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We argue through a combination of slave boson mean field theory and the Bethe ansatz that
the ground state of closely spaced double quantum dots in parallel coupled to a single effective
channel are Fermi liquids. We do so by studying the dots’ conductance, impurity entropy, and
spin correlation. In particularly we find that the zero temperature conductance is characterized by
the Friedel sum rule, a hallmark of Fermi liquid physics, and that the impurity entropy vanishes
in the limit of zero temperature, indicating the ground state is a singlet. This conclusion is in
opposition to a number of numerical renormalization group studies. We suggest a possible reason
for the discrepancy.

PACS numbers: 73.63.Kv, 72.10.Fk, 71.27.4a, 02.30.1k

I. INTRODUCTION

Quantum dots provide a means to realize strongly correlated physics in a controlled setting. Because of the ability
to adjust gate voltages which control both the tunnelling amplitudes between the dots and the connecting leads and
the dots’ chemical potential, quantum dots can be tuned to particular physical regimes. One celebrated example of
said tuning was the first realization of Kondo physics in a single quantum dot,!? obtained by adjusting the chemical
potential of the dot such that the dot was occupied by one electron.

More generally, engineered multi-dot systems offer the ability to realize more exotic forms of Kondo physics. This
was seen, for example, in the realization of the unstable fixed point of two-channel overscreened Kondo physics in a
multi-dot system.? There has thus been considerable theoretical interest in double dots systems in different geometries,
both in series (for example Refs. 5-10) and in parallel (for example Refs. 11-24). In this article we focus on the
strongly correlated physics present on the latter geometry, in particular when there is no direct tunneling between
the dots and the dots are not capacitively coupled. Such dot systems have been experimentally realized in numerous
instances?® 27 (for other realizations of double dots in parallel see Refs. 28,29). Although the dots are not directly
coupled, they are coupled through an effective Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. It is aim of this
work to explore the nature of the RKKY interaction in parallel double quantum dots.

A straightforward application of the RKKY interaction as typically understood would lead one to believe that in a
closely spaced double quantum dot with two electrons present, one on each dot, the RKKY interaction should lead to
an effective ferromagnetic coupling between the dots. How should this coupling reveal itself in a transport experiment,
the typical probe of a quantum dot system? If a ferromagnetic coupling is present, one expects the electrons on the
two dots to bind into a spin-1 impurity. If the dots are coupled to a single effective lead, we obtain, in effect, an
underscreened Kondo effect. As the temperature is lowered, the single effective lead will partially screen the spin-1
impurity to an effectively uncoupled spin-1/2 impurity. The ground state of the system will then be a non-Fermi liquid
doublet. In particular at small temperatures and voltages, the conductance through the dot will be characterized by
logarithms.?° This scenario has been put forth in a number of NRG studies!®'416:17 and is implicit in a number slave
boson studies'® 2° of double dots in parallel.

We present contrary evidence here that this scenario is not in fact applicable at least for temperatures below the
Kondo temperature. We argue that the ground state of closely spaced double dots is instead a Fermi liquid singlet.
These findings are consistent with those of Ref. 6. We do so using both the Bethe ansatz and slave boson mean field
theory. It has been shown'''? that under certain conditions double dots in parallel admit an exact solution using
the Bethe ansatz. This exact solution, following the approach introduced in Ref. 31, can be exploited to compute
transport properties. In particular, the zero temperature linear response conductance can be computed exactly.
Double quantum dots, however, only admit an exact solution provided their parameters satisfy certain constraints.
To ensure that our finding of Fermi liquid behaviour is not an artifact of these constraints, we also study the parallel
dot system using slave boson mean field theory. This allows one to study the sensitivity of our results to adding a
second weakly coupled channel and to compute such quantities as the spin-spin correlation function, an object not
directly computable in the Bethe ansatz.

The paper is organized as follows. In Section II we detail the double dot model that we are interested in studying
together with the approaches (Bethe ansatz and slave boson mean field theory) that we employ in studying this system.
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FIG. 1: A schematic of the double dot system.

In Section IIT we present results on the linear response conductance through the dots both at zero temperature and
finite temperature. We show the zero temperature conductance obeys the Friedel sum rule, a hall mark of Fermi liquid
physics. We also study the impurity entropy at finite temperature showing that it vanishes in the zero temperature
limit indicating the presence of a singlet. Finally in this section, we present results (using slave boson mean field
theory alone) of the spin-spin correlation function. Lastly, in Section IV, we discuss the implications of our results
and suggest a way they can be reconciled with the conflicting NRG studies.

II. MODEL STUDIED

We study a set of two dots arranged in parallel with two leads. The Hamiltonian for this system is given by

TR / dwcl, Oucis + 3" Via(ch pdoe + hic)
lo -0 oo

+ Z €daNoa + Z UanTan\La- (1)

The ¢, specify electrons with spin o living on the two leads, I = 1,2. The d,, specify electrons found on the two
dots o = 1,2. Electrons can hop from the leads to dots with tunneling strength Vj,. The strength of the Coulomb
repulsion on the two dots is given by U,. We suppose that there is no interdot Coulomb repulsion and that tunneling
between the two dots is negligible. A schematic of this Hamiltonian for the two dots is given in Fig. 1.



A. Bethe Ansatz

The above Hamiltonian can be solved exactly via Bethe ansatz under certain conditions. The set of constraints
that we will be particularly interested in are as follows:

‘/la/véoz = Vlo//‘/Zo/;
UL = Ua’ro/;
Ua + 2640 = Uy + 2€40r. (2)

The first of these conditions results in only a single effective channel coupling to the two leads. This occurs automat-
ically when the dot hoppings are chosen to be symmetric and so is commonly found in the literature.!3:14,18,20-22,32
The second condition tells us that with U; » fixed, €41 — €q2, is also fixed. We thus must move €4 2 in unison in order
to maintain integrability. The final condition tells us that \/U;I';, the bare scale governing charge fluctuations on the
dots must be the same on both dots.

To solve this Hamiltonian we implement a map to even and odd channels, c./, = (V12,01 & V2/1,0¢2)/v2I o where
I, = (V2 +V2,)/2. Under the map, the Hamiltonian factorizes into even and odd sectors:

He = —iz /OO dx ¢l 0pcos + Z V2T (¢l dyo + h.c)
lo V= oo
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Ho = —iZ/OO dx ¢}, 0xCop, (3)
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where, as can be seen, the odd sector decouples from the double dot. Using the Bethe ansatz'!'? one can construct N-

particle wave functions in the non-trivial even sector. These wavefunctions are characterized by N-momenta {g;}¥;
and M quantum numbers {\,}*. ;. The number of \,’s mark the spin quantum number of the wave function:
S, = N —2M. Together the \,’s and ¢;’s satisfy the following set of constraints:
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where g(q) = %. These equations are identical to the set of constraints for a single dot*>43 but for the

form of the scattering phase d(q):

Lo

q — €da

d(q) =-2 tanfl(z (5)

We will focus in this paper on computing transport properties in linear response. At zero temperature we can
use the Bethe ansatz to access such transport quantities exactly.'?3! We will also use the Bethe ansatz to obtain
an excellent quantitatively accurate prediction (in comparison with NRG) for the finite temperature linear response
conductance (see Refs. 12,31 for the Bethe ansatz computation of the finite temperature linear response conductance
for a single dot and for the comparable NRG, Ref. 46).

The Bethe ansatz can be exploited to develop certain approximations that allow one to compute certain non-
equilibrium quantities, in particular, the out-of-equilibrium conductance3! and the noise®? in the presence of a magnetic
field. In order to obtain at least qualitatively accuracy, the presence of a magnetic field is a necessity. With a magnetic
field the Bethe ansatz for a single dot correctly predicts such features as the positioning of the peak in the differential
magnetoconductance®® as say measured in carbon nanotube quantum dots.? In the absence of a magnetic field, the
Bethe ansatz inspired approximation breaks down however.?3> We will, again, not consider the double dots out-of-
equilibrium in this work.



B. Slave Boson Mean Field Theory

We also study the Hamiltonian (1) using a slave-boson mean field theory, a well-known technique, applicable at
sufficiently low temperatures.*” The starting point is the same Hamiltonian (1) and we will study here the U, = oo
case. The constraint of preventing double-occupancy on the dots is fulfilled by introducing two Lagrange multipliers \;
and As. The slave boson formalism consists of writing the impurity fermionic operator on each dot as a combination of
a pseudofermion and a boson operator: d,, = b}; foa- Here f,q is the pseudofermion which annihilates one “occupied
state” on dot a and b}, is a bosonic operator which creates an empty state on dot o. The mean field approximation
consists of replacing the bosonic operator by its expectation value: bf, — <b};> = rq. Thus r, and A\, together form
four parameters which need to be determined using mean field equations. Under the slave boson formalism combined
with the mean field approximation, Eq. (1) reads

Hspyrr = —i Z/ dxcl O + Z Via (Clgfooz +h. C)

lao
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with f/la = 1o Viq and €44 = €4a + i1Ao. The mean field equations are the constraints for the dot @ =1, 2,
> < o) fact) > +r2 =1, (7)

and the equation of motion (EOM) of the boson fields,

Re Z <cklg ) foalt )> +idgr2 = 0. (8)
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The above equations can be understood as arising from the conditions

d(Hspmrr) 0:
0o o
d(Hspmrr)

Thus the reality condition on Eqn. 2.8 arises from the reality of the hopping term in the Hamiltonian.?* For any given
set of bare parameters (€4a0, Via) We can compute the renormalized energy (€440) and renormalized hybridization
(f/la) by solving the four equations, Eqns. 7 and 8. While these results are mean field, they allow one to span a wide
parameter space not constrained by the requirements of integrability. For instance, we study asymmetrically coupled
dots where two channels couple to the dot, a case not solvable by the Bethe Ansatz. SBMFT allows one also, unlike
the Bethe ansatz, to readily study such quantities as the spin-spin correlation function.

IIT. RESULTS

In this section we present a number of measures as computed using both the Bethe ansatz and slave boson mean
field theory that are indicative of the ground state of the double dot plus lead system. We will argue that these are
consistent with the ground state of the dot being a singlet state, not a doublet.

A. Zero Temperature Conductance

The first measure we examine is the zero temperature linear response conductance, G. For the BA, GG is computed
as is discussed in great detail in Refs. 31 and 12. For the SBMFT, G is computed by first solving for the variational
parameters, 7., and €44, @ = 1,2, and then determining the corresponding transmission amplitude via solving a
one-particle Schrodinger equation. This procedure is detailed in Appendix B.



T=0 Conductance: Symmetric Dot-L ead Couplings
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FIG. 2: The zero temperature conductance of a symmetrically coupled (i.e. one channel) double dot computed using slave
boson mean field theory and the Bethe ansatz. In the case of the Bethe ansatz, the following parameters were used: Uy = 1,
U = 0.5, 'y = U1/30, and I's = Uy /15. For slave bosons, we took all V;; =1 so that 't =T'2 = 1.

If the double dot is in a singlet state, we expect G to vanish as €412 are lowered, moving the dot into the Kondo
regime. This is consistent with understanding the singlet state as a Fermi liquid state. If a Fermi liquid, G will obey
the Friedel sum rule:**

2
e .
G = g Esnﬂ(ﬂ'nda), (10)
o="1

where ng, is the number of electrons of spin species o displaced by the dot. Deep in the Kondo regime, there will be
two electrons sitting on the two dots, one of each spin species, i.e. ng, = 1, and so G correspondingly vanishes.

Plotted in Fig. 2 is the zero temperature conductance as computed with BA and SBMFT as a function of €4
and with €41 — €42 fixed. For each computational methodology we present results for both €41 — €q2 > I'1 2 and
€q1 — €q2 < I'1 2. We see that in all cases that as €412 is lowered, the conductance vanishes.

Now that the SBMFT shows a correspondence between the number of electrons and the conductance is not suprising.
Because the SBMFT always ends up treating a quadratic Hamiltonian, the Friedel sum rule necessarily holds for
SBMFT. (We demonstrate this explicitly for a more general Hamiltonian involving interdot hopping in Appendix C.)
However this does not necessarily imply the SBMFT could not at least mimic certain aspects of non-Fermi liquid
behavior, say the conductance going to the unitary maximum, indicative of a partially screened triplet. In such a case
for SBMFT the dot occupancy would then necessarily go to unity as €q1,2 is lowered. However we find that it does
not.

While the SBMFT and the BA agree on the vanishing of the conductance as €412 becomes negative, we do note
that the overall structure of the conductance differs as computed between the BA and SBMFT, that is to say, the
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FIG. 3: The number of electrons displaced by the dots, ng of a symmetrically coupled double dot computed both using SBMFT
and the Bethe ansatz. In the case of SBMFT, ng is simply the dot occupation, ng4.: = Zi(,(djgdig). In the case of the Bethe
ansatz, the quantity plotted is equal to the dot occupation plus the 1/L correction to the electron density in the leads induced
by coupling the dots to the leads. The parameters used for the SBMFT and Bethe ansatz computations are the same as in
Fig. 2.

SBMEFT fails in general to describe the correct behaviour. In particular it fails to describe the intermediate valence
regime when the distance separating the chemical potential of the two dots is large, i.e €41 — €42 > I'1 2. In the
intermediate valence regime the conductance of the double dot as computed with the BA undergoes rapid changes, a
consequence of interference between electrons tunneling off and on the dot (see Ref. 12). This is not mirrored in the
SBMFT computations which remain comparatively structureless.

The failure of SBMFT to accurately capture the physics in the intermediate valence regime is seen in a related
quantity, the number of electrons displaced by the dot. ng is the sum of two terms:

ng = Z d d/az —|—Z/d(£|: lcol pabulk] (11)

The first term is simply the occupancy of the double dots while the second term measures the deviation of electron
density in the leads due to coupling the dots and the leads. In SBMFT this term is zero due to the mean field nature
of its approximation. However in BA this term is non-zero. While we cannot compute it directly, the BA gives us
the ability to compute ng. And as plotted on the r.h.s. of Fig. 3, we see that ng can be negative. As Zai<dlid0i> is
manifestly a positive quantity, we know that as computed by the BA, the second term in Eq.(11) is non-zero and in
fact is negative (at least in the case €41 — €42 > I'1 2). From Fig. 3 we see however that ng for both SBMFT and BA
tends to two as the system enters the Kondo regime (where two electrons sit on the two dots).



T=0 Conductance of Non-Symmetrically Coupled Dots
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FIG. 4: The zero temperature conductance of asymmetrically coupled double dot computed using slave boson mean field theory.
The conductance is plotted as a function of Vi;. The remaining dot-lead hopping strengths are all set to 1 while €41 = —4.7
and €42 = —4.6. The system is in the Kondo regime, i.e. there are approximately two electrons on the two dots.

One advantage the SBMFT does offer over the BA is that it allows us to compute transport quantities beyond
the integrable parameter regime delineated in Eq. (2). It was argued in Ref.12 that small deviations away from this
parameter space should not qualitatively change transport properties. In Fig. 4 we test this in the Kondo regime
(where we expect SBMFT to be at its most accurate) computing the conductance while adjusting the dot-lead hopping
parameters in such a way that we move from a case where only one effective channel couples to the quantum dot
(i.e. Vi; =1) to a case where two channels couple to the dot (Vi1 > 1 and Vig = Vo3 = Voy = 1). We see when the
second channel is only weakly coupled to the dot, the conductance remains near its one-channel value, i.e. G = 0e?/h.
Only once Vi1 appreciably deviates from 1 do we see a corresponding deviation in G. We note that this continuous
behaviour is also consistent with the one-channel dot-lead ground state being a singlet. If it were instead a doublet,
coupling a second channel into the system would lead to a discontinuous change as the second channel, no matter
how weakly coupled, would immediately screen the free effective spin-1/2.

Finally in this section we consider the behaviour of the conductance and displaced electrons when €41 = €42. We see
from Fig. 5 that the same qualitative behaviour in both quantities is found using the Bethe ansatz and using SBMFT.
Namely, the displaced electron number ny tends to 2 while the conductance G tends to zero as €41 = €42 goes to zero.
While these measures are the same in the two computational methods, there is a quantity that sharply distinguishes
the two (and so shows a failure of SBMFT even in the Kondo regime at zero temperature). This quantity is the low
lying density of states on the dots, pg(w). For the case of €41 = €42, the BA shows that p4(w) for w on the order of the
Kondo temperature, Tk vanishes.'?> However the SBMFT shows that at this energy scale there exists non-negligible
spectral weight. In Fig. 6, we plot ps(w) as defined by

pd(w) = Z Im<djg-dio>retarded-

10

The agreement on the qualitative features of ng and G between the two methodologies is then a coincidence (to a
degree). In both cases the ground state is Fermi liquid like and so G follows the Friedel sum rule which necessarily
mandates that the conductance vanish with two electrons on the two dots. But the nature of the Fermi liquid in each
case as predicted by the methodologies is much different. SBMFT predicts the scale of the low lying excitations is
Tk while the BA finds that for the special case of €51 = €42 (and only for this caseu) that the fundamental energy
scale corresponds to the bare energies scales in the problem, i.e. U and T'.
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FIG. 5: The conductance and the number of displaced electrons as a function of €41 (=€42) as computed using SBMFT and the
Bethe ansatz. For the Bethe ansatz we choose as parameters U = Ul = 0.8 and I'1 = I'> = 0.04. For slave bosons we take all
Vij =1 (and SO F172 = 1)

FIG. 6: A plot of the low energy density of states, p(w) for €41 = eq2 = —4.45T'1 2 in the Kondo regime as computed using
SBMFT. (We again take I'1 2 = 1 here.) As we are argue in the text, this is an artifact of SBMFT (the BA shows that in this
case pq(w) vanishes'?).



Finite Temperature Conductance in Kondo Regime
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FIG. 7: The linear response conductance as a function of temperature of a symmetrically coupled double dot computed using
both slave boson mean field theory and the Bethe ansatz. For the case of small separation in the slave boson approach, we
set I'1,2 = 1 and took €; — e2 = 0.05 and ¢; = —4.1. For the large separation case, we correspondingly took e; — ez = 5 and
€1 = —9.4. In the Bethe ansatz computations, we took in the case |e1 — e2| ~ T'12, U1 = 1, I'1 = 0.05, U2 = 0.9, T’y = 1/18,
e1 = —0.5 and ez = —0.45. For the case |e1 — 2| >>T'1,2, U1 =1, I'1 =0.05, Uz = 0.4, I'> = 0.125, e1 = —0.5 and ez = —0.2.

B. Finite Temperature Conductance

We now consider the finite temperature conductance. Plotted in Fig. 7 are traces for G(T') for double dots with
both |eq1 — €42 > T'1 2 and |eg1 — €q2| < T'1 2 as computed with both the Bethe ansatz as well as SBMFT. For a Fermi
liquid ground state we expect that at low temperatures the conductance deviate from its zero temperature value by
T? and we see that behaviour in both cases. From Fig. 7 we see that in both treatments, the finite temperature
conductance for the double dots initial rises with increasing temperature to an appreciable fraction of the unitary
maximum and thereafter decreases in an uniform manner (regardless of the bare level separation). (For SBMFT we
have defined the Kondo temperature as where this peak in G(T") occurs while for the BA the Kondo temperature
we employ the analytic expression for Tk of the double dots derived in Ref. 12.) We however also see that there
are qualitative differences between SBMFT and the Bethe ansatz. The peak in the conductance computed using
SBMFT peaks at a value far closer to the unitary maximum than does the Bethe ansatz. And we also see that the
conductance as computed in the SBMFT drops off far more rapidly than it does in the BA (particularly at large level
separation). We however believe this is unphysical and akin to the pathologies that SBMFT is known to exhibit at
higher temperatures and energy scales.34 40

As was demonstrated in Ref. 12, the conductance at finite but small 7" is quadratic in 7" while at large T' the
conductance is logarithmic (going as 1/log®(T/Tk)). The peak in conductance at finite 7" is then a result of the
conductance vanishing in the low and high temperature limits. These conductance profiles are similar to the those
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Spin-Spin Correlation Function of Symmetrically Coupled Dots
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FIG. 8: The spin-spin correlation function of symmetrically coupled double dot computed using slave boson mean field theory.
We again take Vi; = 1.

predicted in Ref. 41 for multi-dots coupled to two electron channels. However the physics there is much different: the
non-monotonicity in G(T') predicted in Ref. 41 is due to the presence of the two channels and because they couple to
the dots with different strengths, they screen a S > 1/2 state in stages.

C. Spin-Spin Correlation Function

We present the static spin-spin correlation function as a function of €47 and as computed using SBMFT in Fig. 8.
With two electrons on the dot the value of (S - So) can vary between —3/4 (if these two electrons are bound in a
singlet state) to 1/4 (if the two electrons find themselves in a triplet state). We see in Fig. 8 that generically the
value of the correlation function in the Kondo regime (for the relevant values of €41 see Fig. 2) that (S; - S3) tends
to 0. This however should not necessarily be interpreted as the dots being closer to a triplet state than a singlet
state. In determining the overall state of the system, (S - S}, is not necessarily a good measure. We can see this by
considering a simple toy example.

Imagine a system of four spins, two associated with the dots, | T)41 and | 1)42, and two associated with leads | 1)1
and | 1)2. And first suppose the system is in a singlet state. Two ways this singlet state can be formed are

|singlet 1) = %(| Narl $az — | Parl Thaz) @ (| Dl Pz — [ Dl Diz);

singlet 2) = 2 )l D — | Dal ) @ (| Dhial s — | Lyia] D) (12)
We see that the expectation value, (Sp - S2), of these two states is considerably different:
(singlet 1|57 - Sa|singlet 1) = —3/4
(singlet 2|5y - Sa|singlet 2) = 0. (13)

Now suppose the system is in a triplet state and suppose its S, projection is 1. Again there are two inequivalent
ways this state can be formed:

|triplet 1) = %| Pat| Thaz @ (| Daal Pz — | Dun] iz
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|triplet 2) = %| Pl Dar @ (| Dzl Laz — | Dzl Taz2)- (14)

The expectation of these two values is

(triplet 1]Sy - Saltriplet 1) 1/4

(triplet 2|Sy - Satriplet 2) 0. (15)

We thus see that when the system’s state is such that (S7 - .S2) = 0, it can be either a singlet or a triplet equally. We
thus end with a more reliable measure of the dot’s internal degrees of freedom: the impurity entropy.

D. Impurity Entropy

The final set of computations we present in this section are of the impurity entropy of the double dots with two
electrons on the dots. In Fig. 9 we plot results coming from SBMFT and the BA for both large and small level
separation. (The derivation of the impurity entropy in the context of the BA is found in Appendix A.) We see that
in all cases the impurity entropy vanishes as T — 0. This then implies the ground state of the double dot system is
a singlet. If it were a triplet state, the 7' — 0 limit would lead to Sjm, = log(2).

IV. DISCUSSION AND CONCLUSIONS

We have presented a number of arguments that the ground state of a double dot near the particle-hole symmetric
point (i.e. when there are nearly two electrons on the dots) is in a singlet Fermi liquid state. In particular we have
shown that the conductance in this limit vanishes, in accordance with the Friedel sum rule and that the impurity
entropy also vanishes, in agreement with the ground state being a singlet.

These conclusions however disagree with a number of NRG studies. In Refs. 13 and 14 it is found that a double
quantum dot (with the dots closely spaced) carrying two electrons is in a spin-triplet state, has a conductance
corresponding to the unitary maximum, and is correspondingly a non-Fermi liquid. Similar conclusions are reached
in Refs. 16,17. The basic rational invoked for observing this physics is that with dots closely spaced, a ferromagnetic
RKKY interaction is present which binds the two electrons on the dot into a spin triplet. Consequently the ground
state of the double dot is that of an underscreened spin-1 Kondo impurity.

This intuition is very appealing. But it is not free from criticism. This argument is most compelling at tempera-
tures above any putative Kondo temperature. The perturbation theory underlying the RKKY interaction becomes
uncontrolled as temperature is lowered below any Kondo temperature. Below such a temperature, one might expect
(because of the presence of Kondo physics) to at least perform a summation of leading logs at all orders in the pertur-
bation theory in order to ascertain the nature of any RKKY interaction. This point, in essence, has been made by Fye,
when he questions whether the zero temperature perturbation theory underlying any RKKY estimate is convergent
because the system is gapless.*?

This intuition also treats the two electrons sitting on the two dots as a non-composite spin-1 object (at least
at sufficiently low temperatures). However allowing the electrons to maintain their distinctness suggests another
screening scenario. Focusing on one of the two electrons, one can imagine a situation where the electron is screened
by a combination of the other localized electron together with the conduction electrons, i.e. the screening channel is
composed of two pieces. This interpretation would be one way to reconcile the Bethe ansatz/SBMFT results with the
simpler intuition that a screening channel is only able to screen spin-1/2.

Beyond questioning whether a ferromagnetic RKKY interaction does indeed form between two closely spaced dots
and temperatures lower than the Kondo temperature, we offer two possible reasons for the discrepancy that we find
between the Bethe ansatz/SBMFT and the NRG studies. The first possibility is that the Bethe ansatz and SBMFT
solutions of the double dots are treating the short distance physics in the problem in a different fashion than the NRG
studies. It may well be that the physics of the double dots is sensitive to how the high energy sector is modelled. It
is not unnatural to think this may be the case as the physics depends on how two closely spaced dots interact with
one another. And certainly the methodologies have different UV cutoffs. Both the Bethe ansatz and SBMFT assume
a linearly dispersing spectrum of conduction electrons that is cutoff beyond a fixed energy. The NRG, on the other
hand, maps a continuum Fermi sea of electrons to a set of electrons living on an infinite half line lattice which is
then studied through a numerically optimized matrix product ansatz wavefunction. It thus seems unlikely that the
effective UV cutoff in the NRG is the same as that of the Bethe ansatz/SBMFT.
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I mpurity Entropy

Slave Bosons Bethe Ansatz
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FIG. 9: The impurity entropy as a function of temperature of a symmetrically coupled double dot computed using slave boson
mean field theory and the Bethe ansatz. For the slave boson computations, we use the same parameters as found in Fig. 7.
For the Bethe ansatz computations, we took in the case |e1 — e2| ~ T'1,2, Uy =1, '1 = 0.05, U2 = 0.95, I's = 1/19, 1 = —0.5
and e = —0.475. For the case |e; — 2| >> I'12, we used Uy = 1, I'1 = 0.05, U2 = 0.5, I'2 = 0.10, €1 = —0.5 and ez = —0.25.

Another possibility that we offer as a suggestion for the discrepancy is in the nature of the approximation the
NRG makes in treating the double dot problem. In solving this problem, the NRG discards a number of degrees of
freedom coming the continuum set of electrons. In the single dot case, it is known*® that these degrees of freedom
are unimportant, even on a quantitative level, for describing the physics. But it is unclear (at least to us) if this is
universally so or whether these degrees of freedom matter for more complicated dots systems. We will describe a
possible scenario of how these degrees of freedom might matter. We emphasize, however, that this is only a conjecture.
A real test would involve actually taking into account these degrees of freedom in the NRG algorithm and seeing if
there is any real difference.

The Anderson Hamiltonian typically considered in these studies is of the form:

H = Hjeoq + Hyor + Hicad—dot;

1
Hiewa = D / kdkal_ayy;
—1

Hior = Z €did;fgdia+ZUiniTni¢§
7

i=1,2;0

1
Huroteot = D23 [l Vildlyans +al i) (16)
i -1
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where we are using the conventions of Ref. 48 in writing down the NRG Hamiltonian. Before implementing the NRG
algorithm, one adopts a logarithmic basis for the lead electrons,

ke = Z anpow:p(k) + bnpaw;p(k)a (17)
np
where
. Ja 1}\7z/12)1/2 eﬂ:lwnpk if Af(nJrl) < 4k < Afn,
if k is not within the above interval,
and w, is given by
2w A"
y = —. 19
Wn = T AT (19)
Here A is a parameter less than one. This change of basis transforms Hieqq and Hjeqq—dor into
Hicaa = 1 + A Z A" npa'a’npd - b;rlpabnpff>
2m (p' —p) A"
Z Z 1- A- 4 A—-1 )(a’jzpdanplg - bjzpdbnp/g)p/—_p;
n. p#p’
Hlead—dot = D1/2(1 1/2 Z A~ n/2v(( Unoo + bnOo’)d + h.c. ) (20)

inoc

Typically the approximation that is now made in most NRG treatments (and seems to have been made in the above
references) is that the p # 0 modes of the logarithmic basis are dropped, not least because these modes do not directly
couple to dot. As stated, in the single dot case, where this approximation was first made,*®%9 this was found to be a
(more than) reasonable approximation. However in the double dot case it is not a priori obvious that this is the case.
In particular if one finds an underscreened Kondo effect one might ask whether that additional modes (p # 0) might
serve to provide additional screening.

Let us then consider the NRG Hamiltonian that would arise if both the p = 0 and p = +1 modes were kept. Hjeqq
can then be trivially diagonalized using the combination

1
0 20 .
Tnooe = g (2anlo' — e anoo + 2€ an—lo’) )

1
Tonto = —— [Banie + (2 F 6i)e?anos — (4 £31)e*an_14 , 21
+ 3\/E[ 10+ (2 F 6i)e"anos — ( ) 10| (21)

with 6 = — . Note that the corresponding transformation {s <> b} is omitted for brevity. This yields

271
1-A—

Y 2r(1+A)+3(1—A
Hieaa = DZA {TTILOUTHOU'i_ ( iﬂ'A ( )sz-i-arn-i-a

om(1+A) — 3(1— A)

The corresponding transformation of dot-lead Hamiltonian is

2 /1 2 /1 1
\/; (§ — z) TLJFadig + \/; (g + z) rjl_adw 3 nOUdza +{r = s}t +hc|, (23)

with Vi, = D2 (1 — A=)z A~ 2PV

We see upon this diagonalization that three channels of electrons, 7,40 +}» and s, +}s, couple to the dot. And
because of the nature of the logarithmic basis, we see that +, — and 0 variables can be arbitrarily close to the Fermi
surface (due to the presence of the A~™ factor) we might expect all to contribute to Kondo screening.

At this point, this analysis suggests that in a situation with two electrons on the double dots which are bound into
a triplet by a putative RKKY coupling, there are nonetheless (at least) three available screening channels, at least in

Hdot—lead = Z Vni

ino
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— tridiagonalization to three channels (Eq. 4.9)
— tridiagonalization to one channel (Eq. 4.11)

hopping parameters, log(€ )
5
rrrrrrrrr-rr-rrTvrrTre

-20 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L

0 10 20 30 40 n 50 60 70 80 90

FIG. 10: Plot of the logarithmic decay of the hopping parameters in the two different tridiagonalization schemes. We see in
the scheme leaving us with three channels, the hopping parameters decay with a power law exponent three times that of the
tridiagonalization leaving us with one channel. In making this plot, A was set to 1.5.

the NRG reduction of the Anderson Hamiltonian. And so the problem would seem to be not one of an underscreened
Kondo effect but of a channel-anisotropic overscreened Kondo effect.

We however note a caveat with this conclusion. The next step in the NRG analysis is to map the above Hamiltonian
onto a half line lattice through a Lanczos tridiagonalization procedure. But this can be done, in fact, in two ways.
We can perform a tridiagonalization on each channel (ri,rg) individually. If we do so the above Hamiltonian is
transformed as follows:

D
Hicqqd = 5(1 + Ail) Z &na I:ff-sao'fn+1060' + .frt,Jrlaa'fnaU} ) (24)
n=0;a=0,*;0
where &, are given by
L B (1-A) ' o (1-A) '

gn _ A—n/2(1 _A—n—l)(l _A—2n—1)—1/2(1 _A—2n—3)—1/2'

Here the operators frt:O;oz:i,O;a’ i.e. the operators creating a conduction electron on the site next to the impurity,
are defined to be

1—A"! =
f;:O,aa:O,:l: = (T)l/Q Z A /Q(T;rnaa' + Sinaa')' (25)

m=0

In this way we obtain what could be described as a channel-anisotropic overscreened Kondo effect.
But we can in fact also perform the tridiagonalization on all three sets of modes simultaneously, leaving us with a
lead Hamiltonian of the form

D B SO - .
Hicqqd = 5(1 +A 1) Z én [f’loza’fn+1060' + frt,Jrlaa'fnaU}' (26)
n=00

where the operator ﬁnzo is now defined as

~ 2/1 . 2/(1 .
Fhan 3 [2 (5-3) oot b+ f2 (3 4) k-

(rlo +st, )] (27)

n0o n0o

w| =



15

If we were to reexpress fn in terms of fpn;—40, we would find that fn are not simple linear combinations of fyi—+ o
for the same n but rather involve f,;=+ o for all n. That is, the two tridiagonalizations are not locally related to one
another. It raises then the question of how to determine how many effective channels are coupled to the impurity
degrees of freedom. At the very least, the two different tridiagonalizations suggest two different answers.

One observation we do make is that in the two lattice models arrived at by the two tridiagonalizations, the effective
hopping parameters fall off with different power laws. In the tridiagonalization yielding three channels, the hopping
parameters &, j—+ o fall off as A="/2_ In the second tridiagonalization the hopping parameters, &, appear to fall (at
least numerically) as A=/, Thus we see at least that the two tridiagonalizations contain (roughly speaking) the
same number of degrees of freedom. In the first case we have a three channel model falling off as A="/2, while in the
second case we have a one channel model that appears, because of the slower decay of the hopping parameters, to
have a unit cell with a basis size of three.

While we draw no definitive conclusions from this discussion of the mechanics of the NRG, we believe we have at
least raised both the question of whether the p # 0 modes play a role in determining the physics of the double dots as
well as the question of whether the results of the NRG are clearly independent of the details of the particular choice
of tridiagonalization.
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by the US DOE under contract number DE-AC02-98 CH 10886. We thank Rok Zitko, Chung-Hou Chung, Alexei
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Appendix A: Analysis of the Ground State Entropy via the TBA Equations

Here it is demonstrated that the ground state entropy of the double dot system at zero temperature is zero and
thus the ground state is a singlet. The procedure outlined below can be found for a single dot in Section 8.3.3 of Ref.
42.

We start with the observation that the free energy of the system can be expressed as sums over all excitations in
the system, that is, over all possible solutions of the Bethe ansatz equations (see Eqn. 10 of Ref. 12). Specifically it
takes the form

Q= E-TS, (A1)

where the energy of the system equals

E = / dkp(k)k—i—i / Ao’ (AN)eon(N), (A2)

where
onN) = “nen+ 01/ +2 [ a3 g(0)g(k)
o) = % (A3)

and the entropy, S, is given by

5 = [ |00 + 50 oulo(0) + (k) = (k) g p(8) ~ 8 (o)
£ 3 (000 + 500 k() + 60 0) = () log o, (A) = () (o ()|
n=0

o0

'y [(%(A) 151, () log(0, (A) + 55 (X)) — 0n (M) log oy(A) — 5 (A) log<a;<x>>] | (Ad)
n=0
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Here p(k), 0, (), and o/,(\) are the particle densities while p(k), 5, (), and &/, () are the hole densities of the various
excitations (i.e. solutions of the Bethe ansatz equations). The particle and hole densities can be shown to obey the
following equations:

)+ (k) = poll) = g/ (k) [ DASX = g1 G +51 (V) (45)
where
polk) = iﬂ;“ )+ 90 [ dAs(h= gk (=5 ) + 7 B ()
AR) = 5-0kd(k);
Ba(d) = = ReA(VATTT (A + 20);
(@) = goms (A6)
and
50+ 0 = [ XSO NN Gua(X) + 50a V) + S [ dbp()s(h = g(0):
FN TN = [ A= N (@t (V) + 51 (V) + D), (A7)
where
DA = a1 [ dhp(t)s(h = g(k)) = [ XS0 = X)) (Bara V) + Bya (V) (A8)

One sees that the density equations have source terms that involve a bulk piece and a piece scaling as 1/L, where L
is the system size.
One defines the energies of the excitations at finite temperature via the relations,

_ plk), . o )\) o 7, (M)

These energies are given by the relations e(k), e, (), and €/, (\) which are governed by the equations,

e(k) = k+/d)\em()\) = —i—T/d)\s A—g(k))lo g(zgzgim
() = Gl [ dhg' (B)5(3 ~ g(0) log(n(~<(k)

=T [ x50 = X) log(rn(€) 1 ()3 (V)
@) = T [ dhg (0)5(3 ~ g(0k) log(n(e(1)

T / AN's(\ = X) log (€, (\)n(€, 1, (1)), (A10)

where n(z) = (1 + exp(z/T)) ! is the Fermi function. The equations for the €’s and the bulk pieces of the densities
(i.e. the pieces not scaling as 1/L) are the same as for a single level dot. As noted in the manuscript, the Bethe ansatz
equations for the double dots in parallel are identical to the single level dot up to the impurity scattering phase.

Substituting the energies and densities in the expression for the free energy, one can rewrite it in a much more
simple fashion:

Q = Ey T [ dhpu(i) logn(~(k) + T [ dx D pj. (0 ol (1)

n=0
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By = Y / dXéon ()l (N);
n=0
P = bur [ SRS g(R)) + 7 Da(N). (A11)

Here E4 is the ground state energy of the system.

One now wants to consider how 2 behaves at T — 0. If one can show that the leading order correction in 2 at low
temperatures is T2 then as S = —07) one will have shown that the entropy vanishes as T'— 0, and so the ground
state of the system is a singlet.

In order to see that €2 has no term linear in 7', it is sufficient to consider the zero temperature values of the energies,
e(k) and €, (\). At the particle-hole symmetric point, one has

e(k, T=0)>0 , for all k;
E(\T =0) <0, forall \;
e N\T=0)=0, n>1, foral \ (A12)

If one substitutes these expressions into the expression for Q and uses the fact that [ dApys(A) = 0, n > 1, one sees
that Q = E,s + O(T?).
Now if one is away from the particle-hole symmetric point, one has instead

e(k, T=0)>0 , for all k;
/ Uy
e, N\ T =0) = n(7 +e1) , forall A (A13)

Now while €] (A) is neither solely positive nor solely negative at zero temperature, its leading order finite temperature
correction is (see Section 8.3.7 of Ref. 42),

N T) = y(\, T =0) + O(T?). (A14)

Substituting these forms of the energies into the expression for the free energy, one again sees that there is no term
in  that is linear in T.

Appendix B: Derivation of the Conductance in SBMFT

Here we present a derivation of the conductance in the general case of asymmetrically coupled dots. To determine
the conductance we solve the one-particle Schrodinger equation of the SBMFT Hamiltonian, Hspypr|t) = EU)
where |¢) equals

+o0 +oo
[ > :/ da:gl(:zr)cl{(:zr)|0> +/ da?gg(:c)cg(:zrﬂ() >

— 00 — 00

+e1d]0 > +ead|0 > . (B1)

This gives the following four equations:

—i@mgl(x) + 61‘/11 (ac) + 62‘7125(1') = FEq (,T), (BQ)
—i@mgg(x) + 61‘/21 ( ) + 62‘/225(1') Egg($), (B3)
(éa, — E) e1 + V1191(0) + Va192(0) = 0; (B4)
(€d2 )62 + ‘/2292 (0) + V12gl (0) = 0. (B5)
We then take the functions g 2(x) found in the one particle wavefunction [¢) to be of the following form:
gi(z) = P (0(=z) + Ruf(2)); (B6)

ga(x) = P*0(x)Tra. (B7)
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Substituting the ansatz (Equs. B6 and Eq. B7) into the above four equations, we obtain four equations from which
one can solve for T1s. The conductance G, equal to G = %TlngQ, is then

2¢2 N

=30

N =16 [‘712‘722€d1 + ‘711‘721€d2]2
D =38 [‘711‘712 + ‘721‘722}2&115(12 + 1685, €5, + |:‘~/12‘721 - ‘711‘722}4
a8, [+ 3]+ a8, [VR + 73] (BS)
We have also computed the transmission amplitude using Ref. 50:
T=Tr {G“fRGTfL} , (B9)
where G%/" are advanced and retarded Green’s function matrix and 'z and I';, are defined by

~ 72 ¥ I/ ~ /2 % ¥
R T B e P L (B10)

VorVar Vi VitV Vi

We find that this trace formula (Eq. B9) gives exactly the same result.

Appendix C: SBMFT for double dots in the symmetric case

In this appendix we review the SBMFT approach for the symmetric case (€41 = €42 = €4). In this limit, the mean
field equations (Eq. 7 and Eq. 8) reduce to

YL@+ = 1

V2VRe[Y (cf., () f- ()] +idr? = 0. (C1)

k,o

The above equations can be equivalently written as

%;/dw<fg(w)fo'(w»+r2 — 1;

\/5\7 T oy 2
5 Re zg: / dw <c,m(w) fg(w)> +in? = 0. (C2)
The correlation functions are computed to be
2A
(SR fow) = ——F—==f(w)

(k— €d)2 +4A2
V2V

I = ———JWw
<ckecr(w)f0'(w)> - k— gd - 21‘72 f( ) (03)

where f(w) is the Fermi function. Upon substituting these expressions for correlation functions the mean field
equations read

é—1—%—larctan[2;A] = 0;
A T €4
€i—ea 1 (E+4-A%Y)
AT 7Tlog[ o0 ] = 0. (C4)
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Notice that the SBMFT equations (Egs. C4) for double dots are strikingly similar to the single-dot case (see Eqns.
7.99 and 7.100 of Ref. 47). However it is this slight difference in coefficients that force the conductance to vanish in
the Kondo regime of the dot. To show this, we note that the conductance in the symmetric limit reduces to (compare
Eqn. BS)

e 4A?
h 4A2 + &

(C5)

In the Kondo limit, A — 0 and hence the second equation in C4 becomes

tan ™! <2~—f‘> =T. (C6)
€d

(If this was a single dot the r.h.s of this would read 7/2.) This in turn implies that T'/&; goes to 0 in the Kondo limit
which finally implies that the conductance does indeed go to zero in the Kondo limit so satisfying the Friedel sum rule.
Parenthetically, we note that Eqn. C6 implies that the correct branch-cut for arctangent is tan™' x = 7+PV [taurf1 x}
where PV denotes the principle value of arctangent restricted to the domain [~F, Z].

We end by checking that more complicated dot Hamiltonians also obey the Friedel sum rule. To this end we consider
allowing interdot tunneling. With the presence of the term tcd'{dg + h.c. in the Hamiltonian, the expressions for the
correlation functions, dot occupancy and the conductance are slightly modified. Defining the renormalized tunneling

as tp = toriry we find,
A
o) = e (1)

(e @) o)) = ——Y2V ). ()

W—&y—1.—2iV2

The expression for total dot occupancy is

2A
ng = — arctan | —— | . (C9)
™ €4+t
The conductance can be computed by extending the method outlined in Appendix B, so obtaining
2 4&2
= (C10)

e
h a2 + (g +1.)%
It is trivial to check from Eqn. C9 and Eqn. C10 that the Friedel sum rule remains satisfied for finite ¢., i.e.,

G= 28—; sin® [Z24].
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