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We present a study of the effects of simultaneous charge- and spin-frustration on the two-
dimensional strongly correlated quarter-filled band on an anisotropic triangular lattice. Our conclu-
sions are based on exact diagonalization studies that include electron-electron interactions as well as
adiabatic electron-phonon coupling terms treated self-consistently. The broken-symmetry states that
dominate in the weakly frustrated region near the rectangular lattice limit are the well known anti-
ferromagnetic state with in-phase lattice dimerization along one direction, and the Wigner crystal
state with the checkerboard charge order. For moderate to strong frustration, however, the dom-
inant phase is a novel spin-singlet paired-electron crystal (PEC), consisting of pairs of charge-rich
sites separated by pairs of charge-poor sites. The PEC, with coexisting charge-order and spin-gap
in two dimension, is the quarter-filled band equivalent of the valence bond solid (VBS) that can
appear in the frustrated half-filled band within antiferromagnetic spin Hamiltonians. We discuss
the phase diagram as a function of on-site and intersite Coulomb interactions as well as electron-
phonon coupling strength. We speculate that the spin-bonded pairs of the PEC can become mobile
for even stronger frustration, giving rise to a paired-electron liquid. We discuss the implications
of the PEC concept for understanding several classes of quarter-filled band materials that display
unconventional superconductivity, focusing in particular on organic charge transfer solids. Our work
points out the need to go beyond quantum spin liquid (QSL) concepts for highly frustrated organic
charge-transfer solids such as κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, which we be-
lieve show frustration-induced charge disproportionation at low temperatures. We discuss possible
application to layered cobaltates and 1

4
-filled band spinels.

PACS numbers: 71.10.Fd,75.10.Kt,74.20.Mn

I. INTRODUCTION

Strong Coulomb electron-electron (e-e) interactions can drive transitions from metallic to exotic insulating states,
the most well known of which are the Mott-Hubbard semiconductor (MHS) and the Wigner crystal (WC). The MHS
is a characteristic of systems with carrier concentration per site ρ = 1 and is driven by strong onsite e-e repulsion,
the Hubbard U interaction. Depending upon the lattice structure the critical U at which the metal-insulator (MI)
transition occurs, Uc, can be 0+ or finite1–4. In contrast, the WC occurs in systems with ρ 6= 1, and is characterized by
charge-ordering (CO) , i.e., a periodic arrangement of single charge carriers on the lattice. The WC is driven by strong
onsite as well as inter-site Coulomb interactions5. Although in principle the WC is likely at any arbitrary ρ, it has
been been studied most intensively for ρ = 1

2
bipartite lattices, where the nearest neighbor (n.n) Coulomb repulsion

can drive the MI transition6,7. The combined effects of e-e and electron-phonon (e-p) interactions are also of interest,
usually in one dimension (1D), where the MHS can further exhibit the spin-Peierls (SP) transition. Importantly for
our purpose here the above semiconducting states have been intensively studied over the past several decades, and
are largely understood, although arguments regarding the magnitude of Uc for formation of the MHS state in specific
lattices or the detailed mechanism of the MI transition may continue to persist. In the present work, we discuss a new
correlated-electron semiconductor, the paired-electron crystal (PEC), that occurs in ρ = 1

2
systems in the presence of

moderate to strong geometric lattice frustration8. We believe that our work has direct application to 2:1 cationic or
1:2 anionic charge-transfer solids (CTS) that exhibit correlated insulator–SC transitions, and further applies to other
inorganic strongly-correlated 1

4
-filled materials.

The combined effects of e-e interactions and geometric lattice frustration are of strong current interest9,10. The
bulk of the work here is for ρ = 1, where the Hubbard model in the limit U → ∞ reduces to the Heisenberg spin
Hamiltonian. Interest in the consequences of lattice frustration stems from the seminal proposal by Anderson that the
ground state of the Heisenberg antiferromagnet (HAF) model on a triangular lattice is a quantum spin liquid (QSL)
with no spin ordering even at zero temperature11,12. A nonmagnetic insulating state has been found in numerical
simulations of the Hubbard model on an anisotropic triangular lattice in between the insulating antiferromagnetic
(AFM) and paramagnetic metallic (PM) states2,3. The type of wavefunction usually assumed to describe a QSL is
often referred to as a resonating valence bond (RVB) state. Whether or not RVB states appear in the square lattice for
ρ slightly different from 1, and the relationship of such states to superconductivity (SC) in doped strongly correlated
semiconductors remains contentious. An extension of the RVB theory of dopant-induced SC in ρ 6= 1 is the proposal



2

that frustration-induced SC occurs in the anisotropic triangular lattice within the simple Hubbard model even for
ρ exactly 1, where a narrow superconducting phase is straddled on both sides by broader PM and AFM insulator
phases13–23. It has been claimed that this transition explains the SC in the CTS13–24. Recent numerical work by us
and others, however, have determined that SC is absent within the ρ = 1 triangular lattice Hubbard model25–27 and
the earlier results are artifacts of mean-field approximations.
While the ground state of the HAF on the isotropic triangular lattice is now known to be the ordered 120◦ AFM

rather than the originally proposed QSL state28–30, other frustrated lattices, most notably the Kagomé lattice31, have
been investigated in the search for QSL states. Proposed ground states here include various types of QSL states32–34

as well as valence-bond solid (VBS) states35–38. The literature on VBS states has a long history going back to the well
known Ghosh-Majumdar model39. The common theme in works on VBS is the frustration-driven transition from the
AFM state to a total spin S = 0 singlet state. We have found a similar frustration-driven transition from the AFM
to a S = 0 state in strongly correlated systems with ρ = 1

2
, where reduction to a spin Hamiltonian is not possible.

In contrast to the voluminous literature on correlated and frustrated systems at ρ = 1, the literature on frustrated
ρ 6= 1 is relatively sparse and new. The discovery of SC40 in hydrated NaxCoO2 has spurred interest in correlated
systems away from ρ = 141–43, although to the best of our knowledge only isotropic triangular lattices have been
studied. We will specifically focus on ρ = 1

2
within the present work—on the triangular lattice with varying anisotropy.

In the square lattice limit at this density, we show that spontaneous in-phase dimerization occurs in the presence of
electron-phonon interactions modulating n.n hopping integrals, leading to an effective ρ = 1 system with one electron
per dimer and AFM order. This result is the origin of the so-called the dimer Mott-Hubbard model44,45 that is
commonly used to describe the 2:1 cationic or 1:2 anionic organic CTS. Very recently we have proposed that under
the influence of lattice frustration this dimer Mott-Hubbard AFM state gives way to a spin-paired state that we
termed the PEC8. The PEC is different from any of the above more well known correlated semiconducting states in
that it is a WC of Heitler-London spin-singlets—simultaneously charged-ordered and spin S = 0. Alternately, the
PEC is the ρ = 1

2
equivalent of the ρ = 1 VBS. A conceptually similar state was postulated for the electron gas

many years back by Moulopoulos and Ashcroft46,47. There is a fundamental similarity between this earlier work and
ours, in that in both cases the pairing is driven by the exchange interaction. Our previous work8 only considered a
limited set of parameters, and the full phase diagram was not discussed. Here we give a more complete phase diagram,
including the competition with the WC state that was ignored before. As with the VBS state at ρ = 1, the PEC is a
consequence of frustration-induced quantum effects. Its extraordinary stability at ρ = 1

2
is a commensurability effect

(recall that MHS and WC formation also require commensurability).
In section II we introduce the model we consider. We include e-p interactions to stabilize the lattice dimerization

that gives the effective ρ = 1 dimer lattice. We present the physical mechanism behind the PEC formation by briefly
discussing simple molecular clusters, for which we show that spin-singlet formation in ρ = 1

2
necessarily requires

charge disproportionation. The charge disproportionation in the infinite one-dimensional (1D) chain and the so-called
zigzag ladder leads to periodic CO, viz., the simplest PECs. Following the discussions of these simple cases, we
introduce the two-dimensional (2D) lattice that will be the focus of this work, and discuss the different possible
phases. In section III we present out numerical results for the 2D system, covering a wide region of parameter
space. In section IV we discuss the relevance of our results for several classes of ρ = 1

2
materials and the outlook

for understanding unconventional SC. We particularly emphasize the cases of the organic charge-transfer solids CTS
κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2 which have been described as QSLs within the effective ρ = 1
scenario48–56. We believe frustration-induced charge disproportionation is an alternate possibility.

II. THEORETICAL MODEL

A. Hamiltonian

The Hamiltonian we consider contains electron hopping, semi-classical inter-site and onsite e-p couplings, and onsite
and n.n. Coulomb interactions:

H = −
∑

ν,〈ij〉ν

tν(1 + αν∆ij)Bij +
1

2

∑

ν,〈ij〉ν

Kν
α∆

2
ij (1)

+ β
∑

i

vini +
1

2
Kβ

∑

i

v2i

+ U
∑

i

ni↑ni↓ +
1

2

∑

〈ij〉
Vijninj .
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FIG. 1: Charge difference ∆n between members of the same dimer as a function of the hopping integral t′ corresponding to the
dotted bonds, for the two molecules (a) and (b) given as inserts. Each 4-atom molecule contains two electrons. The intra-dimer
double bonds have strength t1 = 1.5, and the single bonds in (b) are t2 = 0.5. The results shown are for U = 4 and V = 0.
Solid (dashed) curves show ∆n for the linear (square) molecules. Lines are guides to the eye. Filled and empty circles of the
molecules correspond to sites with charge densities 0.5 + ∆n/2 and 0.5−∆n/2, respectively.

In Eq. 1, ν indexes the different bond directions in the lattice; for example ν = x in 1D and ν = {x, y} in the 2D
square lattice. Our actual calculations (see below) are exact diagonalizations for a 4×4 anisotropic triangular lattice,

ν = {x, y, x + y}. Bij =
∑

σ(c
†
iσcjσ + H.c.) is the electron hopping between sites i and j with electron creation

(annihilation) operators c†iσ (ciσ). αν is the inter-site e-p coupling constant, Kν
α is the corresponding spring constant,

and ∆ij is the distortion of the bond between sites i and j. vi is the intra-site phonon coordinate and β is the
intra-site e-p coupling with corresponding spring constant Kβ. Both ∆ij and vi are determined self-consistently57.
αν are in general taken close to the minimum value needed for the transition to occur, our goal being the replication
of the same instability from finite cluster calculations that would occur in the infinite system for 0+ coupling. U and
Vij are on-site and n.n. Coulomb interactions, respectively. The physically relevant range of Vij is Vij < U

2
based on

comparison between ρ = 1 and ρ = 1
2
CTS58.

B. Coupled spin-singlet and CO at ρ = 1

2

We first present a simple qualitative discussion of coupled spin-singlet and CO formation at ρ = 1
2
. The ideas are

quite general and we argue that the mechanism is independent of dimensionality. The key requirement is that the
density must be exactly ρ = 1

2
, as the effect requires commensurability. Consider a single dimer of two sites with one

electron. The electron populations per site are 0.5 each, but the quantum mechanical wavefunction for the system is the
superposition 1√

2
|10+01〉, where 1 and 0 are site charge densities. If one now brings two of these dimers together, as in

insert (a) of Fig. 1, the composite wavefunction of the two-dimer system can be written as 1
2
|1010+1001+0110+0101〉.

If the two electrons are in a spin-singlet state then within the simple Hubbard Hamiltonian the configuration 0110, in
which singlet stabilization can occur from a single n.n. hop that creates a virtual double occupancy, must dominate
over the configurations 1010 and 1001, in which singlet stabilization requires two and three hops, respectively. Thus
as the singlet bond between the dimers gets stronger we expect a charge difference ∆n between sites belonging to the
same dimer (nominally between sites 1 and 2, or between sites 3 and 4 in the linear chain of Fig. 1). While some
charge disproportionation must occur in finite linear chains from end effects alone, we note that our proposed picture
demands that similar charge disproportionation occurs between members of the same dimer even in the case of the
periodic molecule shown in the insert (b) of Fig. 1. In this case the charges on the sites connected by the diagonal
bond must be larger than 0.5, while the charges on the two other sites must be smaller. Importantly, the modulation
of charge density, bond orders, as well as spin-singlet pairing all occur cooperatively, and any of these observables
may be used as an order parameter in the case of a real transition. In Fig. 1 we have plotted ∆n versus the hopping
integral t′ corresponding to the dotted bonds in the molecules shown in the insert, for the ground spin-singlet state.
In both cases, as t′ increased from zero ∆n becomes nonzero and increases with t′. Importantly, in the spin-triplet
S = 1 state the sign of ∆n is reversed in the cyclic molecule, indicating repulsive interaction among the electrons.
Coupled CO and singlet formation occur also in the SP state in 1D ρ = 1

2
systems57–59. A key difference from the

SP transition in ρ = 1 is that for ρ = 1
2
, a MI transition first occurs at a intermediate temperature, followed by the

SP transition at low temperature. For ρ = 1
2
, the MI leads to either a bond-dimerized or to a charge-ordered WC

state with equal bond lengths58. Provided the n.n. Coulomb interaction is not too strong, a SP transition occurs
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FIG. 2: (a) 2D lattice used for calculations in this paper, a square lattice with hopping tx = ty ≡ t and frustrating bond
tx+y ≡ t′ (dashed lines). (b) Dimerized lattice. Double (single) lines indicate stronger (weaker) bonds. Site charge densities
are uniform in both (a) and (b). (c) The PEC state as it occurs in this lattice. Filled (open) circles correspond to sites with
charge density ρ = 0.5 + δ (ρ = 0.5 − δ)8. Heavy line shows the location of singlet-paired sites. (d) Wigner crystal charge
ordering occurring for large Vx and Vy . (e) Wigner crystal-spin gap phase with bond alternation along diagonal directions. See
section III B.

from either insulating state58, resulting in a ground state with period-4 CO · · · 0110· · · . This state is the simplest
realization of the PEC and may visualized as a second dimerization of dimer units of molecules; the singlet bond
giving the spin gap (SG) forms between adjacent dimer units. The intermediate temperature bond-dimerized states,
WC state, and PEC state with SG are all found experimentally in quasi-1D CTS58.
Zigzag ladder systems, coupled two-stack systems in which each site on one stack is coupled to two sites on the

other stack, are a second realization of the PEC state. CTS zigzag ladder materials that are ρ = 1
2
have been found

with spin-gap transition temperatures much larger than in 1D ρ = 1
2
SP materials60. The insulating ground state in

this case may be understood again as a PEC state occurring in a zigzag ladder lattice, with singlet bonds oriented
between the two chains61. Unlike the 1D case, bond orders are now modulated in several lattice directions, leading
to a larger SG than for the 1D PEC case61. Interestingly, in both the linear chain and the zigzag ladder, the ρ = 1

2

PEC is obtained by simply removing alternate spin-singlet bonds from the corresponding ρ = 1 VBS, and replacing
them with pairs of vacancies.

C. Competing broken symmetries in 2D

In this paper we will focus on ground state solutions of Eq. 1 in 2D in the presence of variable lattice frustration. The
lattice we choose is a 4×4 2D square lattice with a single frustrating bond, as shown in Fig. 2(a). Thus ν = {x, y, x+y}
within Eq. 1 for this lattice. In most of the results we will present, tx = ty ≡ t, although we will also consider tx 6= ty
in some cases. Energies will be given in units of t. We will take the frustrating bond tx+y ≡ t′ in the range 0 ≤ t′ < 1,
covering the wide region between the unfrustrated square lattice (t′ = 0) and the nearly isotropic triangular lattice
(t′ = 1). For the inter-site e-p coupling, unless denoted otherwise we choose αx = αy ≡ α and α′ = 0, with similarly
identical spring constants Kx

α = Ky
α ≡ Kα. As noted before, all bond distortions and charge densities are obtained

self-consistently57. For all calculations we assume periodic boundary conditions.
Our calculations are largely for Vx = Vy, but variable Vx+y ≡ V ′. In Reference 8 we presented limited numerical

results for a select set of Coulomb interaction parameters (U = 4, Vx = Vy = 1, V ′ = 0) demonstrating transition from
Néel antiferromagnetism to the PEC state in this lattice when t′ exceeds a critical value t′c. For completeness and for
giving an introduction to the various competing states in 2D we briefly review these results here. For small t′, the
self-consistent solution of Eq. 1 gives spontaneous dimerization along the x axis as shown in Fig. 2(b). The dimerized
lattice state is effectively 1

2
-filled with one carrier per dimer and has Néel AFM order between dimers for finite U .

The Néel order is very clearly observable from the spin-spin correlations calculated for 4 × 4 clusters8. Importantly,
the charge density 〈ni〉 of all sites is exactly 0.5.
As t′ increases, frustration reduces the strength of the antiferromagnetic correlations. Provided the n.n. Coulomb

interaction Vij is not too strong (see below), at a critical t′ = t′c antiferromagnetic correlations disappear and charge
disproportionation develops, with the charge densities within each dimer becoming inequivalent. This is shown in
Fig. 2(c). In this state, the charge densities follow the pattern · · · 1100· · · along the x and x + y directions, and the
pattern · · · 1010· · · along the y direction. The bond distortion is period-4 along x and period-2 along y. The strongest
bond orders 〈Bij〉 occur between adjacent charge-rich ‘1–1’ sites in the x + y direction. Importantly, the spin-spin
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FIG. 3: (Color online) Order parameters for the 4×4 lattice versus t′. Parameters are α = 1.1, β = 0.1, and Kα=Kβ=2. Circles,
squares, diamonds, and triangles are for U = 2, 3, 4, and 6, respectively. Vx = Vy = V ′ = 0 for (a)–(d), and Vx = Vy = 1 and
V ′ = 0 for (e)–(h). (a) and (e) show the charge disproportionation ∆n, (b) and (f) the bond order Bi,j between charge-rich sites
i and j connected by t′ (see Fig. 2(c)), (c) and (g) spin-spin correlations between these sites, and (d) and (h) the singlet-triplet
gap ∆ST. In all cases the CO pattern is as shown in Fig. 2(c). For all plots lines are guides to the eye.

correlations change dramatically for t′ > t′c. They are strongly negative between the bonded ‘1–1’ sites along the
x + y direction (see Fig. 2(c)), and are nearly zero between either member of the pair and all other sites, indicating
the formation of spin-singlet bonds8. Any of the observables ∆n, bond order between the charge-rich sites, or z-z spin
correlations, 〈Sz

i S
z
j 〉, may be used as order parameters for the PEC state8.

In section III we present further details of the PEC phase and the full parameter dependence of Eq. 1, with the
goal of demonstrating that (i) the transition to the PEC that we are interested in is driven by quantum effects due to
frustration only; and (ii) the PEC occurs over a broad region of parameter space. Given the number of parameters
in Eq. 1, it should be relatively easy to generate CO driven by specific (presumably artificial) choices of Vij . Such
classical results would be uninteresting. We therefore consider several distinct choices of Coulomb interactions: (i)
U > 0 and all Vij = 0, (ii) U > 0, Vx = Vy = V , and V ′ = 0, (iii) U > 0 and Vx = Vy = V ′ = V . PEC formation occurs
in all of these parameter regions. We also show that for sufficiently strong n.n. Coulomb interactions corresponding
to parameter region (ii), the WC phase with checkerboard CO (Fig. 2(d)-(e)) is the ground state of Eq. 1. We also
will consider other modifications of the basic lattice, viz., sign of t′ opposite site to t, and tx 6= ty. Finally, we will
argue that our results are not consequences of finite size effects and are to be expected in the thermodynamic limit.

III. RESULTS

A. U > 0, Vx = Vy = V ′ = 0

Figs. 3(a)-(d) show the charge disproportionation ∆n, bond order 〈Bij〉, n.n. z-z spin-spin correlation 〈Sz
i S

z
j 〉, and

spin gap ∆ST as a function of t′. ∆ST is defined as the excitation energy from the ground S = 0 state to the lowest
S = 1 state. U here is finite but all V terms are zero. Sites i and j in Figs. 3(b)-(c) correspond to two ‘1’ sites in the
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FIG. 4: Phase diagram as a function of t′ and U , for β = 0.1, and Kα = Kβ = 2. Squares are the AFM–PEC phase boundary
for α = 1.1 and Vx = Vy = V ′ = 0; Diamonds are for α = 1.1, Vx = Vy = 1, and V ′ = 0; Circles are for α = 1.2, Vx = Vy = 1,
and V ′ = 0. For each case, filled (open) points correspond to positive (negative) t′. Lines are guides to the eye.

PEC state connected by a t′ bond (filled circles connected by heavy lines in Fig. 2(c)). As with the results in Reference
8 which included the Vx and Vy interactions, for small t′ the charge density is 0.5 on all sites, and antiferromagnetic
order can be seen in the spin-spin correlations (not shown here, see Fig. 3(a) in Reference 8). Nonzero t′c in Fig. 3 is a
consequence of the nature of the diagonal bonds in Fig. 2(b); the diagonal bonds inside each plaquette with two strong
dimer bonds actually strengthen the AFM, and only the inter-plaquette diagonal bonds have a frustrating effect. At
small t′ these two effects appear to cancel, and there is only a weak effect on the AFM.
For t′ > t′c, ∆n becomes nonzero, with the charge pattern as shown in Fig. 2(c). Similarly, the bond order between

paired ‘1–1’ sites increases abruptly, and the z-z spin-spin correlation between these sites becomes strongly negative,
and nearly zero with all other lattice sites (see Reference 8), indicating formation of a singlet bond. Although ∆ST

is nonzero in all cases in a finite cluster, we nevertheless see a large jump in ∆ST at t′c, also indicating spin-singlet
formation. The increase in bond order strength and strength of spin-spin correlation clearly follow the same pattern
as ∆n.
These results show that the n.n. Coulomb interaction is not essential for formation of the PEC state. Unlike

the WC phase where CO is driven by the n.n. Coulomb interaction, the PEC state is a consequence of geometric
lattice frustration. Increasing U moves t′c to larger t′: U tends to strengthen the AFM phase and therefore increasing
U is expected to make the AFM order persist for stronger lattice frustration. The transition also becomes more
discontinuous to changes in t′ as U increases, suggesting it may be continuous for small U and first order for large U .
In both the 1D and in the zigzag ladder lattice, the PEC state occurs unconditionally even in the noninteracting

limit (U = Vij = 0) for any finite e-p coupling. In these two cases, the unconditional occurrence of PECs is a
consequence of simple nesting. In contrast, in the isotropic ρ = 1

2
2D band considered here, the lack of nesting

forbids an unconditional Peierls transition. In agreement with this, we found that for U . 1, the PEC phase did not
occur. Instead, the self-consistent calculations converged to disordered states with no clear charge pattern. This is
an indication that in the thermodynamic limit, the preferred ground state is one of uniform charge. This result is
reminiscent of that in quantum spin systems: the simplest VBS transition, the SP transition, can be predicted from
nesting behavior in the 1D XY model following Jordan-Wigner transformation62. This is, however, not true in 2D
frustrated spin systems.

B. U > 0, Vx = Vy > 0, V ′ = 0

We next consider the effect of n.n. Coulomb interactions Vx = Vy = V , but V ′ = 0. Figs. 3(e)-(h) show the same
order parameters as in Figs. 3(a)-(d) for V = 1. Comparing the data with and without V , the effect of moderate V
is to strengthen the PEC state—the magnitude of all order parameters increase when V > 0 for a fixed value of U .
For fixed U , the AFM–PEC boundary t′c also moves to smaller t′ with increasing V . Fig. 4 shows the phase diagram
in the t′-U plane for both the V = 0 and V > 0 cases. Here, for each value of U , t′ was varied until the AFM–PEC
transition occurred, and the first t′ where ∆n became nonzero was taken as the AFM–PEC boundary.
One expects that when V is above a critical value Vc, the · · · 1100· · · PEC CO will give way to the checkerboard

WC state. In 1D, this transition occurs exactly at Vc = 2 in the limit U → ∞, and at a larger Vc for finite U6,57.
Previous exact diagonalization for a 2D cluster63 (without however e-p interactions or t′ as considered here) found
Vc ≈ 2.1 for U = 10, and showed that Vc increases when V ′ > 0.
Fig. 5 shows the evolution of ∆n and diagonal bond orders with V for U = 6. While difficult to see in Fig. 5 due

to the choice of axis scales and parameters, in the PEC region ∆n increases with increasing V . For the parameters of
Fig. 5 (U=6, t′ = 0.8, α = 1.1, β = 0.1, Kα = Kβ = 2) the charge order pattern changes from the PEC (Fig. 2(c)) to
the checkerboard WC (Fig. 2(d)-(e)) at V ≈ 1.52. In addition, ∆n increases sharply when entering the WC phase. At
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PEC phases are determined as discussed in section IIA; The boundary between PEC, WC-SG, and WC phases is discussed in
the text. Lines are guides to the eye.

larger V ≈ 2.0 a slight cusp occurs in the ∆n versus V plot. At the same time, the pattern of bond orders changes:
for V < 2 in the WC phase the bond orders alternate strong-weak along the x + y direction (as shown in Fig. 2(e)),
while for V > 2 the bond orders along x+ y are uniform (Fig. 2(d)). Within the WC phase region there are therefore
two sub-phases: a phase with equal length bonds in the diagonal x + y (t′) directions, and a phase in which these
bonds become dimerized. The added bond dimerization in the diagonal direction will result in a spin gap, and we
denote this phase as the Wigner Crystal–Spin gap (WC-SG) phase. A similar spin-gapped WC phase can be found
in a small region of parameter space in the 1D model57,64.
Fig. 6(a) shows the resulting phase diagram in the t′-V plane for U=6. The Vc we find in the t′ = 0 limit is slightly

larger (U = 6, Vc ≈ 2.6) than the results of Reference 63 (U = 10, Vc ≈ 2.1); however, both the smaller U here as well
as the e-p coupling in Eq. 1 would be expected to increase Vc. Unlike the AFM, PEC, and WC phases, the WC-SG
phase is limited to a relatively narrow range of parameters. Larger lattice calculations are needed to confirm whether
the WC-SG phases persists in the thermodynamic limit.
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FIG. 7: Phase diagram variation on hopping and electron-phonon interaction anisotropy. In both (a) and (b), U = 6,
Vx = Vy = 1, V ′ = 0, β = 0.1, and Kα = Kβ = 2. In (a), tx = ty = 1 and αx = 1.1, but αy is varied. In (b), tx = 1
and ty is varied, with identical αx = αy = 1.1. Lines are guides to the eye.

C. U > 0, Vx = Vy = V ′ > 0

The V ′ interaction destabilizes the checkerboard-pattern WC, leading to a metallic phase in the absence of e-p
interactions63. Here we will consider parameters Vx = Vy = V ′ = V . For Eq.1 without e-p interactions, U = 10, and
t′ ≤ 0.1, exact diagonalization found63 that in this case a metallic phase exists for V up to at least V =5. Charge
fluctuations within the metallic phase adjacent to the WC were speculated to cause a CO-to-SC transition65. In
our calculations, summarized in the phase diagram in Fig. 6(b) for U = 6, we also found that the WC phase does
not occur, but rather than being metallic the system is insulating—either AFM at small frustration or PEC at large
frustration. In this case the AFM–PEC transition can occur over a wide range of lattice frustration, 0.2 . t′c . 0.7.
Within the PEC phase the CO pattern remains the same for all V , although ∆n increases with V as in the V ′ = 0
case considered in the previous section. Although our calculations are for one value of V ′ only, Fig. 6(b) suggests that
the PEC region is broadened relative to that in Fig. 6(a) for any V ′ 6= 0.

D. Bandstructure and electron-phonon coupling

As shown in the previous section, variation of Coulomb interactions can cause a substantial variation in the extent
of frustration needed to form the PEC state. Next we show the effect of varying the one-electron parameters in Eq. 1,
tν and αν .
Due to the lack of particle-hole symmetry in the anisotropic triangular lattice, differences might be expected when

t′ is taken as negative. However, as Fig. 4 shows, we found only a small variation in the AFM–PEC phase diagram
when the sign of t′ is changed. This is consistent with the expected mechanism for spin frustration in an effectively
1
2
-filled band: the frustrating exchange interaction is proportional to (t′)2, so reversing the sign of t′ should only

change the effective frustration at higher order.
Fig. 4 also shows the effect of changing α. As expected for a cooperative transition, stronger e-p coupling increases

the size of the PEC region. The effect of anisotropy of the inter-site e-p interaction is shown in Fig. 7(a), where αx is
fixed at 1.1 and αy is varied. Increasing either αx or αy separately strengthens the PEC, as shown in Fig. 7(a), where
the αy/αx ratio is varied. The AFM–PEC phase diagram is relatively insensitive to the ratio of ty/tx. In Fig. 7(b),
tx is fixed at 1 and the value of ty is varied—the resulting t′c does not depend sensitively on the choice of ty/tx.
Summarizing sections III(a)-(d), we see the PEC state in our calculations for a wide range of parameters. In every

case, we first arrived at parameters that placed the system in the AFM or WC phases in the t′ = 0 limit, and then
varied only t′. Thus the transition to PEC is a consequence of frustration alone. With variation of e-p coupling and
Coulomb interactions, the amount of frustration needed to drive the AFM–PEC transition can vary over a sizable
range of frustration. We will discuss the implications of this further in relationship to the CTS materials further in
section IV.
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E. Finite-size issues

We have performed several checks on our calculations that indicate that the PEC state found in our numerical
calculations is an intrinsic property of Eq. 1 and not induced by finite size effects.
(i) Noninteracting bandstructure: One common finite-size effect in numerical calculations are changes in the Fermi-

level degeneracy or level crossings of the noninteracting system. In the lattice of Fig. 2(a) the Fermi level degeneracy
does not change throughout the range 0 < t′ < 1, remaining 2-fold degenerate throughout this range. This degeneracy
is broken by x-axis dimerization, shown in Fig. 2(b), giving a nondegenerate Fermi level for 0 < t′ < 1. At t′ = 1 the
degeneracy at the Fermi level increases to 6-fold; in the presence of interactions the ground state can become triplet
(S=1) for t′ & 0.8. Hence we stop at t′ . 0.8 where the ground state is S = 0.
(ii) Interactions: As mentioned above, no transition occurs for U = Vij = 0. This further indicates that the

transition is not a feature of the single-particle bandstructure.
(iii) Commensurability: We have verified that the PEC state does not occur for electron densities different from

ρ = 1
2
; for example, no transition to PEC or any “nonmetallic” state occurs for 6 or 10 electrons on the 4× 4 lattice.

IV. APPLICATION TO REAL MATERIALS

In the following we discuss how our theory applies to real materials, and may even give insight to the mechanism
of correlated-electron superconductivity in ρ = 1

2
materials.

A. Application to organic CTS

The superconducting organic CTS share many characteristics of other strongly-correlated superconductors, in par-
ticular the high-Tc cuprates, including reduced dimensionality and the presence of AFM near SC. At the same time,
SC in the CTS occurs under pressure at a constant carrier density of ρ = 1

2
rather than under the influence of doping.

A variety of exotic insulating states in addition to AFM, including CO66 and spin-gapped states67,68, as well as possi-
ble QSL states69, are proximate to the superconducting state in the CTS. Our work shows that only the AFM phase
is described by the dimer Mott-Hubbard model. Since in all cases the experimental systems are structurally related,
with identical or near-identical molecular components, we believe that the same mechanism of SC should apply to
them. In Reference 8 we had pointed out how the PEC concept can perhaps lead to such a unifying theory. Here we
expand on this theme.

1. CTS with PEC insulating states

We briefly review here experimental evidence for PEC formation in several 2D CTS families.
(i) θ-(ET)2X: CO corresponding to the PEC and spin gap are found in the θ-(ET)2MM′(SCN)4 family67. In

MM ′=RbZn, the CO occurs below the MI transition at T ∼190K, while the SG appears below 20K67. The charge
order pattern in the CO phase below the MI transition has been experimentally determined for MM ′=RbZn and
follows a horizontal stripe pattern (see Fig. 6 in Reference 70). The horizontal CO is definitely not the WC. Rather,
the CO pattern is precisely as expected in the PEC, with · · · 1100· · · CO along the two directions of largest hopping
(the p-directions in the θ-(ET)2X lattice), and · · · 1010· · · order along the direction of weakest hopping (c-direction
in θ-(ET)2X). Experiments have revealed that with decreasing temperature, the c-axis lattice parameter decreases71.
The decrease in the lattice parameter implies increased carrier hopping in this direction and therefore increased
frustration within our theory, giving the transition to the singlet PEC and observed spin gap.

(ii) α-(ET)2X: The crystal structure of α-(ET)2X is quite similar to that of θ-(ET)2X. The existence of a SG
opening below 136K has been known for some time in α-(ET)2I3

72. Below the 136K transition CO is found which
has been confirmed to be of the same pattern as in θ-(ET)2X; see for example Fig. 2 in Reference 73.

(iii) β-(meso-DMET)2PF6: This 2D CTS exhibits a pressure-induced transition from CO to SC74,75. While the
charge order pattern in this CTS is referred to as “checkerboard” by the authors, the checkerboard pattern refers to
meso-DMET dimers as units. In terms of meso-DMET monomer units, the CO pattern is the same as the PEC in
Fig. 2(c), with · · · 1100· · · in two directions and · · · 1010· · · along the third direction (see Fig. 2 in Reference 75.)

(iv) β′-X[Pd(dmit)2]2: In this family the materials dmit molecules are arranged in dimers. The frustration varies
with the cation X , with the least frustrated in the series showing AFM order76. Among the materials with larger
frustration,X = EtMe3P has a SG transition at 25K to what has been described as a VBS state77. The experimentally
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determined bond and charge distortion patterns (see Fig. 3(b) in Reference 77) are exactly as expected for the PEC,
with period 4 charge and bond distortions along what is the x axis in Fig. 2. The intradimer charge disproportionation
in particular argues against the SG state from being a simple VBS, which would require equal charge densities on all
the molecules.

2. κ-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2: QSL or charge-disproportionated states?

There has been much recent interest in these CTS69 specifically because they present possible realizations of the
long awaited QSL48–56. In both cases the materials have nearly isotropic triangular lattices of dimer unit cells
(corresponding to Fig. 2(b) with t′ = 1) within an effective ρ = 1 model. In κ-(ET)2Cu2(CN)3 (hereafter κ-CN) the
estimate for the Heisenberg exchange integral between n.n. dimers is J ∼220–250 K78,79. 1H NMR experiments find
absence of long range magnetic order down to 32 mK78. Very similar behavior is also seen in EtMe3Sb[Pd(dmit)2]2
(hereafter dmit-Sb)80. The insulating ground state in κ-CN is close to SC, transition to superconductivity occurring
under moderate pressure81. SC is found in the dmit family as well82.
Recent experiments in both κ-CN and dmit-Sb have found peculiarities that appear to be unexpected within QSL

theories. Below we list experiments that seem to indicate that apparent QSL behavior at low temperatures is giving
way to a “hidden order”, and perhaps even charge disproportionation, which by itself would be against spin-only
models.

(i) A second order phase transition is seen at 6 K in κ-CN in measurements of heat-capacity Cp
83, 13C NMR

relaxation rate 1/T1
84, and lattice expansion coefficients85. The last experiment finds strong lattice effects at the

transition, indicating possible role of charge degrees of freedom85. A symmetry-breaking and/or topological ordering
transition at T < 1 K has also been observed in dmit-Sb80.

(ii) The specific heat Cp in κ-CN is linear in T for T between 0.75 and 2.5 K, indicating a gapless energy spectrum83.
The Sommerfeld coefficient γ is nonzero and large even at T =75 mK83. Equally perplexingly, Cp is independent
of magnetic field up to 8 T, indicating absence of Zeeman coupling of spins to the field83. In contrast, thermal
conductivity measurements down to 80 mK indicate a spin gap86.

(iii) The temperature dependence of the thermal conductivity of dmit-Sb suggests gapless mobile excitations, but
magnetic field dependence of the thermal conductivity again indicates a gap87. Taken together, (ii) and (iii) suggest
gapless spin-singlet excitations but gapped spin-triplet excitations in κ-CN and perhaps also dmit-Sb.

(iv) Measurements of dielectric response in κ-CN have shown increasing and frequency-dependent dielectric constant
below 60 K, and possible antiferroelectric ordering of dipoles at Tc ∼6 K88. Similar dielectric response has also been
observed in dmit-Sb89. Ferro or antiferroelectric ordering require unequal site charges on the molecules within the
dimer unit cells88,90. It may be relevant in this context that 13C-NMR experiments on both κ-CN84 and dmit-
Sb91 find unusual line broadenings at low T that cannot be ascribed to disorder92, which might also indicate charge
disproportionation. Similar line broadening at low T in EtMe3P[(dmit)2]2 occurs at the transition to the PEC77,
which in turn gives way to superconductivity under pressure82.
Whether or not there exists a fundamental difference between κ-CN and dmit-Sb, or whether the difference lies in

only having a smaller gap in dmit-Sb in which Tc is 1K as opposed to 6K, is currently not entirely obvious. Lattice
expansion studies in dmit-Sb (or other measurements of electron-lattice interaction), and perhaps also additional low
temperature NMR measurements are needed here. Interestingly, a recently published phase diagram of β′-Pd(dmit)2
salts places dmit-Sb at the interface of AFM and strongly CO phases69. The close proximity to CO suggests tendency
to charge disproportionation even in dmit-Sb. Note that any difference between κ-CN and dmit-Sb supports the ρ = 1

2

model, since the simple description as a triangular lattice of dimers is no longer enough and the detailed couplings
between the monomers in the materials are indeed different because of their different crystal structures.
Although it is as yet not entirely clear whether or not existing spin-liquid models48–56 with appropriate modifications

can explain the above anomalies, it appears that for κ-CN and possibly dmit-Sb, spin degrees of freedom alone cannot
describe the low temperature (below 6K in κ-CN and below 1K in dmit-Sb) properties. Rather, any description of the
ground state must involve charge as well as spin degrees of freedom. Assuming that the above experiments and their
interpretations are correct, the proper theoretical model should have built-in significant electron-lattice coupling and
should lead to charge disproportionation and excitation energy spectrum with gapless singlet excitations and gapped
spin excitations. We believe that the highly frustrated ρ = 1

2
model satisfies all of the above criteria, in addition

to providing the starting point for a theory of superconductivity in the CTS (see below). T-linear specific heat but
gapped magnetic susceptibility were noted in nonmetallic vanadium bronzes93 as far back as 1978, and at the time
was considered to be a distinctive proof for bipolarons. The nonzero spin-singlet degeneracy within this model comes
from tunneling motion of the bipolarons, causing them to “flip flop” between equivalent configurations93. We propose
that a similar mechanism is at play in the present case at large t′. Particularly in κ-CN the lattice structure and
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the orientations of molecules are such that the spin-singlet bonds, which occur between monomers belonging to two
neighboring dimers can flip flop between the monomers (see Fig. 4 in Reference 8.) Within our proposed picture for
κ-CN, the transition at 6K is to the spin-singlet charge-disproportionated state, with short range fluctuating order.
Magnetic excitations even in this state, however, require breaking the spin-singlet bonds.
Several recent theoretical works94–96 have also considered intradimer charge degrees of freedom in κ-CN, in view of

the possible phase transition at 6 K, and in particular, the dielectric anomaly reported in reference 88. References 94
and 95 investigated the strong-dimer limit of the ρ = 1

2
extended Hubbard model, where the Hilbert space in lowest

order is restricted to states with one hole per dimer, and interactions between dimers are treated as perturbations.
Different CO patterns, and charge or spin liquid states with short-range order, depending on the relative magnitudes
of the interdimer Coulomb interactions and the intradimer hopping were found by Hotta. κ-CN below 6 K within
this model is a short-range ordered state with fluctuating dipoles and spins. Naka and Ishihara considered a similar
model in the mean-field and classical limits; as a function of temperature several possible combinations of CO and
spin ordering were found95. Gomi et al’s. work is closest to ours. The author’s consider the ρ = 1

2
extended

Hubbard model specifically for the κ-lattice (thus the strongly frustrated region of our model), and find from exact
diagonalization that for nonzero electron-lattice coupling the ground state was a CO ferroelectric near the AFM-PM
phase boundary96. The possibility of unequal charge distributions within the dimers94–96 is in agreement with our
results. The key differences from our work with these theories are that frustration as well as strength of the intradimer
bonds are variables within our model, and our determination that the formation of the CO is driven by the tendency
to the form spin-singlets. Finally, we suggest that this singlet formation is related to transition to superconductivity
(see below).

3. Consequence of stronger frustration—paired electron liquid and superconductivity

As mentioned above, numerical results for t′ & 0.8 are not useful due to the highly degenerate ground state becoming
spin-triplet in our finite clusters. We have suggested elsewhere that the occupied spin-singlet bonded ‘1–1’ sites of
the PEC can be thought of as effective single sites doubly occupied by charge carriers, and similarly the pairs of
‘0–0’ vacancies can be thought of as single vacant sites97. Such a mapping would transform the PEC to an effective
checkerboard CO with alternate sites (in the square lattice representation) occupied by double occupancies and
vacancies. The effective Hamiltonian that describes the checkerboard CO in this case is a ρ = 1 extended Hubbard
model with weak attractive U whose origin is the exchange interaction that stabilizes the singlet bond within the
original ρ = 1

2
Hamiltonian. The n.n. interaction within the effective Hamiltonian remains repulsive to simulate the

checkerboard ordering of the effective doubly occupied sites.
While such a mapping is not rigorous, similar mapping of n.n. spin-bonded sites to double occupancies has been

routinely used in the literature on bipolaron models98,99. The difference between our work and traditional bipolaron
models is that the spin-singlet bonding within our work is driven primarily by AFM correlations, while within the
bipolaron models it is a consequence of effective attraction due to the overscreening of the e-e repulsion by e-p
interactions99,100. We have investigated the consequences of stronger frustration101 in the ρ = 1

2
anisotropic triangular

lattice within the effective ρ = 1 extended Hubbard model with attractive U97. We found a CO-to-SC transition
within the effective model97, suggesting a PEC-to-SC transition within the ρ = 1

2
model with repulsive interactions.

Although this result is not a proof of transition to SC within the repulsive ρ = 1
2
model, it nevertheless is instructive

and provides the direction for future research.
Demonstration of SC within the actual model will require further work. What is interesting though is that the

proposed scenario can give a unified approach to SC in all organic CTS, irrespective of whether the insulating state
proximate to SC is AFM102, CO67,103 or VBS82. Recall that within existing mean field theories the AFM-to-SC
transition is driven by spin fluctuations13–23, while the CO-to-SC transition is driven by charge fluctuations65. Even
if we ignore that recent precise numerical calculations25–27 have demonstrated the absence of SC within the proposed
spin-fluctuation models in this context (thereby raising doubts also about mean-field theory of charge-fluctuation
mediated superconductivity), different mechanisms of SC for structurally related materials with identical or near-
identical molecular components appear to be unrealistic. Within our proposed scenario, the charge-ordered or VBS
systems that exhibit SC are PECs in the semiconducting state, while the AFM systems under pressure transform to
PECs first and then to SC (although due to actual crystal structures the “width” of the PEC region could be narrow
to vanishing within the latter). The SC phase within this scenario is a paired-electron liquid. There is considerable
overlap between these ideas and the one proposed by Moulopoulos and Ashcroft for the continuous electron gas46,47.
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B. Application to inorganic ρ = 1

2
materials

The thrust of our work has been to understand within a unified theoretical approach the variety of exotic insulating
states that are proximate to the superconducting state in 2:1 cationic or 1:2 anionic 2D CTS. We have shown here
that the peculiarities of these materials originate from the unique behavior of ρ = 1

2
in the presence of both strong

e-e interactions and lattice frustration. It is conceivable that the complex behavior of apparently unrelated inorganic
families can be understood within the same broad theoretical approach. We list two such classes of materials below
to point out the hitherto unnoticed similarities between them and ρ = 1

2
CTS.

1. Layered cobaltates

Layered cobaltates NaxCoO2 have attracted wide attention because of their 2D structure, tunable carrier concen-
tration, and the occurrence of SC40. The Co ions form a 2D triangular lattice, are in their low-spin state, and their
valence ranges from Co3+ at x = 1 to Co4+ at x = 0. Charge carriers are S = 1

2
holes on the Co4+ sites and the hole

density ρ = 1− x. Trigonal distortion splits the occupied t2g orbitals into e′g and a1g orbitals. LDA calculations have
suggested that although for large x the e′g orbitals occur below the Fermi level and an a1g-only description is valid, this

description breaks down at small x where e′g orbitals can be nearly degenerate104,105. In contrast, correlated-electron

calculations find that the a1g – e′g energy separation is positive and relatively large for all x106,107, suggesting that
low energy excitations can likely be described within a1g-only single-band models.
The temperature dependent magnetic susceptibility χ(T ) shows a peculiar ρ-dependence within the family, with

small ρ (large x) exhibiting strongly correlated behavior and large ρ (small x) exhibiting weakly correlated behavior108.
We have recently shown that ρ-dependent χ(T ), exactly as seen in the cobaltates, is expected within the single-band
extended Hubbard model on a triangular lattice109. Equally interestingly, χ(T ) behavior in NaxCoO2 is very similar
to that in the family of CTS as a whole, where also χ(T ) shows a systematic ρ-dependence that is understood within
the single-band extended Hubbard model110. It is tempting to compare now the superconducting states in hydrated
cobaltates and CTS with this apparent similarity in mind.
Although superconductivity in NaxCoO2 · yH2O occurs at x ≃ 0.3540, it is now established that the Co-ion valency

here is determined not only by the Na content, but also by H3O
+ ions. There have been several reports that SC here

occurs over a very narrow range of hole density ρ, and that maximum Tc occurs at or very close to Co-ion valency
3.5+, corresponding to ρ = 1

2
111–113. If this is confirmed from future experimental work, it would appear that like the

CTS, cobaltates are yet another example of a frustrated 2D ρ = 1
2
superconductor, suggesting that the mechanism of

SC in the two families is related.

2. ρ = 1

2
spinels

The B sublattice in spinel compounds AB2X4 form a frustrated three-dimensional (3D) pyrochlore lattice and
usually consist of transition metal cations that possess partially filled t2g d-orbitals. For integer occupancies of d-
electrons per B cation the geometrical degeneracy of the underlying lattice is often lifted by orbital ordering (OO),
leading to formation of spin-singlet dimers. Only four of the many spinel compounds are superconducting, of which
three have effective carrier density ρ = 1

2
: LiTi2O4, CuRh2S4, and CuRh2Se4. In LiTi2O4 there is one d-electron

per two Ti3.5+ ions; in CuRh2S4 and CuRh2Se4 the Rh3.5+ ions have average d-hole occupancy of 1
2
. Jahn-Teller

instability or OO can lead to occupancy of the same t2g orbitals, making the filled bands exactly 1
4
-filled, as in the

superconducting organic CTS (the apparently different spinel superconductor CuV2S4, also has noninteger number
of d-electrons per V3.5+ ion.)
Yet another similarity between the organics and the ρ = 1

2
spinels is the proximity of the superconducting state

to exotic semiconducting states. Thus CuIr2S4 and LiRh2O4, both isoelectronic with CuRh2S4, undergo MI tran-
sitions that are accompanied by CO. In CuIr2S4 the Ir ions are charge-ordered as Ir3+-Ir3+-Ir4+-Ir4+ along specific
directions114. This would correspond exactly to the · · · 0011· · · CO in our notation here. As in the 2D PEC, these
inorganic 3D systems are spin-gapped due to the formation of Ir4+-Ir4+ singlet bonds. It is interesting to recall that
similar singlet bonds between Ti3+ ions had been proposed93,115 many years back within bipolaron theories of Ti4O7

and LiTi2O4. As explicitly shown in our work here, the singlet bond formation is a natural consequence of frustration
and 1

4
-filling. Work is currently in progress to extend the PEC concept to the checkerboard lattice, thought to be 2D

equivalents of the pyrochlore lattice, multiple orbitals per site116.
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V. CONCLUSIONS

In summary, there is an extraordinarily strong tendency to form spin-singlets in systems with charge carrier con-
centration precisely 1

2
. Naturally, in ρ = 1

2
this spin-singlet state is accompanied by CO. The stability of the PEC

derives from the commensurability of the PEC at ρ = 1
2
. In the anisotropic triangular lattice, the PEC consists of

charge arrangements · · · 1100· · · in two directions and · · · 1010· · · in the third direction. Thus although ρ = 1
2
in

principle is incommensurate on the triangular lattice, “separately commensurate” periodic charge arrangements are
nevertheless possible.
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