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Abstract 

Previously, the authors reported direct evidence of channel saturation and conductance quantization in 

atomic-sized gold constrictions through mechanical perturbation studies, and also showed that peaks in 

conductance histograms are insufficient in evaluating their mechanical stability [Armstrong et al., Phys. 

Rev. B 82, 195416 (2010)]. In the present study, gold constrictions spanning the range from quantum to 

the semi-classical (Sharvin) conductance regimes are mechanically probed with pico-level resolution in 

applied force and deformation, along with simultaneous measurements of conductance. While 

reconfiguration from one constriction size to another is known to occur by apparently random discrete 

atomic displacements, results reveal a remarkable simplicity – the magnitude of discrete atomic 

displacements is limited to a small set of values that correspond to elementary slip distances in gold 

rather than Au-Au inter-atomic distance. Combined with measurements of spring constant of 

constrictions, results reveal two fundamental crossovers in deformation modes with increasing contact 

diameter – first, from homogeneous shear to defect mediated deformation at a diameter that is in close 

agreement with previous predictions (Sørensen et al., Phys. Rev. B 57, 3283 (1998)]; second, the 

discovery of another crossover marking surface to volume dominated deformation. A remarkable 

modulus enhancement is observed when the size of the constrictions approaches the Fermi wavelength 

of the electrons, and in the limit of a single-atom constriction it is at least 2 times that for bulk gold. 

Results provide atomistic insight into the stability of these constrictions and an evolutionary trace of 

deformation modes, beginning with a single-atom contact. 
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I. INTRODUCTION 

The physical properties of electronic devices composed of a single or few atoms/molecules deviate from 

their bulk counterparts, requiring semi-classical and ultimately a quantum mechanical framework for 

their description. Investigation of these devices provides information on either the extent to which these 

deviations occur or reveal entirely new phenomena at progressively smaller length scales.1-26 In 

particular, as the size of the conductor decreases, the conductance regime changes from classical, to 

semi-classical (Sharvin), to quantum. At the same time, the effect of atomic discreteness becomes ever 

more discernible in the experiments. For example, atomic reconfigurations within the conductor cause 

stepwise changes in conductance. These discrete changes in conductance are not to be confused with 

conductance quantization; simultaneous measurements of conductance and force on gold constrictions 

show that the stepwise changes in conductance occurs lockstep with stepwise changes in the measured 

force, signaling the occurrence of atomic rearrangement within the conductor.20, 21, 27-37 Given that these 

atomic-scale devices are acutely sensitive to minute perturbations (electrical, thermal, magnetic, 

chemical, mechanical, etc.), a fundamental understanding is needed on their mechanical stability, forces 

holding them together, and the ability to measure them.20, 21, 27, 31, 33-52 

In particular, through the earliest experimental work of Agraït and co-workers,31, 35 simultaneous 

measurements of conductance and force in gold constrictions show that a stepwise change in 

conductance is accompanied by a stepwise change in force, indicating a concomitant atomic 

rearrangement within the constriction. Theoretical results and simulations by Dreher et al.,21 Hasmy,53 

Todorov & Sutton,29, 30 and Sørensen et al.32 reveal the mechanistic understanding of atomistic processes 

occurring within the atomic sized constrictions. Their work reveal correlations between structure and 

conductance and make insightful predictions, highlighting the importance of understanding the behavior 

of atomic sized samples, and leading to the present study. 
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In a recent study, the authors used picometer level mechanical perturbations to show direct evidence of 

channel saturation and conductance quantization in atomic sized gold constrictions.20 These results also 

explained the origin of peaks in conductance histograms and showed that peaks are insufficient in 

evaluating the mechanical stability of atomic configurations. It was shown that there exists a quasi-

continuous distribution of atomic configurations, each with a slightly different conductance. Mechanical 

stability of these atomic configurations requires knowledge of their spring constant and deformation 

characteristics; this information cannot be obtained from conductance histograms. In the present study, 

dependence of the spring constant on the constriction size was measured and used to derive the modulus. 

Results show a remarkable modulus enhancement as the size of the constrictions approaches the Fermi 

wavelength of the electrons, and in the limit of a single-atom constriction the enhancement is at least 2 

times that for bulk gold. Furthermore, the magnitude of discrete atomic displacements occurring during 

reconfiguration from one constriction size to another is measured. Even though there are virtually 

countless ways in which constrictions may transition from one atomic configuration to another, results 

reveal a remarkable simplicity – the discrete atomic displacements always occur in units of elementary 

slip distances for gold. Results reveal two fundamental crossovers in deformation modes with increasing 

contact diameter, first one from homogeneous shear to defect mediated deformation, and then another 

from surface to volume dominated deformation. 

II. EXPERIMENTAL DETAILS 

Gold films (200 nm thick) were magnetron sputtered on silicon substrates in an Ar partial pressure of 3 

mtorr in a UHV chamber whose base pressure was ~10-8-10-9 torr. The Au sputtering target was 

99.999% pure. Atomic force microscope (AFM) silicon cantilever tips were sputter coated with Au films 

(60 nm thick) for force-deformation measurements. During deposition the cantilevers were periodically 

rotated relative to the sputtering gun to enhance the uniformity of the gold coating. 
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A modified AFM (Ambios Q-Scope Nomad) was used for simultaneous measurements of conductance 

and force-deformation at room temperature in inert atmosphere. The AFM assembly consisted of a dual 

piezo configuration, one for coarse and another for fine alignment of the substrate relative to the 

cantilever tip. With this configuration, the minimum step size was 4 pm and the noise was ~5 pm. A 

range of cantilever spring constants was used (20-70 N/m) to determine the spring constant of various 

sized constrictions (need for using cantilevers with different stiffness is discussed later). The cantilevers 

were precisely calibrated using reference cantilevers available from Veeco Probes (Force Calibration 

Cantilevers CLFC-NOBO). The photo-detector was calibrated using the well established optical 

deflection technique. Conductance traces were recorded at a bias voltage of 250 mV. For all 

experiments, the piezo was extended or retracted at a rate of 5 nm/s. The experimental setup is described 

in further detail elsewhere.20 

III. RESULTS AND DISCUSSION 

Figure 1(a-c) shows typical examples of simultaneously measured force and conductance traces during 

the deformation of the constrictions. Their size spans the conductance regimes from being quantized in 

single-atom to few atom contacts [inset of Fig. 1(a)] to semi-classical in Fig. 1(a-c). The example traces 

in Fig. 1(a-c) are obtained by elongating the piezo, which in turn causes the gold coated AFM tip to push 

against the gold film to form progressively larger contacts. Figure 1(d) shows an example where an 

initially large constriction is progressively broken down to a single-atom through piezo retraction. 

Notice that regardless of the conductance regime, in general, each atomic reconfiguration causes a 

stepwise change in force and a stepwise change in conductance. However, occasionally no observable 

change in conductance is observed corresponding to a stepwise change in force. This is shown in a trace 

in the inset of Fig. 1(b). It shows that an atomic reconfiguration has occurred in the vicinity of the 

constriction without altering the cross section area of the conductor. This behavior has previously been 
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predicted by simulation studies.32 This has implications related to the effective length of the constriction, 

which is discussed in detail later. 

After reviewing over a thousand traces, it is estimated that observation of a force jump without a 

corresponding jump in conductance (inset of Fig. 1b) occurs ~1% of the time. Additional examples of 

this are shown in Fig. S1(a-d) of the Supplementary document.54 Looking into the reverse, namely, 

observation of a jump in conductance without a corresponding jump in force, it is found that this also 

occurs ~1% of the time. Examples of this are shown in Fig. S2(a-d) of the Supplementary document.54 

One mechanism responsible for this occurrence is the possibility that an atom may have thermally 

migrated to the constriction, which would change conductance but would not result in a discrete change 

in force. Low temperature measurements are currently being initiated but they are beyond the scope of 

the present study. Also notice that unlike bulk materials where load-deformation curves are separated 

into an initially elastic region followed by permanent deformation, on the atomic scale the deformation 

is marked by successive elastic regions separated by catastrophic events where sudden atomic 

reconfigurations occur. 

Figures 2 and 3 explain various quantities of interest that can be derived from such traces. To explain, 

Fig. 2(a) schematically shows a gold constriction between a gold-coated cantilever tip and a gold film; 

the size of the constriction is shown greatly exaggerated relative to the cantilever and the film. As the 

piezo elongates (defined by its position ), the force on the constriction increases [reflected in the 

greater deflection of the cantilever for the constrictions labeled ‘A’ in Fig. 2(a)]. At some critical force 

 an atomic reconfiguration occurs to form a new constriction [labeled Constriction-B in Fig. 2(a)], and 

the force drops abruptly from  to . An example of stepwise change in force  

accompanying an atomic reconfiguration is shown in Fig. 2(b) corresponding to the trace shown in Fig. 

1(a). Also accompanying this atomic reconfiguration is a discrete change in length for the constriction 
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 and a stepwise change in conductance , as shown in Fig. 2(c). Note that the contact 

deformation ζ in Fig. 2(c) can be directly obtained from the relationship ; at the 

instant of an atomic reconfiguration (~1013 Hz) marked by the vertical arrows in Fig. 2(b-c),  

and the discrete change in length of the constriction . The inset in Fig. 2(c) 

also shows SEM micrographs of various gold coated AFM tip geometries used in the present study. 

There are two ways to calculate the spring constant of each constriction. First, since the spring constant 

of the cantilever can be determined precisely (see experimental details), the spring constant of the 

constriction can be derived from the relationship 

. Here  is the combined 

response of the cantilever and the constriction, which is obtained from the slope of the force versus 

piezo elongation (or retraction) trace for each constriction, as shown in Fig. 2(b). A range of cantilever 

spring constants were used (20-70 N/m) to determine the spring constant of various sized constrictions. 

This is necessitated by the fact that in the limit of , a small error in  

can lead to a large uncertainty in determining . This is shown in the Supplementary documents 

(Fig. S3) using the example of  equal to 24 N/m.54 An alternate (and equivalent) route to 

measure the spring constant of individual constrictions is to use traces such as those shown in Fig. 2(b-

c), and re-plot the force on the constrictions as a function of contact deformation , whose slopes 

then directly provides the spring constant of various atomic configurations. This is shown in Fig. 3 to 

highlight that the spring constant of various atomic configurations may have different values (for 

example, , , , etc.). Even two closely spaced configurations, such as those labeled  and  in 

Fig. 3, may have different spring constants. In Fig. 3, the abrupt change in force  and the 

accompanying abrupt change in contact length  during atomic reconfiguration are also labeled. 

The perceptible slope of conductance plateaus represents a small but finite change in conductance within 
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the elastic limits of various atomic configurations; a detailed investigation of strain dependence of 

conductance for quantum conductors is discussed elsewhere.20 In the present study, both approaches to 

calculate the spring constants were used and they gave similar results (although the former is less 

cumbersome). 

First consider the magnitudes of discrete atomic displacements during atomic reconfigurations. From 

hundreds of traces such as the one shown in Fig. 2(c), Fig. 4 plots  versus the conductance of 

the constriction; the inset in Fig. 4 shows a zoom-in view of the plot at lower values of . Figure 4 is 

obtained by plotting the values of  that various constrictions assume upon undergoing atomic 

reconfiguration. For example, with reference to Fig. 2(c) where the conductance jumps from an initial 

value of 29  to  [marked by the vertical arrow in Fig. 2(c)], the constriction is seen to undergo a 

discrete change in length equal to 0.198 nm; Fig. 4 plots this value of  at . There are 

several interesting features of this plot. First, the plot is clearly characterized by permissible and 

prohibited bands of ; the average permissible values of  are indicated by the horizontal 

lines. As opposed to being multiples of the Au-Au bond length of 0.288 nm, all the permissible values of 

 represent elementary slip distances (or multiples thereof) on the {111} close-packed planes, 

with constriction axis along <110>, <111>, or <100> directions. The present study reveals the existence 

of various levels due to picometer resolution in measured displacements, whereas previously, only a 

single band centered at an average value of 0.152 nm was reported for compression.34 Notice the four 

sharply separated permissible  levels in the inset of Fig. 4. The distances of 0.049 nm, 0.079 nm, 

and 0.088 nm correspond to hcp→fcc slip distances on {111} planes with constriction axis along the 

[110], [111], and [100] directions, respectively; the value of 0.098 nm corresponds to fcc→hcp slip 

distance with constriction axis along the [110] direction; see Ref. [34] for crystallography related to 

these values for gold. Figure 4 shows that these four sharply defined levels transitions into a diffuse 
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band with an average value of ~0.168 nm and this crossover occurs at a conductance value of . The 

diameter corresponding to this conductance value is equal to 1.45 nm (using Sharvin formula; discussed 

later). Even though this value is for the case of pushing the cantilever into the gold film, this crossover 

diameter matches remarkably well with the theoretically predicted constriction diameter of 1.5±0.3 nm 

for crossover from homogeneous shear to defect mediated deformation for gold in tension.32 The defect 

mediated deformation causes the sharply defined discrete displacement levels to form a diffuse band. 

Also, the average value of  for this band is close to the elementary slip distance of 0.166 nm on 

the {111} planes along the <112> direction in gold, which further confirms dislocation mediated 

deformation. In Fig. 4, as the size of the constrictions become larger, there is a higher probability for 

simultaneous slip on {111} planes, and explains the existence of the 0.504 nm band that is three times 

 equal to 0.168 nm; however the absence of another band at twice the value of 0.168 nm is 

interesting and need further studies. Also notice that the band at 0.393 nm is four times  equal to 

0.098 nm, and lies in the size regime where crossover from surface to volume dominated deformation 

occurs, as discussed below.  

Next, consider the vertical arrows, labeled I( ); II( ); III( ); and V( ) in Fig. 4; the 

absence of an arrow labeled as ‘IV’ is explained in the following. These arrows mark a threshold 

conductance value above which a new level of  becomes permissible. For example, constrictions 

whose size is greater than  (marked by arrow III) may undergo a discrete change in length at a new 

value of  equal to 0.393 nm in addition to the permissible values of  that are available to 

them below . The conductance values in the parenthesis adjacent to the arrows have special 

significance. As shown schematically in Fig. 4, a value of  corresponds to the formation of a 

complete ring of gold atoms around a single atom for a total of seven atoms; the conductance of a single 

atom of gold saturates at .20, 22 Similarly, values of  and  represents the completion of the 
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second and the third rings around the gold atom, corresponding to 19 and 37 atoms, respectively. While 

the fourth ring (61 atoms) is expected to appear at 61 , it is missing in Fig. 4, whereas the fifth ring 

with a total of 91 atoms appears experimentally at ~ , as marked by arrow V. As shown in the 

following, the missing fourth ring lies in between the crossover from surface to volume dominated 

deformation behavior, and this transition region is demarcated in Fig. 4. Note that the number of 

channels in an atom is equal to its valence electrons.22 Thus for gold, one atom can have a maximum of 

1  of conductance. Figure 4 schematically shows rings of atoms around a single gold atom for various 

crossovers only as an idealization. 

Figure 5 plots the spring constant  as a function of conductance (lower abscissa) and area (upper 

abscissa) of the constriction. In Fig. 5, the solid and dotted lines are theoretical values of the spring 

constant ( ) based on a modulus  of 78.5 GPa for bulk gold and derived using Sharvin 

formula for different ratios  of length to the diameter of the constrictions.55, 56 The Sharvin 

formula relates the conductance  to the area  of the constriction by the relationship 

; here  is the quantum of conductance;  is the 

quantum of charge;  is Planck constant, and  is the Fermi wavelength (= 0.52 nm for gold). The 

Sharvin formula allows the area of the constriction to be estimated for a given conductance, as shown on 

the upper abscissa in Fig. 5 (assuming a circular cross section). However, a priori, the effective length 

  of the constrictions is not known, and the solid and dotted lines plot the spring constants assuming 

different ratios of length to the diameter. Figure 5 clearly shows that up to a certain size of the 

constriction the experimentally measured data points closely follow the trend line represented by 

 and then transitions to the trend line for  for larger constrictions. This 

crossover can be seen to occur at conductance values between ~47 , corresponding to 
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constrictions cross section areas between ~4.1-5.7 nm2 (or a constriction diameter of 2.27-2.67 nm). 

This crossover region corresponds well with the crossover region shown in Fig. 4. 

Recall that in Fig. 5, the theoretical trend lines for spring constants for various  ratios were 

plotted by assuming the modulus value for bulk gold. Conversely, one can arbitrarily assume a ratio for 

 in order to assess the size dependence of the modulus. Figure 6 plots the size dependence of the 

modulus by assuming . The significance of assuming  is that it represents the 

limiting case of a single-atom contact, where the diameter of the atom equals its length. Figure 6 shows 

that there is a large modulus enhancement up to two times the value for bulk gold in the limit of a 

single-atom constriction. As the diameter of the constriction increases, there is a minimum in modulus at 

a diameter of ~1.0 nm, corresponding to constriction area ~0.78 nm2 and conductance of ~ . With 

further increase in the size of the constriction, the modulus approaches the bulk value. This occurs at 

constriction diameter ~2.7 nm corresponding to the conductance of ~ . It is consistent with the 

missing transition for  at 61  in Fig. 4 for the fourth gold ring, corresponding to the crossover 

from surface to volume dominated deformation.` 

Fig. 7 plots  versus conductance for the case of initially large constrictions being pulled apart 

to progressively smaller sizes through piezo retraction; see for example the trace in Fig. 1(d). In contrast 

to Fig. 4 where constrictions were pushed into progressively larger diameters through piezo elongation, 

the permissible and prohibited bands of  in Fig. 7 are less well defined; this difference arises 

simply because of the fact that in the former case the constrictions neck cannot be stretched, whereas in 

pulling, a constriction has the possibility to elongate without changing its effective cross section area 

(that determines its conductance). Consequently a range of  ratios may be expected for piezo 

retraction, as shown in the following. Another salient feature of Fig. 7 is the absence of any level for 
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 below 0.098 nm. By comparison, the inset in Fig. 4 shows three well defined levels below 

0.098 nm. However, threshold conductance values above which a new level of  becomes 

permissible can still be roughly seen, as marked by the vertical arrows. Figure 8(a) plots the spring 

constant as a function of size for this dataset. The zoom-in view in the inset of Fig. 8(a) shows that only 

in the limit of single-atom constriction (marked by the vertical arrow at ), the experimental spring 

constant values fall on the  trend line. This is followed by a transition to the trend line for 

 for constrictions up to  (as marked by the vertical arrow), beyond which the spring 

constants follow a range of  ratios. In contrast to the data in Fig. 5, where the spring constant 

data transitions to a lower  ratio within a well defined transition region, the data in Fig. 8(a) 

trends towards higher  ratios of up to 6-8 for larger sized constrictions. Analogous to the 

procedure described in Fig. 6, the size dependence of modulus is plotted in Fig. 8(b). Again, the salient 

feature of this plot is the apparently large enhancement in modulus in the limit of a single atom that is 

up to 5 times that of modulus for bulk gold. However the modulus is calculated by assuming 

. If one were to take another ratio for  (say, ), the calculated values of 

modulus in the limit of a single atom would be much smaller. Therefore the validity of modulus 

enhancement has to be ascertained, and the following approach provides a benchmark for validating its 

existence. 

Figure 9(a-b) respectively maps  ratios as a function of contact diameter using the spring 

constant data shown in Fig. 5 (for the case of constrictions formed by piezo elongation) and Fig. 8(a) 

(for the case of piezo retraction), assuming the modulus value for bulk gold. Figure 9(a) shows that in 

the limit of a single atom, the  actually becomes less than one (shown encircled). This is 

physically impossible as  is the smallest possible value that a single-atom constriction can 
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take. This shows that the modulus enhancement indeed exists and is at least 2 times the value in the bulk 

(the lower bound). On the other hand, the data in Fig. 9(b) might suggest absence of any modulus 

enhancement since the value of  ratio does not drops below 1 in the limit of a single-atom 

constriction (shown encircled). However, in describing the  ratio,  is the effective length 

over which the deformation occurs, as shown schematically in Fig. 9(b). Thus, for example, at , 

the definition implies that the deformation only occurs over a length equal to the diameter of the 

constriction, and would have no impact beyond. This is obviously unrealistic and in the limit of a single 

atom, the deformation surely extends beyond one atomic diameter.32 As shown earlier with the aid of an 

example trace in the inset of Fig. 1(b), forces can cause an atomic reconfiguration away from the 

constriction. Although the compression data in Fig. 9(a) clearly shows that the lower bound of modulus 

enhancement is at least 2 times that for bulk gold, without precise information on contact geometry and 

deformation away from the constriction for Fig. 9(b), it is not possible to ascertain the upper bound of 

this enhancement. 

Previous studies based on density function theory and dynamic simulations predict bond strengthening 

at comparable scale that is seen from modulus enhancement in the present study.29, 57 As to the extent of 

modulus enhancement, note that Sharvin analysis deviates in the limit of a single atom, but the estimate 

one gets provides a conservative rather than an exaggerated estimate of the enhancement. The atomic 

diameter of a gold atom is known precisely, and using that value, the estimated modulus enhancement 

from the measured spring constants would be 2.5 times that for bulk gold (instead of 2 times using 

Sharvin estimate). Similarly, using a diameter values estimated from single-atom gold chains,58 a 

modulus enhancement by a factor of 3 would be obtained. However all the data is base-lined using 

Sharvin estimate simply because it gives the most conservative estimate of modulus enhancement. Also 

note that over repeated measurements the spring constant gets measured over different orientations of 

atomic configurations, and saturates at ~100 GPa for large diameters. This value is slightly higher than 
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the modulus of polycrystalline gold (~78 GPa) and is close to the modulus of 110 GPa along the <111> 

direction (the lowest value of modulus for gold being 40 GPa along the <100> direction). A value of 

modulus closer to <111> direction is also in accord with Hasmy’s molecular dynamics simulations that 

predicts <111> as the favorable reconstruction.53 Finally, the definition of modulus in the context of 

atomic sized samples is best seen from the point of view of slope of the net attractive/repulsive forces 

versus inter-atomic distances (as opposed to the classical mechanics definition). 

IV. CONCLUSIONS 

Results show a remarkable modulus enhancement as the size of the constrictions approaches the Fermi 

wavelength of the electrons, and in the limit of a single-atom constriction it is at least 2 times that for 

bulk gold. The observed modulus enhancement by a factor of 2 represents the lower bound. Precise 

information on contact geometry and deformation away from the constrictions is needed to establish the 

upper bound of modulus enhancement. 

While reconfiguration from one constriction size to another is known to occur by apparently random 

discrete atomic displacements, results show that the magnitude of these displacements is not arbitrary 

but is limited to a small set of values defined by the gold crystallography rather than Au-Au inter-atomic 

distance.  

Two fundamental crossovers in deformation modes are observed with increasing contact diameter. The 

first crossover is from homogeneous shear to defect mediated deformation at a constriction diameter 

(~1.45 nm) that not only matches with previously predicted value (1.5±0.3 nm) for tension,32 but is even 

more sharply demarcated for compression. Another crossover is observed at constriction diameters 

between 2.0-3.2 nm marking the transition from surface to volume dominated deformation. 

Results provide atomistic insight into the mechanics of these constrictions and reveal the evolutionary 

trace of deformation modes, beginning with a single-atom contact. 
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Whether the reversible deformation of individual constrictions follows linear elasticity or non-linear 

elasticity remains to be further investigated and is beyond the scope of the present studies. 
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FIGURE CAPTIONS 

FIG. 1. Simultaneously measured conductance and force versus the deformation of the 

constrictions in different conductance regimes. (a-c) corresponds to piezo elongation, which causes the 

Au-coated AFM tip to push against the Au film to form progressively larger constrictions. The inset in 

(a) shows the zoom-in view of measured conductance and force in the regime of quantized conductance. 

Inset in (b) shows a trace that exhibits no observable change in conductance corresponding to a stepwise 

change in force. (d) corresponds to piezo retraction that causes an initially large constrictions to be 

pulled apart to progressively smaller sizes. The piezo elongation or retraction speed is 5 nm/s. 

FIG. 2. (a) Schematic showing a gold constriction between a gold-coated cantilever tip and a 

gold film. The size of the constriction is exaggerated relative to the cantilever and the film. (b-c) 

Continuous and discrete changes in force, conductance, and length of various sized constrictions as they 

assume different atomic configurations. See text for explanation. The inset in (c) shows SEM 

micrographs of various Au-coated cantilever geometries. 

FIG. 3. The force on the constrictions as a function of contact deformation , whose slopes 

equals the spring constant of various atomic configurations. The abrupt change in force  and the 

accompanying abrupt change in contact length  are also labeled. 

FIG. 4. Plot of  versus the conductance of the constrictions formed by piezo elongation; 

the inset shows a zoom-in view at lower values of . See text for explanation. 

FIG. 5. (a) Spring constants  of the constrictions as a function of their conductance and 

also their area calculated using Sharvin’s semi-classical formula. The contacts are formed by piezo 

elongation. Each data point represents an average over 20 measurements; the inset shows their standard 
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deviation. For contacts with conductance less than , each point is an average over three 

measurements. The solid and dotted lines are theoretical values of the spring constant for different 

 ratios, using a modulus of 78.5 GPa for bulk gold and derived using Sharvin formula. 

FIG. 6. The size dependence of the modulus of the constrictions assuming . The dotted 

line is an aid to the eyes. 

FIG. 7. Plot of  versus the conductance of the constrictions formed by piezo retraction; 

the inset shows a zoom-in view at lower values of . See text for explanation. 

FIG. 8. (a) Spring constant  of the constrictions as a function of their conductance and 

also their area calculated using Sharvin formula. The contacts are formed by piezo retraction. Each data 

point represents an average over 25 measurements; for contacts with conductance less than , each 

point is an average over three measurements. The inset shows the zoom-in view at lower values of 

conductance, which shows  ratio of 1 in the limit of single-atom contact, increasing to 2 for 

conductance up to , and then taking a range of higher ratios for larger sized constrictions. The solid 

and dotted lines are theoretical values of the spring constant for different  ratios, using a 

modulus of 78.5 GPa for bulk gold and derived using Sharvin formula. (b) The size dependence of the 

modulus of the constrictions assuming . 

FIG. 9. (a) Map of  ratio as a function of contact diameter using the spring constants 

shown in Fig. 5 for the case of constrictions formed by piezo elongation, and (b) for the case of piezo 

retraction in Fig. 8(a), assuming modulus value of bulk gold.
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