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In the two-impurity Anderson model, the inter-impurity spin exchange interaction favors a spin
singlet state between two impurities leading to the breakdown of the Kondo effect. We show that
a local uniform magnetic field can delocalize the quasiparticles to restore the Kondo resonance.
This transition is found to be continuous, accompanied by not only the divergence of the staggered
(antiferromagnetic) susceptibility, but also the divergence of the uniform spin susceptibility. This
may imply that the magnetic field induced quantum phase transitions in Kondo systems are in favor
of the local critical type.

PACS numbers: 75.20.Hr, 71.27.+a, 71.10.Hf

I. INTRODUCTION

The study on quantum phase transitions and critical phenomena has been an extraordinarily active area of research
in condensed matter physics and quantum field theory. One example which has been extensively studied in experiments
is the magnetic quantum phase transition (QPT) in heavy fermion metals.1 Two theoretical scenarios are suggested
for this QPT: the spin-density-wave picture based on itinerant quasiparticles,2–4 and the Kondo breakdown picture
mandating the localization of quasiparticles.5–8 Although it is well accepted that, to address the nature of this QPT,
the competition between the onsite Kondo coupling and the intersite spin exchange interaction, namely, the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction, plays the determinant role, there are few theoretical methods which can
handle them on an equal footing. Interestingly, the two-impurity Anderson (or Kondo) model presents a minimal
model for such a competition effect in an exactly solvable way.9–17 With the Kondo coupling, the impurity spin
forms a Kondo singlet state with the spins of the conduction electrons and a quasiparticle resonance peak develops
at the Fermi energy, which is described by the Kondo effect. When the inter-impurity spin exchange interaction
is antiferromagnetic and strong enough, the two impurity spins tend to form a singlet by themselves, against the
formation of Kondo singlets, leading to the localization of quasiparticles. As a result, the quasiparticle spectra have
a “pseudogap” at low energies.11,17 It is found that, the phase transition between the Kondo resonance state and the
inter-impurity spin singlet state can be continuous.10,11,17

A magnetic field has been serving as one of the most important tuning parameters to investigate the magnetic
properties of strongly correlated electron materials. Naturally, it is also relevant to the two-impurity Anderson model.
However, a detailed analysis of the magnetic field effect in this model, especially close to the characteristic scales of
the two-impurity quantum critical point (QCP), is still lacking, which is the purpose of this study. We note that
there are some existing theoretical studies18–20 targeting the double quantum dot, but they are limited to the cases
with large magnetic fields, in which the physical properties follow the Zeeman splitting effect.18–20 Although it is
known that a local staggered magnetic field can induce a QPT as it directly couples to the critical staggered spin
fluctuations,12–14,16 the role of a local uniform magnetic field has not been explored. Such a uniform magnetic field is
usually applied in experimental studies.21

In this Article, we report the first observation of a magnetic field induced quantum phase transition in the two-
impurity Anderson model from a numerical study. We find that a local uniform magnetic field applied on the two
impurity spins can drive a transition from the inter-impurity spin singlet state to the Kondo resonance state, leading
to the delocalization of quasiparticles. We further show that this transition is continuous, accompanied by the abrupt
change of the quasi-particle spectral weight at the Fermi energy and the divergence in staggered spin susceptibility,
which are also features of the two-impurity QCP at zero field tuned by RKKY interaction. In sharp contrast,
the uniform spin susceptibility is also found to diverge at this magnetic-field-induced QCP. The new observation is
suggestive that the field-induced QCP in heavy fermion systems21 does have the local nature, as advocated in recent
QCP theories.1,5

The rest of the paper is outlined as follows: In Sec. II, we present a two-impurity Anderson model under a uniform
magnetic field. Such dynamical quantities as spectral density and spin susceptibility are defined. The method to
solve the model is also explained. In Sec. III, we analyze the scattering phase shift as a function of the magnetic
field. The magnetic field dependence of the spectral density and dynamical susceptibility are also discussed. The
characterization of these quantities enables us to identify a field-induced QCP. A summary is given in Sec. IV.
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II. MODEL AND METHOD

The Hamiltonian for the two-impurity Anderson model can be written as

H =
∑

kσ

ǫkc
†
kσckσ +

∑

kσ,(i=1,2)

(

Vk√
Nc

eik·ric†
kσfiσ + h.c.

)

+
∑

(i=1,2),σ

ǫff
†
iσfiσ +

∑

(i=1,2)

Unfi↑nfi↓

+ISf1 · Sf2 + h(Sf1z + Sf2z) . (1)

This model describes two interacting local orbitals fiσ (Anderson impurities) in hybridization with a non-interacting
conduction electron band ckσ with the strength Vk at each impurity site ri. The variables ǫf and U are the energy level
and onsite Coulomb interaction for the local orbitals, respectively, and I is a direct spin exchange interaction between
two impurities. We here consider a uniform magnetic field B which acts on the impurity spins only.22 Therefore,
h ≡ gµBB has the dimension of energy, where g, µB are Landé factor and Bohr magneton, respectively. This model
has been shown10,11,17 to be equivalent to a two-impurity two-channel model, with degrees of freedom cast into the
even (e) and odd (o) parity channels. The local orbitals become

fe,o = (f1 ± f2)/
√
2 , (2)

and the hybridization functions for these two channels are given by

Γe,o(ω) = (1/2Nc)
∑

k

V 2
k
|eik·r ± e−ik·r|2δ(ω − ǫk) , (3)

where r = (r1 − r2)/2. The inter-site spin exchange interaction can be generated by considering specific forms of Vk

and ǫk (RKKY interaction), or provided by the direct spin exchange term I. We adopt the numerical renormalization
group (NRG)23 method with the complete-Fock-space NRG (CFS-NRG) method24,25 for calculations of dynamical
quantities at zero temperature, including the spectral function

Af,pσ = −ImGf,pσ(ω) , (4)

the uniform and staggered spin susceptibilities

χu,a = 〈〈S1z ± S2z;S1z ± S2z〉〉 . (5)

We follow the same numerical procedure as in Ref. 17. As in standard NRG,23 we discretize Γe,o(ω) into two

separate semi-infinite chains in decreasing energy scale Λ−(i−1)/2, where i is the chain site and Λ > 1 the discretization
parameter. While the impurities only couple to the head sites of each chain, we can solve the Hamiltonian by an
iterative diagonalization procedure incorporating gradually low energy sites. As the size of the eigen space increases
exponentially, in general, only certain number of low energy states are kept in each iteration for further iterations. In
our calculations, we choose Λ = 2 and keep 4000 states for each iteration. In practice, we find that choosing a smaller
Λ or keeping more states (therefore more accurate) improves the low energy spectrum weight (therefore the Friedel’s
sum rule), but does not affect the determination of the low energy scales. We typically take 100 iterations (the length
of the chain), reaching an energy scale ∼ 10−15 in unit of the electron bandwidth. Because this energy scale is related
to an effective temperature, our calculations are therefore in the zero-temperature limit. In the vicinity of critical
points where the characteristic energy scale approaches zero, we increase the number of iterations to ensure that the
effective temperature is smaller than the characteristic energy scale, i.e., the fixed point being reached.
In traditional NRG, the dynamical quantities are calculated from the kept states from each iterations. The CFS-

NRG method24,25 instead calculates the dynamical quantities in terms of the discarded states (including all states
from the last iteration), which form a complete Fock space conserving the total spectral weight. We adopt this method
in our calculations and find that it is indeed advantageous to the traditional method for the two-impurity problem
with the enlarged basis. An explicit comparison is shown in Ref. 17. In addition, it has also been argued that the
CFS-NRG method is particularly suitable for the problem with a finite magnetic field.20,26 In practice, we follow
the T = 0 calculation procedure as in the single-impurity Anderson model,25 to adopt a backward iterative process
determining the reduced density matrix between the discarded states and calculating the imaginary parts of the
dynamical quantities from the Lehmann representation. We then use Kramers-Kronig relation to determine their real
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parts. Due to the exponentially decreasing energy scales in NRG, the delta function in the Lehmann representation
is commonly broadened in the log-Gaussian form,23

δ(ω − ωn) →
e−b2/4

bωn
√
π
e− ln2(ω/ωn)/b

2

, (6)

where b is a broadening parameter. For Λ = 2, we take b = 0.6, as commonly adopted.23

III. RESULTS

In our previous study on this model,17 we have explicitly calculated a system with a well-defined two-impurity QCP
(we refer the two-impurity QCP to this zero-field QCP in the following). Our results can be summarized as follows.
We choose Γe,o(ω) = Γ0, for which no RKKY interaction is generated and the single-impurity Kondo temperature
TK can be determined. We then add the direct spin exchange interaction I (to simulate RKKY interaction) to tune
the competition between the Kondo effect and the inter-impurity spin exchange interaction. Below a critical value Ic,
the low energy properties are still due to the Kondo effect, Af (0) ≈ 1/(πΓ0) and χ′

u(0) ∼ 1/TK, but χ′
a(0) ∼ 1/T ∗

F

with T ∗
F the reduced (local) Fermi liquid temperature. Above Ic, it is the inter-impurity spin singlet state with

vanishing Af (0). It differs from the Mott gap in the fact that there are still finite spectral weights at low energies:
Af (ω) ∼ ω2 for ω < T ∗

F and a non-Fermi liquid form for T ∗
F < ω < Tsf , where T ∗

F and Tsf (spin fluctuation scale)
correspond respectively to the two energy scales TL and TH identified in our previous work.17 For Γ0 = 0.045πD, and
ǫf = −U/2 = −D, it is found that the single-impurity Kondo temperature TK = 1.0× 10−3D and the critical value
Ic ≈ 0.0023464D ≈ 2.3TK . Here D is the half bandwidth of the conduction electrons. At Ic, there is a sudden change
of the spectral weight at the Fermi energy, but the transition is still continuous. This is evidenced by the uniformly
vanishing T ∗

F ∼ (I − Ic)
2 with the divergence of the staggered spin susceptibility χ′

a(0). However, the uniform spin
susceptibility χ′

u(0) remains finite through the transition. These results are consistent with earlier studies.11,12

We add a local uniform magnetic field h to the above system to examine its effects. In Fig. 1, we show the results
of the scattering phase shift δpσ(0) at the Fermi energy, determined from the expression:

Af,pσ(0) = (1/πΓ0) sin
2 δpσ(0) , (7)

as functions of h for various values of I. For I = 0, this is equivalent to a single-impurity Kondo problem and indeed
our results are in agreements with those obtained for the single-impurity Kondo model.29 The scattering phase shift
by the exact Bethe-Ansantz method is δh(0) ∼ π/2 − h for h ≪ TK while δh(0) ∼ 1/ log(h/TK) for h ≫ TK .30 The
latter relation is in agreement for all finite Is but with 1/ log(h/Tsf ), where Tsf ≈ I when I ≫ TK .17 For I < Ic,
i.e., in the Kondo regime, δh(0) is always finite. For the same h, δh(0) is enhanced with a small I. For I > Ic, δh(0)
vanishes when h = 0, characterizing the inter-impurity spin singlet state. A finite but small h induces a small δh(0) or
a small quasiparticle weight at the Fermi energy: it is found that δh(0) ∼ h as verified by a log-log plot (not shown).
When h is increased to a critical value hc, we observe a sudden jump of the phase shift from a tiny value to a large
value of the order unity, which indicates a transition rather than a crossover between the inter-impurity spin singlet
state and the Kondo resonance state. The relation between hc and I − Ic is shown in the inset of Fig. 1. We find
that hc ∼ (I − Ic)

1/2 for (I − Ic)/Ic ≪ 1 and a noticeable deviation for (I − Ic)/Ic > 0.1. Such a deviation is also
identified in T ∗

F ∼ (I − Ic)
α when h = 0.17

The effect of the magnetic field is to align spins along its direction to gain the Zeeman energy. While it can directly
reduce the the inter-impurity singlet to triplet excitation gap (determined by I), it does not destroy the Kondo effect,
only to shift the Kondo resonance peak position to the Zeeman energy to suppress the spectral weight at the Fermi
energy.29–31 As a result, the magnetic field can destroy the inter-impurity spin singlet state (I > Ic) to recover a
Kondo resonance state. To illustrate this and further show that it is a continuous phase transition, we present a
detailed analysis for the I = 3.0TK case. In Fig. 2, we show the results of the spectral functions Af,pσ(ω), and the
uniform and staggered spin susceptibilities χu,a(ω). For a small magnetic field, for instance h = 1.2TK , the spectral
weight at the Fermi energy is only slightly enhanced. When h increases, Af (0) increases as well. But such change
is not uniform, having a sudden jump at a critical value hc ≈ 1.2814TK, as also indicated in Fig. 1. At h = 1.4TK ,
Af (0) is comparable with the full Kondo resonance weight 1/(πΓ0), indicating the Kondo resonance regime. When
the magnetic field is further increased, for instance h = 6TK > max(I, TK), Af (0) decreases. This is similar to
the single-impurity Kondo model in the presence of a large magnetic field. Spin-up and spin-down resonance peaks
are located at positive and negative energies, respectively, and the energy difference (or the gap) is 2h, which is the
hallmark of the Kondo resonance.31 However, Af,pσ(0) is still finite. The sudden jump of Af (0) at hc is similar to that
in the two-impurity QCP at zero-field. The staggered spin susceptibility has the same behavior as well: it becomes
divergent when h → hc. Correspondingly, the associated energy scale Th (as the effective Kondo scale or the Fermi
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FIG. 1: (color online) The scattering phase shift δe↑(0) as a function of h for different values of I . The phase shifts at the
Fermi energy for different channels and spins are the same due to the symmetries Aeσ(ω) = Aoσ(ω) and Ae↑(ω) = Ae↓(−ω)27.
The data labelled with ”Kondo” are subtracted from Costi’s paper on the single-impurity Kondo model29. The inset shows the
critical value hc as a function of I−Ic for I > Ic. Two dotted lines are hc = 4.5TK(I/Ic−1)1/2 (red) and hc = 6.0TK(I/Ic−1)2/3

(black).

liquid temperature17) uniformly vanishes. The significant difference lies in the uniform spin susceptibility: it is also
divergent at hc in this field-induced QCP compared with finite χu(0) ∼ 1/Tsf in the two-impurity QCP. While we can
subtract the energy scales from 1/[4χu,a(0)] (shown in inset of Fig. 2(b)) as determining TK , a more reliable method
to determine the low energy scale is from a scaling analysis, which is shown in Fig. 3, for χ′′

a(ω). Once the energy is
scaled with a certain scale Th for different h, the low energy part of χ′′

a(ω) falls into a universal curve. Th serves as
the onset scale for Fermi liquid behaviors (T ∗

F ). Similar behavior can be observed in χ′′
u(ω), but its high energy part

does not appear to scale (or not universal). We further plot the obtained Th as a function of |h−hc|: Th can be fitted
as Th ∼ |h− hc|2 for both h < hc and h > hc. The uniformly vanishing scale Th, the divergence in both the staggered
and uniform spin susceptibilities, as well as the scaling property, are clear evidences that this magnetic field induced
QPT is continuous.
When I → Ic, hc vanishes and the field-induced QCP merges with the two-impurity QCP at zero-field. We then

need to understand why the divergence in χu vanishes in the latter case. The results for the spectral functions and
the spin susceptibilities for I = 2.3TK are shown in Fig. 4. Indeed, any small h induces the full Kondo resonance at
the Fermi energy with the finite Fermi temperature Th, which is fitted as Th ∼ h4. We also observe an enhancement
of uniform spin fluctuations, which is manifested as a flat part above Th, χ

′′
u(ω) ∼ Ch. Ch increases as h increases.

When Th vanishes as h → 0, Ch also vanishes. As a result, χu is not divergent. However, for any I > Ic and tuning h
to a critical value hc, as Ch remains finite at low energies, χu indeed diverges. The variation of Ch also explains that
χ′′
u(ω) does not scale for ω > Th [cf. Fig.3].
The continuous QPT induced by a local uniform magnetic field in the two-impurity Anderson model was not
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FIG. 2: (color online) Spectral functions Af (ω) (a) and the imaginary parts of the uniform and staggered spin susceptibilities
(b) as functions of energy for different values of h in the inter-impurity singlet regime, I = 3.0TK . In (a), the solid and dotted
lines represent Af,p↑(ω) and Af,p↓(ω), respectively [Af,eσ(ω) = Af,oσ(ω) as the parity symmetry is not broken with a uniform
magnetic field h]. In (b), they respectively represent χ′′

u(ω) and χ′′
a(ω). The inset shows 1/[4χ′

u,a(ω = 0)] (static) as functions
of h.

predicted by either the conformal field theory13 or the bosonization construction.14,16 Compared with the two-channel
QCP where Th ∼ h228, the analogy of the magnetic field in the two-channel Kondo impurity model is the staggered
magnetic field in the two-impurity model, i.e., hs(S1z − S2z), which directly couples to the critical staggered spin
fluctuations. It is commonly anticipated that a staggered magnetic field hs is a relevant perturbation as it couples to
S1z−S2z, the critical degrees of freedom. Our results suggest that the uniform magnetic field h also couples effectively
to S1z − S2z, as evidenced from the divergence of χa. While an analytical analysis regarding this coupling is highly
desirable, we can make the following reasoning on this coupling term based on our results. 1) The control parameter
is modified as I − Ic− ah2, to be consistent with the exponents deduced from our numerical data in different regimes.
In other words, the field-induced QCP is the same in nature as the two-impurity QCP at zero field, having the same
critical exponents. From another perspective, for a given finite h, tuning I can also lead to a QPT but the critical
value of Ic is shifted up. 2) It involves the uniform spin fluctuations as h is directly coupled to. This also accounts for
the divergence of the uniform spin susceptibility, which is induced rather than the driving mechanism. 3) It vanishes
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rescaled uniform spin susceptibility (solid lines) is also shown. From the scaling, Th can be obtained and is plotted in the inset
as a function of |h− hc|/hc. The line is a fitting Th/TK = 0.28|h/hc − 1|2.

or becomes irrelevant as h vanishes, as necessary to explain the loss of divergence in χu at the two-impurity QCP.

IV. SUMMARY

This magnetic-field-induced QPT, especially the divergence in χu(0), sheds new insights on understanding the two-
impurity Kondo physics and quantum criticality in general. However, we notice that such a continuous transition
depends on the symmetry between the even and odd channels, i.e., two identical impurities and the absence of parity-

splitting charge-transfer term, i.e., V−(f̃
†
1σ f̃2σ + h.c.) for quasiparticles. Otherwise, one might not observe a sharp

transition with an applied magnetic field, which has been discussed in Refs. 18–20. This is primarily due to the fact
that V− always contributes to a finite FL scale, T ∗

F = a(I − Ic)
2 + bV 2

−,
11,32 even when I = Ic, and finite spectral

weight at the Fermi energy even in the RKKY dominated regime. An applied magnetic field, to restore the Kondo
resonance state, therefore can never tune a continuous transition. However, when temperature (or energy) is larger
than bV 2

−, one still observes the scaling behavior associated with the two-impurity quantum critical point.32 This
issue is also relevant to the antiferromagnetic quantum critical points in heavy fermion materials. In a cluster DMFT
solution based on two sites, it is suggested that the self-consistency condition transforms the crossover into a true
phase transition, which shares the same property as the two-impurity quantum critical point.33 In this approach, the
uniform and staggered spin susceptibilities for the cluster correspond to the lattice spin susceptibility at momentum
points, for example, Q0 = (0, 0, 0) and Qπ = (π, π, π) for a three-dimensional (3D) lattice. The antiferromagnetic
QCP in a lattice is signified by the divergence of magnetic susceptibility at Qπ, which may or may not involve the
divergence of the local spin susceptibility, a sum of contributions from all momentum points. In a two-dimensional
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FIG. 4: (color online) Spectral functions Af (ω) (a) and the imaginary parts of the uniform and staggered spin susceptibilities (b)
as functions of energy for different values of h in the two-impurity quantum critical regime, I = 2.3TK . The line representations
in (a) and (b) are the same as in Fig. 2. The inset shows Th as a function of h, which is obtained the same way as in Fig. 3.
The line is a fitting Th/TK = 0.18(h/TK)4.

lattice, such divergences are related to each other due to finite spin density of states near Qπ. In a magnetic-field
driven QPT, the local spin susceptibility can diverge even for 3D, arising from the divergence near Q0. This favors the
local critical type of transitions with the delocalization of quasiparticles, a feature shared with the two-impurity QCP.
The divergence of the uniform spin susceptibility induced by the magnetic field might be related to the pronounced
ferromagnetic fluctuations observed in field-drive transition in YbRh2Si2.
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