smooth

and atom-centered contributions

Kxc−ALDA
G1G2

= K̃xc−ALDA
G1G2

+
∑

a

∆Ka,xc−ALDA
G1G2

. (33)

The smooth part is constructed from pseudo-density and
by utilizing a Fourier transform

K̃xc−ALDA
G1G2

=
1

Ω

∫

drfxc[ñ(r)]e
−i(G1−G2)·r

=
1

Ω
F {fxc[ñ(r)]}|G1−G2

(34)

The atom-centered contribution is evaluated on 1D grids

∆Ka,xc−ALDA
G1G2

=
1

Ω

∫

r2drdr̂e−i(G1−G2)·r

×[fxc[n
a]− fxc[ñ

a]] (35)

III. NUMERICAL DETAILS

In this section we describe the most important numer-
ical and technical aspects of our implementation; in par-
ticular the Hilbert transform used to obtain χ0 from the
dynamic form factor (spectral function) and the applied
parallelization scheme.

A. Symmetry

For each wave vector q, the evaluation of χ0 involves a
summation over occupied and empty states in the entire
BZ. By exploiting the crystal symmetries, however, we
need only calculate the wave functions and energies in
the irreducible BZ. This is because the wave function at
a general k-point can always be obtained from a wave
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function in the irreducible part of BZ by application of
a symmetry transformation, T . In general we have the
relation

ψn,Tk(r) = ψn,k(T
−1r) (36)

where k belongs to the IBZ. The above relation can be
directly verified by considering how the right hand side
transforms under lattice translations. In addition to the
crystal symmetries, time reversal symmetry applies to
any system in the absence of magnetic fields

ψ−k(r) = ψ∗
k(r) (37)

B. Hilbert transform

Rather than constructing χ0 directly from Eq. (6) we
obtain it as a Hilbert transform of the (non-interacting)
dynamic form factor, S0.33,34 The latter is given by

S0
GG′(q, ω) =

2

Ω

∑

k,nn′

(fnk − fn′k+q)δ(ω + ǫnk − ǫn′k+q)

× nnk,n′k+q(G)n∗
nk,n′k+q(G

′). (38)

In practice S0(ω) is evaluated on a uniform frequency
grid extending from 0 to around 40-60 eV with a grid
spacing in the range 0.01-0.1 eV, and the delta functions
are approximated by triangular functions following Ref.
32. The non-interacting response function is obtained as

χ0
GG′(q, ω) =

∫ ∞

0

dω′S0
GG′(q, ω′)

×
[

1

ω − ω′ + iη
− 1

ω + ω′ + iη

]

. (39)

The above Hilbert transform is performed directly on the
frequency grid setting the broadening parameter η equal
to the grid spacing.

C. LCAO vs grid calculations

It is well known that the use of localized atomic or-
bitals as basis functions can significantly reduce the com-
putational effort of groundstate electronic structure cal-
culations. For calculations of the density response func-
tion the use of localized basis functions is complicated
by the fact such basis sets are typically not closed un-
der multiplication35–37. As a consequence the size of the
product basis needed to represent the response function
grows as N2

µ, where Nµ is the number of basis functions
used to represent the wave functions (we note that for
strictly localized basis functions, the effective size of the
“product basis” grows only linearly with the system size
because pair densities of non-overlapping orbitals van-
ishes, however, the prefactor is typically very large). A
further challenge is the computation of the Coulomb in-
teraction kernel, 1/|r− r′|, in the product basis leading

FIG. 1: (Color online) The imaginary part of the dielec-
tric function (a) and energy loss function (b) of graphene at
q = 0.046 Å−1 along Γ̄ − M̄ direction of its surface Broul-
lion zone. The LDA wave functions and energies entering χ0

have been obtained using a 3D uniform grid (black solid line)
and a localized atomic orbital (LCAO) containing single-zeta
(red dotted), single-zeta with polarization (green dashed) and
double-zeta with polarization (purple dashed-dotted), respec-
tively.

to six-dimensional multi center integrals. These inter-
grals must be performed either by using efficient Poisson
solvers or by resorting to analytical techniques. The lat-
ter is extensively used in quantum chemistry codes ap-
plying Gaussian basis sets.

For these reasons we have chosen to represent the
density response function in a plane wave basis. The
plane wave basis is closed under multiplication and the
Coulomb kernel is simply given by Eq. (8). However,
we still keep the advantage of using an LCAO as basis
in the calculation of the Kohn-Sham wave functions and
energies which enter the construction of χ0.27 Apart from
reducing the computational effort of the groundstate cal-
culation (which must include many unoccupied bands),
the storage requirements for wave functions become much
less than for corresponding grid or plane wave calcula-
tions. This is because the LCAO coefficients provide a
more compact representation of the wave functions, in
particular for open structures containing large vacuum
regions, and because significantly fewer unoccupied wave
functions result from the LCAO calculation (for a fixed
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FIG. 2: (Color online) The energy loss function of Mg(0001)
surface at q = 0.07 Å−1 along Γ̄ − M̄ direction of its SBZ
calculated with 3D uniform grid (GRID, black solid line) and
localized atomic orbital (LCAO) using dzp (red dashed line)
basis. The dzp basis used here includes double-zeta orbitals
of 3s and 3p atomic orbitals as well as one d-type Gaussian
polarization function.

energy cut-off).
Compared to plane waves or real space grids, LCAO

calculations employing standard basis sets usually give
a less accurate but often acceptable description of the
occupied and low-lying unoccupied wave functions and
energies. For higher-lying unoccupied states, blue shifts
are expected due to the (unphysical)confinement imposed
by the localized basis set, and the continuum is broken
into discrete bands. Despite these effects, we have found
that the use of LCAO wave functions instead of grid wave
functions has rather little effect on the dielectric function
– at least in the relevant low energy regime.
As an example Fig. 1 shows the absorption spectrum

(a) and EELS spectrum (b) of graphene calculated using
LDA wave functions and energies from a grid calculation
and from an LCAO basis set of varying quality. The unit
cell is the primitive cell of graphene containing two car-
bon atoms and with 20 Å vacuum. The BZ is sampled
on a 64×64 Monkhorst-Pack grid. The number of bands
included are 60 for the grid and LCAO(qztp) basis and
26 for the LCAO(dzp) basis. In all three cases this cor-
responds to inclusion of states with energy below 40 eV.
The response function is evaluated at the RPA level in-
cluding local field effects up to a plane wave cut-off of
150 eV (465 G vectors).
For excitation energies below 10 eV, the LCAO results

agree remarkably well with the grid calculations. In par-
ticular the π → π∗ absorption peak at around 4 eV in
panel (a) and the π plasmon around 5 eV in panel (b)
are well reproduced in LCAO calculations with only the
smallest single-zeta (sz) basis set showing small devia-
tions. For energies above 10 eV, we observe slight devi-
ations. However, for the standard szp and dzp basis sets

the overall agreement is remarkable for the entire energy
range. In particular, the σ → σ∗ transition at around
14 eV in panel (a) and the σ plasmon around 17 eV in
panel (b) are clearly visible, although in the LCAO(dzp)
calculation the latter is split into two peaks.

Fig. 2 shows another comparison of a grid- and
LCAO-based linear response calculation for the case of a
Mg(0001) surface modeled by a 16 layer slab. The energy
loss function calculated with 3D grids is characterized by
two peaks at around 7.5 and 11 eV, which correspond to
the surface and bulk plasmons, respectively. Again the
LCAO(dzp) calculation reproduces the grid results quite
accurately showing only slight discrepancies in the peak
positions (around 0.1 eV) and the intensity. Note that
dzp basis used in this case includes double-zeta orbitals of
3s and 3p atomic orbitals as well as one d-type Gaussian
polarization function. The inclusion of d-type orbitals in
the basis set is crucial for the correct description of both
the single-particle band structure and the Mg plasmons.
Both the grid and LCAO response function calculations
were performed at the ALDA level including empty bands
up to 20 eV above the Fermi level. The local fields are
included with a 500 eV plane wave cutoff (corresponding
to 317 G vectors) in the direction perpendicular to the
surface and 10 eV in the surface plane. The small effect of
local fields within the surface plane is in agreement with
previous results44. The frequency grid spacing employed
for the Hilbert transform was 0.1 eV.

D. Storage of wave functions

For ground state calculations performed using grid
based wave functions, the entire set of occupied and un-
occupied wave functions might be too large to be stored
on disk, making the separation of the ground state and
response function calculations impossible. In this case,
the response function, or more precisely, the dynamical
form factor of Eq. (38), is constructed as the wave func-
tions are calculated.

In the LCAO mode, only the expansion coefficients of
the wave functions in terms of the localized basis func-
tions are calculated and stored. Since this representation
is significantly more compact than the grid representa-
tion, the entire set of wave functions can be calculated
and stored at once, and the calculation of the response
function can be performed as a post-processing step.

E. Parallelization

The calculation of the response function involves
the three steps: evaluation of the spectral function
S0
GG′(q, ω) according to Eq. (38), Hilbert transform fol-

lowing Eq. (39) and solving Dyson’s equation Eq. (5).
Fig. 3 illustrates the parallelization scheme applied for
each of these three steps.
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FIG. 3: Schematic illustration of the applied parallelization
scheme. Each box represents a single CPU. (a) The calcula-
tion of S0

GG′(q, ω) is performed in parallel over wave vectors,
k, (or bands, n, for large cells) and frequencies ω. (b) The
Hilbert transform is parallelized over G. (c) Finally the Dyson
equation is solved by parallelizing over the frequencies.

It is natural to parallelize the evaluation of S0
GG′(q, ω′)

over k-points (or bands for few k-point calculations). On
the other hand, the size of the matrix is often too large
to be handled on a single CPU. In such cases each CPU
only calculates S0 on a part of the frequency grid. This
leads to the two-dimensional parallelization scheme il-
lustrated in Fig. 3(a). Finally the full S0

GG′(q, ω′) is
obtained by summing over k-points, i.e. summing up
the columns in Fig. 3(a). Since the Hilbert transform
involves a frequency convolution it is convinient to redis-
tribute the data from parallelization over ω to over G.
Finally, the Dyson equation is done separately for each
frequency point and is therefore parallelized over ω, as
shown in panel (c).

IV. RESULTS

In this section, the density response function method is
applied to study the optical properties and plasmon ex-
citations of solids. They are usually measured by optical
and electron energy loss spectroscopy (EELS), which are
related to ImǫM and −Im[1/ǫM ], respectively. For ex-
tended systems, the two kinds of spectroscopy give quite
distinct spectra. The optical absorption spectrum (ABS)
is determined by single-particle excitations while EELS is
dominated by collective electronic excitations, plasmons,
which are defined as ǫM → 0.

A. Optical properties

Table I shows the calculated RPA static dielectric func-
tion in the optical limit for five semiconductors (C, Si,
SiC, AlP, GaAs). We use the same lattice constants as
in Ref. 30 and a grid spacing of 0.2 Å. A Monkhorst-
Pack grid of 12 × 12 × 12 and 60 unoccupied bands are
used. We use a Fermi temperature of 0.001 eV in the
ground state LDA calculation and a broadening param-
eter (η) of 0.0001 eV in χ0. Note that in this case we
calculate the static response function directly from Eq.
(6), i.e. we do not use the Hilbert transform. For cal-

TABLE I: The static macroscopic dielectric constants ǫ cal-
culated using the PAW method with random phase approx-
imation (RPA) and adiabatic local density approximation
(ALDA) without local field (NLF) and including local field
(LF) effect. These values are compared with other PAW
calculations30 and experiments38.

Crystal C Si SiC AlP GaAs

RPA, NLF 5.98 13.99 7.18 9.04 15.12

RPA, LF 5.58 12.58 6.58 7.83 13.67

ALDA, LF 5.83 13.21 6.89 8.27 14.32

RPA, NLF [30] 5.98 14.04 7.29 9.10 14.75

RPA, LF [30] 5.55 12.68 6.66 7.88 13.28

ALDA, LF [30] 5.82 13.31 6.97 8.33 13.98

Expt. [38] 5.70 11.90 6.52 7.54 11.10

FIG. 4: Imaginary part of the dynamical dielectric function
of bulk silicon. The arrows indicate the absorption onset and
the position of main and secondary peaks, respectively, as
extracted from Ref. 30. Calculations have been performed
including local field effects (dotted and dashed) and exchange-
correlation effects at the ALDA level (dashed).

culations including local field effects, a cutoff of 150 eV
(169 G vectors) is used. The dielectric constants ob-
tained both with and without local fields agree to within
0.1 with previous PAW calculations30. The only excep-
tion is GaAs for which our dielectric constant is around
0.4 larger. This deviation could come from differences
in the PAW setups for Ga or As. The inclusion of local
fields lowers the dielectric constants by 10-15% while the
ALDA kernel increases the dielectric constants by around
5%. Both trends in agreement with earlier reports20,42.
The fact that the neglect of exchange-correlation effects
(at the ALDA level) improves the agreement with exper-
iments can be seen as a consequence of error cancellation
between the underscreening provided by RPA and under-
estimation of the LDA single-particle band gap.

Fig. 4 shows the dynamical dielectric function for



8

Si. Compared to the calculations for the static dielec-
tric constant, a significantly denser k-point sampling of
80× 80× 80 is employed here to resolve the finer details
in the spectrum. A total of 36 unoccupied bands are use
in the construction of χ0. Local fields correspond to 150
eV planewave cuttoff are included and η is set to 0.01 eV.
The onset of absorption and the position of the two char-
acteristic peaks in the absorption spectrum compare very
well with previous RPA calculations30 as shown by the
arrows in the figure. However, it is quite different from
the experimental absorption spectrum39 which exhibits
an absorption onset at ∼ 0.5 eV larger than predicted
by our calculation, and shows a double peak around 3.8
eV. The effect of local fields and the ALDA kernel is to
reduce the intensity of the main absorption peak slightly,
in agreement with earlier reports41–43. The disagreement
with the experimental spectrum is due to the underesti-
mation of the band gap by LDA and the fact that ALDA
kernel fails to reproduce the electron-hole interaction.

B. Plasmon excitations

In contrast to the optical excitations, like the Si ab-
sorption spectrum discussed in the previous section, plas-
mon excitations are generally well described by RPA and
TDLDA. Plasmon excitations appear as strong peaks in
the electron energy loss spectrum (EELS) which is di-
rectly related to the imaginary inverse dielectric function,

− Imǫ−1(q, ω) = − 4π

|q|2 ImχG=0,G′=0(q, ω) (40)

For excitations at surfaces, a surface loss function can be
defined as44

g(q, ω) = − 2π

|q|

∫∫

dzdz′χG‖=G′
‖
=0(z, z

′;q, ω)e|q|(z+z′)

(41)
where ‖ and z correspond to directions parallel
and perpendicular to the surface, respectively, and
χG‖G

′
‖
(z, z′;q, ω) is the Fourier transform of χGG′(q, ω)

in the z-direction.

C. Surface plasmons of Mg(0001)

Fig. 5 shows the surface loss function of the Mg(0001)
surface along the Γ̄−M̄ direction of the surface BZ calcu-
lated within RPA (panel a) and TDLDA (panel b). The
Mg surface is modeled by a slab of 16 layers as in previous
calculations44, and a vacuum region of 40 Å. Such thick
slab and vacuum region is necessary to avoid splitting of
the surface plasmon peak due to coupling between the
surface plasmons at the two sides of the slab. The LDA
wave functions are calculated on a uniform grid with a
grid spacing of 0.24 Å and a 64×64×1Monkhorst-Pack k-
point sampling. For the response function calculations we
include 200 bands (including 16 occupied bands) and use

FIG. 5: (Color online) Surface loss function of the Mg(0001)
surface along the Γ̄−M̄ direction of the surface BZ calculated
using RPA (a) and TDLDA (b). In both cases |q| increases
from bottom to top. (c) Surface plasmon dispersion for both
the Γ̄−M̄ and Γ̄−K̄ directions. Results from this work (filled
dots) compare well with other calculations (hollow dots44) and
experiments45.

a broadening parameter of 0.02 eV. We use an anisotropic
cutoff energy for the local field effects. Since the surface
plasmon depends sensitively on the density profile at the
surface where the density decays exponentially into the
vacuum, a cutoff energy of 500 eV is applied in the z-
direction. In the surface plane, where local field effects
are much less important, we have found it sufficient to
use a cut-off energy of 10 eV. Compared to the RPA
results in panel (a), the inclusions of the LDA exchange-
correlation kernel in panel (b) shifts the peaks down by
0.1 - 0.2 eV.

The energies of these surface plasmons for both the
Γ̄ − M̄ and Γ̄ − K̄ directions are shown in Fig. 5 (c).
The obtained dispersion relations agree well with previ-
ous calculations44. The well known negative dispersion
at small q observed for simple metal surfaces are also
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FIG. 6: (Color online) Atomic structure of graphene adsorbed
on SiC(0001) (a+b) and Al(111) (d+e). The lateral unit cells
are indicated by red lines in the top panels. The LDA band
structures of the surfaces are shown in the lower panels. Also
shown is the band structure of free standing graphene (red
dots). The Fermi level is set to zero.

well reproduced in this work. Compared to experimental
data, the TDLDA energies of the surface plasmons agree
within 0.1 eV for small q, while the discrepancy increases
to around 0.2 eV for larger q. The fact that the inclu-
sion of exchange-correlation effects (at the ALDA level)
brings the plasmon energies in better agreement with ex-
periments is in contrast to the case of the dielectric func-
tions for which the ALDA kernel was found to worsen
the agreement with experiments. As already explained
the overestimation of the dielectric function is a direct
consequence of the underestimation of the band gap by
LDA. For metallic systems this band gap problem is not
present (although interband transitions may be underes-
timated) and the inclusion of xc-effects correctly lowers
the plasmon energies.

D. Plasmons in adsorbed graphene

In this section we investigate the influence of a sub-
strate on the plasmon excitations in graphene. For a

FIG. 7: (Color online) Loss function of free standing
graphene (a) and graphene on SiC substrate (b) as a function
of q. The loss functions, from bottom to top (solid lines),
correspond to increasing q at an interval of 0.046/Å. The
dashed line corresponds to the loss function of the substrate
at q = 0.092/Å. (c) Dispersion relations for the π plasmons
of free standing graphene (red filled circles) and graphene
on SiC (black filled squares). They are compared with ear-
lier ab-initio calculation on free standing graphene (blue hol-
low circles) and experiments on single wall carbon nanotubes
(green hollow squares)46 as well as experiments on graphene
/ SiC(0001) (purple hollow diamonds)47. Lines are added to
guide the eye.

more detailed discussion of these results we refer the
reader to Ref. 48. As representatives for semiconduct-
ing and metallic substrates we consider SiC(0001) and
Al(111). Both of these systems are known to bind
graphene relatively weakly. Consequently, bandstructure
effects arising from the hybridization between graphene
and metal states are minor for these systems. Instead,
the interaction between the graphene and the substrate is
expected to be governed by long range Coulomb interac-
tions. In particular, the collective plasma oscillations in
the graphene layer will be mainly affected by the field cre-
ated by the induced charge oscillations in the substrate.
The atomic structure and band structure of graphene

on both substrates are shown in Fig. 6. For
graphene/SiC(0001), the unit cell, indicated by red solid

lines in panel (a), contains 2× 2 graphene and
√
3×

√
3

SiC49,50. As can be seen in panel (b), two carbon layers
are adsorbed on four bi-layers of SiC and the dangling
bonds at the backside of the slab are saturated by hydro-
gen. The first carbon layer adsorbs covalently on the SiC
surface and is here considered as a part of the substrate.
The upper carbon layer binds weakly to the substrate, in
agreement with experiments51, with an LDA binding en-
ergy per C atom of 0.039 eV, and adsorption distance of
3.56 Å. As shown in panel (c), linear conical bands appear
within the bandgap of the substrate, resembling that of
free-standing graphene (red dotted line). The Fermi level
is shifted up by 0.05 eV, introducing slight electron dop-
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ing into graphene. For the graphene/Al(111) structure
we use a 1 × 1 unit cell with four layers of Al as sub-
strate. Again, graphene binds weakly to the Al surface
with an LDA interplane distance of 3.36Å and binding
energy per C atom of 0.049 eV, in good agreement with
recent van der Waals DFT calculations52. As shown in
panel (f), the ’Dirac cone’ of graphene is shifted 0.5 eV
below the Fermi level. The loss function is calculated
on basis of wave functions obtained with a double-zeta
polarized LCAO basis set. All states with energy below
50 eV above the Fermi level were included in the con-
struction of χ0. We used a plane wave cut-off energy
of 50 eV (corresponding to 500 G vectors) for the local
field effects. We have found that increasing the plane
wave cut-off energy to 500 eV separately in the in-plane
and normal directions leads only to minor changes in the
EELS spectrum. Further details on the calculations can
be found in Ref. 48.

Fig. 7 shows the calculated loss function of free stand-
ing graphene (a) and graphene on SiC (b). The free-
standing graphene exhibits a collective mode at around
5 eV, which results from the electronic transitions of the
π → π∗ bands and is referred to as the graphene π plas-
mon. The dispersion of the π plasmon is shown in Fig.
7(c). In contrast to its three dimensional counterpart,
graphite, which shows a parabolic dispersion of the π
plasmons13, graphene has a linear plasmon dispersion.
The origin of the linear dispersion has been attributed to
the role of local field effects46.

Fig. 7 (b) shows the loss function of graphene adsorbed
on the SiC(0001) surface. Compared to the results of the
free standing graphene, the strength of the π plasmons
are strongly damped, in particular for small q values.
As q increases, the strength of the π plasmons gradually
recovers to that of a free standing graphene, indicating
that the substrate effect becomes weaker for larger q.
This trend can be explained by the 1/q2 dependence of
the Coulomb interaction.

As shown in Fig. 7(c), the substrate has little effect
on the energies of the π plasmons. In fact the plas-
mon dispersion for both free standing and substrate sup-
ported graphene agree well with previous calculations46

as well as experiments on graphene/SiC47 and carbon
nanotubes46. We have found that the response func-
tion, and thus the EELS spectrum, of the combined
graphene/substrate system can be obtained accurately
from the response functions of isolated graphene and sub-
strate assuming only Coulomb interaction between the
two, i.e. neglecting effects related to hybridization and
charge transfer48. This demonstrates that the strong
damping of plasmons results from the non-local screen-
ing of the graphene plasmon excitation by the substrate
electrons.

Fig. 8 shows the surface loss function of graphene on
Al(111) for various adsorption distances. In contrast to
the semiconducting SiC substrate, the π plasmon at 5
eV is completely quenched on the metallic Al substrate
at the equilibrium distance d = 3.36 Å(full black line).

FIG. 8: (Color online) Surface loss functions for graphene
on Al(111) as a function of the adsorption distance d for
|q| = 0.046/Å. The surface loss function of free standing
graphene is shown as black dots. Inset: sketch of graphene
on Al substrate.

As the graphene is pulled away from the surface, the
π plasmon reappears at an energy lower than that of
the free standing graphene. This downshift is due to
the coupling to the surface plasmons of the aluminum
substrate at 9.0 eV. The graphene π plasmon is only
fully recovered at a distance of around 20 Å illustrating
the long range nature of the interaction.

V. CONCLUSIONS

We have implemented the linear density response
function in the adiabatic local density approximation
(ALDA) within the real space projector augmented wave
method GPAW, and used it to calculate optical and di-
electric properties of a range of solids, surfaces and in-
terfaces. The Kohn-Sham wave functions, from which
the response function is built, can be obtained either on
a real space grid or in terms of localized atomic orbital
basis functions. The latter option reduces the compu-
tational requirements for calculating and storing the of-
ten very large number of wave functions required for the
construction of the response function without sacrificing
accuracy. The dielectric constants of a number of bulk
semiconductors as well as the optical absorption spec-
trum of silicon at the ALDA level was shown to be in
good agreement with previous calculations. For the sur-
face plasmons of the Mg(0001) surface we find, in agree-
ment with previous studies, that the ALDA kernel low-
ers the plasmon energies by around 0.3 eV realtive to
the RPA values and thereby reduces the deviation from
experiments f rom around 4% to 1-2%. Very good agree-
ment with experiments was also found for the plasmon
energies of graphene which were shown to exhibit a lin-
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ear dispersion with a value of 4.9 eV in the long wave
length limit. The deposition of graphene on a SiC sub-
strate is shown to have little effects on the plasmon en-
ergies but leads to significant damping of the plasmon
resonances. In contrast deposition on an Al surface com-
pletely quenches the graphene plasmons due to strong
non-local electronic screening effects.
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19 M. Städele, J. A. Majewski, P. Vogl, and A. Görling, Phys.
Rev. Lett. 79, 2089 (1997).

20 M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390
(1986).

21 G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74,
601 (2002).

22 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232
(1951).

23 J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys.
Rev. B 71, 035109 (2005).

24 J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen,
M. Du lak, L. Ferrighi, J. Gavnholt, C. Glinsvad,
V. Haikola, H. A. Hansen, et al., J. Phys.: Condens. Mat-
ter 22, 253202 (2010).
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