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The electron-hole inhomogeneity in graphene has been confirmed to be a new type of charge
disorder by recent experiments, and the largest energy displacement of electron and hole puddles
with respect to the Dirac point can reach nearly 30meV . Here we focus on how electron-hole
inhomogeneity affects the specular Andreev reflection as well as Andreev retroreflection. In a four-
terminal graphene-superconductor hybrid system, we find that the Andreev coefficients can hardly be
affected even under rather large electron-hole inhomogeneity (typically 30meV ), and the boundary
distinguishing two Andreev reflections can well hold, although the charge puddles strength W =
30meV is much larger than the superconductor gap ∆ = 1meV . Furthermore when charge puddles
are two orders larger than superconductor gap, a specific kind of Andreev reflection can be still
obviously detected. In order to quantitatively describe what degree of the boundary blurred, a
quantity D is introduced which measures the width of a crossover region between specular Andreev
reflection and retroreflection in energy space. We confirm that the boundary blurring are much
smaller than the charge puddles strength W . In addition, we study the effect of Anderson disorder
as well for comparison, and find that the boundary is held much more obviously in this case. Finally,
the fluctuations of Andreev reflection coefficient are studied. Under a typical experimental charge
puddles, the fluctuations are very small when energy of the particles is away from the boundary,
again confirming that the retroreflection and specular reflection can be clearly distinguished and
detected in the presence of electron-hole inhomogeneity.

PACS numbers: 74.45.+c, 73.23.-b

I. INTRODUCTION

Graphene,2–5 a new and ideal two-dimensional ma-
terial with peculiar electronic properties, has attracted
many attentions in the past few years since it was success-
fully fabricated in 2004.6–8 At low energy, the graphene
has the linear dispersion relation E = ±h̄νF |k| with the
Fermi velocity νF and its carriers are described by mass-
less Dirac relativistic equation,3,9 leading to many pe-
culiar phenomena, such as relativistic Klein tunneling10

and Veselago lensing in a graphene p-n junction11 etc.
Besides, the transport properties of graphene are also
unique, and recently they have been broadly studied in
various mesoscopic devices: like the graphene based p-
n junction,12,13 spin valve,14 Aharonov-Bohm ring15 and
graphene-superconductor hybrid systems.2,16–19 For ex-
ample, in a graphene based Josephson junction, which is
realized by coupling two superconducting electrodes to a
graphene layer in experiments,18 a nonzero supercurrent
occurs even at zero carrier concentration while the Fermi
level is located at the Dirac point.16

The transport property at the graphene-
superconductor interface is of great interest as well.
Specifically, the characteristic of specular Andreev
reflection proposed by Beenakker in 2006.2,19 Regular
Andreev reflection occurs at the interface between a
normal metal and superconductor, in which an incident
electron from the metal is retroreflected as a hole while
a Cooper pair forms in the superconductor.20 Situation

changes when the Andreev reflection occurs at the
interface between graphene and superconductor, since
the direction of reflected hole can be along the specular
direction. In detail, the usual Andreev retroreflection
occurs only when electron-hole conversion is of intra-
band, i.e. both incident electron and reflected hole are
from conduction band or valence band. On the other
hand, if the electron-hole conversion is interband (i.e.,
the incident electron and reflected hole are respectively
in conduction and valence bands), the specular Andreev
reflection occurs. From standpoint of the incident
electron energy E and the Dirac-point energy E0, while
|E| < |E0|, both incident electron and reflected hole will
be in the same band and it is the Andreev retroreflected.
On the other hand, while |E| > |E0|, the incident elec-
tron and reflected hole are in different bands so that it is
the specular Andreev reflection. Thus |E| = |E0| is the
boundary of the retroreflected and specular reflection.
After the work by Beenakker, a great deal sequent
works have investigated the Andreev reflection in the
graphene-superconductor device.21,22 Several methods
have been proposed for the confirmation of the existence
of specular Andreev reflection.21,22

In the two-terminal graphene-superconductor device,
both Andreev retroreflection and specular Andreev re-
flection usually exist. Recently, we have suggested to
manipulate and separate the retroreflection and specular
reflection in a four-terminal graphene-superconductor hy-
brid system, which has two superconductor terminals.22
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A specific type of Andreev reflection can be obtained by
adjusting the superconductor phase difference θ. When
the phase difference θ = 0, the specular reflection dis-
appears because of the destructive quantum interference
and only the retroreflection occurs. On the other hand,
while θ = π, the retroreflection vanishes and the spec-
ular reflection exists only. Therefore, a clear boundary
emerges at |E| = |E0|. On the one side of |E| = |E0|, the
Andreev reflection coefficient is zero, but on the other
side it has finite values.

In the experiment, the disorder always exists more
or less. Due to the disorder, the on-site energies of
carbon atoms can have a random departure from the
Dirac point, which induces magnificent variation of den-
sity of states and correspondence different characters
of transport properties.23,24 For example, the disorder
in a graphene p-n junction can result in some extra
conductance plateaus,12,13 and the existence of charge
puddle disorder may be responsible for the minimum
conductance.25 Recently, the experiment26 has confirmed
that the charge puddle disorder (the electron-hole inho-
mogeneity) indeed exists. In particular, the strength
of the electron-hole puddle can approximately reach
30meV and the size of such puddle is about several
nanometers.27,28 In a clean graphene sample Dirac point
is well defined at which local density of states vanishes,
while it is not in the presence of disorder. Now Dirac
point has the energy fluctuation with the same strength
as the disorder. In this situation the Andreev retroreflec-
tion and specular Andreev reflection seem to be chaotic
due to the not well-defined Dirac points. Since a typical
superconductor energy gap is about 1meV which is much
less than the energy fluctuation 30meV of Dirac point,
one question naturally arises: could it still be possible
to distinguish the two kinds of Andreev reflections? Is
the boundary |E| = |E0| of the retroreflection and spec-
ular reflection still clear? These questions are not limited
only in the four-terminal graphene-superconductor inter-
ference system. For the general graphene-superconductor
hybrid system, the questions still keep. Intuitively, the
blurring of the boundary should be in the same order of
the energy fluctuation of the Dirac point, accordingly the
two kinds of Andreev reflections can not be distinguished
clearly any more while the strength of disorder is 30meV .

In this paper, we theoretically investigate the effect
of the disorder on the boundary distinguishing Andreev
retroreflection and specular Andreev reflection. We con-
sider a four-terminal graphene-superconductor hybrid
system consisting of two superconductor leads coupled
to a zigzag edged graphene ribbon, as shown in Fig.1(a).
The two superconductor leads have a phase difference θ
and there exists disorder in the center region of graphene.
Here two kinds of disorders, the Anderson disorder and
electron-hole inhomogeneity (charge puddle disorder),
are considered. By using the non-equilibrium Green’s
function method, the Andreev reflection coefficients can
be calculated. We find that, the Andreev coefficients
can hardly be affected under rather large electron-hole

(b)(a)

FIG. 1: (Color online) (a): Schematic diagram of a four ter-
minal graphene-superconductor hybrid system. Leads 1 and
3 are zigzag edged graphene terminals while leads 2 and 4 are
superconductor terminals. The electron-hole inhomogeneity
is assumed to occur only in the center region with the size
N×N illustrated as the middle rectangular area where N = 8.
(b): Illustration of spatial charge inhomogeneity in graphene
with W = 30meV , where red parts (packets) and blue parts
(dips) are electron puddles and hole puddles respectively.

inhomogeneity (typically 30meV as in experiment), and
the boundary at |E| = |E0| of the retroreflection and
specular reflection is very clear, so two kinds of Andreev
reflections can be also well distinguished. Even if in the
case of very large puddle disorder (e.g., two orders larger
than the superconductor gap), a specific kind of An-
dreev reflection can be still obviously detected, and the
boundary at |E| = |E0| still exists. In order to quantita-
tively describe to what degree the boundary is blurred,
a quantity D of boundary blurring is introduced. The
D-W relation under different puddles correlation param-
eter and superconductor gap is studied as well. In gen-
eral, when strength of electron-hole inhomogeneity W is
20meV , the boundary blurring D is about 0.05meV and
D/W ≈ 0.003 only. In addition, we study the effect of
Anderson disorder for comparison, and found that the
boundary at |E| = |E0| is held much more obviously in
this case, andD/W ≈ 0.0003. Finally, the fluctuations of
Andreev reflection coefficients are studied. Except for in
the vicinity of the boundary |E| = |E0|, the fluctuation
almost has very small value for a typical disorder strength
W = 30meV , again confirming that, the disorders have
little effect on Andreev reflections as well as the bound-
ary lying at |E| = |E0|, accordingly the retroreflection
and specular reflection can be clearly distinguished.

The rest of this paper is organized as follows. In section
II, we give the tight-binding Hamiltonian of graphene-
superconductor hybrid system with electron-hole inho-
mogeneity, the Keldysh non-equilibrium Green’s function
method for calculating Andreev reflection coefficients,
and correspondence parameters. Numerical results and
detailed discussions are demonstrated in section III. Fi-
nally, we summarize our results in Section IV.
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II. MODEL AND HAMILTONIAN

We consider a four-terminal system consisting of a
zigzag edged graphene ribbon symmetrically coupled by
two superconductor leads as seen in Fig.1(a). The
graphene ribbon with widthN is divided into three parts:
the terminal 1, center region, and the terminal 3. The
electron-hole inhomogeneity is assumed to occur only in
the center region. The terminals 2 and 4 are supercon-
ductor leads.
In the tight-binding representation, the Hamiltonian

of the graphene ribbon is given by:

HG =
∑

iσ

(E0 + εi)a
†
iσaiσ − t

∑

<ij>,σ

a†iσajσ (1)

where t denotes the nearest neighbor hopping energy, a†iσ
(aiσ) is the creation (annihilation) operator of electron
with spin σ ∈ {↑, ↓} at the ith site. Being the on-site
energy of carbon atoms, E0 stands for the energy of Dirac
points. Finally, the electron-hole inhomogeneity in the
center region is represented by εi (see Fig. 1(b)), with
the value given by29

εi =

∑
j ε̃j exp (−|rij |2/2η2)√∑

j exp (−|rij |2/η2)
(2)

where η is the spatial correlation parameter and |rij | is
the distance between site i and j. The sum of j runs
over all sites in the center region. Here ε̃j is the uncor-
related on-site energy in the center region subjecting to
a Gaussian distribution with zero mean and a variance
W .30 In the case of Anderson disorder, εi in the center
region is set by a uniform random distribution within
[−W/2,W/2] with W being the disorder strength.
We use BCS Hamiltonian to describe superconductor

leads,31

HSα =
∑

kσ

εkC
†
kσ,αCkσ,α

+
∑

k

(∆αCk↓,αC−k↑,α +∆∗
αC

†
−k↑,αC

†
k↓,α) (3)

where α = 2, 4 is the index of the superconductor leads,
and ∆α = ∆eiθα is the superconductor order parame-
ter with gap ∆ and phase θα. In Eq.(3), we have set
the chemical potential of the superconductor leads be-
ing zero as the energy zero point. The coupling between
superconductor leads and graphene is described by22,31

HTα =
∑

iσ

ta†iσCα,σ(xi) +H.c. (4)

in which xi denotes the horizonal position of the ith car-
bon atom, and Cα,σ(x) =

∑
kx,ky

eikxxCkα,σ.
22,31 Here

the chemical potential of superconductor leads εk is set
to be the zero energy level. Thus the whole Hamiltonian

of graphene-superconductor hybrid system is described
by

H = HG +
∑

α=2,4

(HSα +HTα) (5)

By using the non-equilibrium Green’s function
method, the Andreev reflection coefficients T11A and
T13A for the incident electron coming from the termi-
nal 1 with energy E and the hole reflected to terminals
1 and 3 can be obtained:22,31

{
T11A(E) = Tr{Γ1↑↑G

r
↑↓Γ1↓↓G

a
↓↑},

T13A(E) = Tr{Γ1↑↑G
r
↑↓Γ3↓↓G

a
↓↑}.

(6)

where the subscripts ↑↑, ↑↓, ↓↑, and ↓↓ represent the 11,
12, 21, and 22 matrix elements respectively in the Nambu
representation. The retarded and advanced Green func-
tions in Nambu representation are defined by Gr(E) =
[Ga(E)]† = (EI−Hc −

∑
α=1,2,3,4Σ

r
α)

−1. Here Hc is
the Hamiltonian of the center region labeled by a rect-
angular area as seen in Fig.1(a), and I is the identity
matrix with the same dimension as Hc. The coupling
between center region and lead α is accounted by the
retarded self-energy Σr

α(E) = tgrα,ij(E)t, where grα,ij(E)
is the surface Green’s function of lead α. In Eq. (6),
the linewidth function Γα(E) is defined with the aid of
self-energy as Γα(E) = i[Σr

α − (Σr
α)

†].
The surface Green’s function of the graphene terminals

(i.e., leads 1 and 3) can be obtained through a standard
numerical calculation procedure.32 For the superconduc-
tor terminals (leads 2 and 4), the surface Green’s function
is obtained analytically,31,33

gr
α,ij(E) = −iπρβ(E)J0[kF (xi − xj)]

(
1 ∆α/E

∆∗
α/E 1

)
,

(7)
where ρ is the normal density of states, J0[kF (xi − xj)]
is the 0th order Bessel function with the Fermi wave vec-
tor kF , and β(E) = −iE/

√
∆2 − E2 for |E| < ∆ and

β(E) = |E|/
√
E2 −∆2 for |E| > ∆. In the following nu-

merical simulations, we set the Fermi wave-vector kF =

1Å
−1

and the superconductor gap ∆ = 1meV (except in
Fig.3(b)) as energy unit, which is approximately t/2750
with t being the hopping energy (t ≃ 2.75eV ). The spa-
tial correlation parameter of electron-hole inhomogeneity
is set as η = 3.5nm (except in Fig. 3(a)) so that the size
of charge puddle is approximately 3nm × 3nm.27 The
size of the center region is depicted by N×N with N de-
scribing the size of the graphene ribbon. Specifically, the
width of ribbon is (3N − 1)a and the length of the center

region is
√
3Na with a = 0.142nm being the length of

C-C bond in graphene. Hereafter, we set N as N = 50.
In this size the center region has dozens of charge pud-
dles. A typical charge inhomogeneity for the parame-
ters W = 30meV , η = 3.5nm and N = 50 is shown in
Fig.1(b). Finally, while in the presence of disorder, the
Andreev reflection coefficients and their fluctuations are
averaged over up to 1000 random configurations.
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FIG. 2: (Color online) Andreev reflection coefficients T11A

and T13A versus energy E with superconductor phase differ-
ence θ = 0 (in panel (a) and (b)) and θ = π (in panel (c) and
(d)), where the different curves are for different strengths W
of charge inhomogeneity. Other parameters unmentioned are
N = 50, η = 3.5nm and E0 = −0.5∆.

III. NUMERICAL RESULTS AND DISCUSSION

While in the absence of disorders for the four-terminal
graphene-superconductor hybrid system, the Andreev
retroreflection and specular Andreev reflection can be
manipulated and separated by adjusting the supercon-
ductor phase difference θ.22 Specifically, the Andreev
retroreflection disappears at θ = π, while the specular
reflection vanishes at θ = 0. A clear boundary emerges
at |E| = |E0|. On the one side of boundary, the Andreev
reflection coefficients T11A and T13A are all zeros, whereas
they have large values on the other side. In detail, while
θ = 0, T11A and T13A are zeros on the side of |E| > |E0|,
whereas while θ = π, they are zeros on the side of
|E| < |E0|. Hereafter, we focus on the effect of the disor-
der on the boundary |E| = |E0| and investigate whether
the two kinds of Andreev reflections can be distinguished
while in the presence of disorder. In Fig.2, we show the
Andreev reflection coefficients T11A and T13A under dif-
ferent electron-hole inhomogeneity disorder strength W
with the phase difference θ = 0 and θ = π. We can
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FIG. 3: The net discrepancy D in the case of θ = 0 versus
the disorder strength W is shown in two cases: charge puddles
disorder (a and b) and Anderson disorder (c). The parameters
are: in panel (a) N = 50 and ∆ = 1meV with different
η values and in (b) N = 50 and η = 3.5nm with different
superconductor gap (here we let ∆′ be the superconductor
gap and the sign ∆ = 1meV still keeps). The data in the
charge puddles case (for ∆ = 1meV , N = 50 and η = 3.5nm)
are extracted from Fig.2(a) and in the Anderson disorder case,
the data are from Fig.4(a) .

see that, for small disorder strength W (e.g., W = 10∆),
T11A and T13A are almost the same as that under W = 0.
Andreev reflections occur only on the side of |E| < |E0|
when θ = 0, while situation reverses at θ = π, result-
ing that a boundary clearly distinguishing two kinds of
Andreev reflections lies exactly at |E| = |E0| regardless
of θ = 0 or π. With increasing the disorder strength
W (e.g., W = 20∆, 50∆), by intuition Andreev retrore-
flection and specular Andreev reflection seem to become
chaotic since W at the moment has been ten times larger
than superconductor gap ∆ and Andreev reflections oc-
cur mainly within the gap (|E| < |∆|).34 Conversely, from
Fig.2, the boundary at |E| = |E0| is found to remain
clear even the disorder strength reaches 80∆. That’s to
say, the blurring of boundary of retroreflection and spec-
ular reflection is much smaller than disorder strength W ,
and a certain kind of Andreev reflection can be still de-
tected with charge puddles. Of course, if the disorder
strength W is very large (e.g. W = 200∆), Andreev
reflections become totally chaotic and the boundary dis-
appears. In the experiment, a typical disorder strength
W is about 20meV (20∆), and the largest displacement
of electron (hole) puddles with respect to Dirac points is
reported ≈ 30∆.26,28 Under these experimental disorder
strengthes, the boundary can clearly hold and two kinds
of Andreev reflections can be perfectly distinguished.

Next, in order to quantitatively describe to what de-
gree the boundary at |E| = |E0| is blurred by the dis-
order, we introduce a quantity D of boundary blurring
which is defined as the discrepancy due to the disorder.
Specifically, D value can be extracted from Fig.2(a) as
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FIG. 4: (Color online) Andreev retroreflection coefficients
T11A versus energy E under different Anderson disorder
strengths W in two cases: θ = 0 (in panel (a) and (b)) and
θ = π (in panel (c) and (d)), where W varies from 10∆ to
400∆ in (a) and (c), while from 0.2t to 3.0t in (b) and (d).
The parameters unmentioned are the same as in Fig.2.

follows. Under any specific disorder strength W , the
curve T11A has crossing points with the horizontal lines
0.1 and 0.3, and we denote the abscissas of the cross-
ing points as E1 and E2 respectively (E1 > 0, E2 > 0).

Accordingly we have D̃(W ) ≡ |E2 − E1|, and then D

is defined as D(W ) ≡ D̃(W ) − D̃(0). Because that the
Andreev reflection coefficient T11A rapidly varies in the
vicinity of the boundary |E| = |E0|, the net discrepancy
D can well describe the degree of blurred boundary due
to disorder. Fig.3(a) and (b) show D as a function of
disorder strength of electron-hole inhomogeneity W un-
der different spatial correlation length η and the super-
conductor gap. From Fig.3(a) and (b), we find that D
always monotonously but very slowly increases with the
increase ofW , indicating that the boundary at |E| = |E0|
becomes to blur in the presence of charge disorder, but
it is not obvious. Specifically, for a typical experimental
electron-hole puddle disorder strength (W ≈ 20∆), D is
less than 0.06∆ in all cases and D/W ≈ 0.003. For a
very large disorder strength (e.g. W = 100∆), D is still
less than 0.5∆ in all cases in Fig.3(a) and (b). In other
words, the boundary blurring is much smaller than the
disorder strength W .

Let us study the origination of the small ratioD/W . In
the presence of the disorder, the on-site energy E0 + ǫi is
a Gaussian distribution with the fluctuation (or variance)
W . Let us introduce the mean on-site energy Ē0, and it

is defined as Ē0 ≡ ∑Ns

i=1(E0 + ǫi)/Ns where Ns is the to-
tal site number in the center region. Due to the disorder,
the mean on-site energy Ē0 (in other words, the mean
Dirac point energy) for a specific disorder configuration
usually is not equal to E0 and so it has the fluctuation.
However, the fluctuation of Ē0 is much smaller than W ,
and it can approximatively be W/Np with Np being the
electron and hole puddle number in the center region.
From the above numerical results, D is near the fluctua-
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FIG. 5: (Color online) T11A and T13A versus disorder strength
W are shown in both charge puddle disorder (in panel (a) and
(c)) and Anderson disorder (in panel (b) and (d)) at θ = 0,
where the different curves are for different energies E. The
parameters unmentioned are the same as in Fig.2.

tion of Ē0. This means that the boundary blurring D is
mainly determined by the fluctuation of the mean value
of on-site energies over the whole center region.

Furthermore, let us discuss the effect of the systemic
parameters (spatial correlation parameter η and the su-
perconductor gap) on D in detail. We find that with η
increasing,D is increased for any given impurity strength
W (see Fig.3a). From Eq.(2), we can see that the smaller
η value corresponds to weaker correlation of on-site en-
ergies, and then there are more electron-hole puddles in
the center region, leading that the smaller fluctuation
of Ē0 and the smaller ratio D/W are. In the limit of
η → 0, the on-site energies is totally uncorrelated and the
charge puddles model becomes similar to Anderson dis-
order model. So D/W of the Anderson disorder always
is smaller than the charge puddle disorder (see below).
Besides, Fig.3(b) shows D is almost independent on the
superconductor gap while W < 50∆, because that the
D/W is mainly determined by the fluctuation of Ē0. On
the other side, while W > 50∆ D is slightly larger for
the larger superconductor gap.

So far we have investigated the effect of charge puddle
disorder on the boundary of two kinds of Andreev reflec-
tions. Besides, there is another significant kind of charge
disorder, named Anderson disorder, which has been in-
vestigated broadly in the past few years.13,35 In the fol-
lowing we investigate the effect of Anderson disorder for
comparison with charge puddle situation. Fig.4 shows
the Andreev reflection coefficient T11A versus E under
different Anderson disorder strength W with the super-
conductor phase difference θ = 0 and π. In the case of
a weak disorder strength (e.g.: W = 50∆), the shape of
T11A curves is found to be almost the same as the one
in W = 0 situation in both cases θ = 0 and θ = π (see
Fig.4(a) and Fig.4(c)). Accordingly, the boundaries ly-
ing at |E| = |E0| are almost unchanged as well. With W
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up to 200∆ and 400∆, although the curves are slightly
changed and the boundaries begin to weakly blur around
|E| = |E0|, it is still easy to clearly distinguish two kinds
of Andreev reflections (see Fig.4(a) and (c)). Next we
further increase the Anderson disorder strength to be
comparable with the hopping energy t (t = 2750∆). In
this situation Andreev reflections are affected much more
greatly than smaller W , and the retroreflection and spec-
ular reflection become totally chaotic when W is around
3.0t (see Fig.4(b) and Fig.4(d)). In detail, T11A decreases
within the interval [−|E0|, |E0|] and increases in the re-
gion |E0| < |E| < ∆ when θ = 0, and the results re-
verse when θ = π. However, we emphasize that while
the disorder strength W reaches 0.5t, two kinds of An-
dreev reflections can be still well distinguished, although
the boundary is blurred a lot (see Fig.4(b) and Fig.4(d)).

By comparison between Fig.4 and Fig.2, we can see
that the behaviors of the Andreev reflection coefficient
under a larger Anderson disorder strength are similar
to that under a rather weak electron-hole puddle dis-
order strength, and this can be explained as follows.
In the tight-binding model, the hoping matrix element
t = h̄2/2m∗ã2 is related to the lattice constant ã.36

For charge puddles model, the on-site energies of carbon
atoms subject to Gaussian distribution. In real space,
the on-site energies are correlated in short range and
randomly distributed in long range. But for Anderson
disorder model, the on-site energies of carbon atoms are
randomly distributed both in short range and long range.
Hence the correlation length of puddles is larger than
that of Anderson disorder model. Therefore the influ-
ence of charge puddle model in the long range is similar
to that of Anderson disorder model in the short range
with a larger effective disorder strength. In Fig.3(c), for
comparison the D-W relation is also shown for Anderson
disorder case. Similar to the charge puddle situation, the
net discrepancy value D increase monotonously with the
increase of disorder strength W . However, now the value
D/W is very small, e.g. for W = 300∆, D only is about
0.08 and D/W ≈ 0.0003, indicating clearly that the An-
derson disorder do have smaller effect than the charge
puddles disorder.

Next we study the effect of disorders on Andreev re-
flections from another view, and investigate T11A and
T13A as function of W at given incident electron ener-
gies E. The superconductor phase is set as θ = 0, and
the numerical results are shown in Fig.5. While with-
out the disorders (W = 0), T11A(T13A) is exactly zero at
|E| > |E0| and has finite values within |E| < |E0|. With
increasing disorder strength W , the values of T11A (T13A)
decrease within |E| < |E0| but increase at |E| > |E0| for
both charge puddles disorder and Anderson disorder, so
that the boundary lying at |E| = |E0| becomes to blur.
However, we can also see that, under a rather larger W
(typical 30∆ as in experiment for charge puddles and
400∆ for Anderson disorder), the discrepancy between
T11A(|E| < |E0|) and T11A(|E| > |E0|) is obvious, and so
are the values of T13A. This indicates that, in this situ-
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FIG. 6: (Color online) Fluctuations δT11A and δT13A versus
energy E are shown under different charge puddle disorder
strength W for θ = 0 (in panel (a) and (b)) and θ = π (in
panel (c) and (d)). The parameters unmentioned are the same
as in Fig.2.

ation the boundary at |E| = |E0| is just a little blurred
so that two kinds of Andreev reflections can be clearly
distinguished as well. Furthermore, from Fig.5 the be-
haviors of T11A(T13A) under charge puddles are similar
to that under Anderson disorder, and only differ on the
range of disorder strength. This result agrees with the
above discussion as well as Fig.3.

Let us study the fluctuation of T11A and T13A as func-
tion of energy E under different disorder strength W .
The fluctuation of Andreev reflection coefficients is de-
fined as δT11(13)A =

√
〈T 2

11(13)A〉 − 〈T11(13)A〉2, in which

〈T 〉 is the average of T over the disorder configurations.
The numerical results for the charge puddles disorder are
presented in Fig.6, from which it is clear to see that δT11A

and δT13A have the peaks at E = ±|E0| no matter θ = 0
or θ = π. Because that E = ±|E0| is the boundaries
of specular Andreev reflection and Andreev retroreflec-
tion and the Andreev reflection coefficients vary strongly
when E passes ±|E0|. With increasing W , additional
two peaks lying at E = ±|∆| emerge because that the
Andreev reflection coefficients are large and have peaks
at that E value. It demonstrates that the Andreev re-
flections are much more chaotic when the energy E is
at around |E0| or ∆. Besides, under a typical disorder
strength (e.g.: W = 20∆ or 50∆), the fluctuations δT11A

(δT13A) are found to be very small when energy E is away
from the boundary |E| = |E0|, again confirming that the
boundaries of retroreflection and specular reflection well
survive in the presence of charge puddles. In particu-
lar, due to that the fluctuation almost is zero while E is
away from ±|E0|, the distinguishable feature of bound-
aries is not the consequence of averaging over a great deal
disorder configurations. In other words, even if for an ar-
bitrary specific disorder configuration, the boundaries of
two Andreev reflections are still not blurred.

Finally let us discuss the case of the superconductor
phase difference θ 6= 0 or π. In this case, the Andreev
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reflection coefficients have usually rather large values in
whole region [−∆,∆] even the impurity strength W = 0,
because totally constructive or destructive interference
can not be achieved at θ 6= 0 and π. Now there is no clear
boundary in the Andreev reflection coefficients. However,
the two Andreev reflections still exist. It is the specular
Andreev reflection while |E| > |E0| and the reflected hole
is along the specular direction, otherwise at|E| < |E0|
it is the Andreev retroreflection. So the two Andreev
reflections still have a clear boundary at |E| = |E0|. From
above results, we can speculate that this boundary should
maintain in the typical experimental impurity strength
(W = 20∆). In fact, while θ 6= 0 or π and W < 30∆,
the fluctuation is still very small away from ±|E0|, which
clearly indicates that the boundary blurring is small.

IV. CONCLUSIONS

In summary, by using a four-terminal graphene-
superconductor hybrid system, we have studied how dis-
order in graphene affects the boundary of the specu-
lar Andreev reflection and Andreev retroreflection. Two
kinds of disorders, the charge puddles and Anderson dis-
orders, are considered. We find that the Andreev re-
flection coefficients are hardly affected while the charge
puddle disorder strength has been much larger than su-
perconductor gap (e.g. ten times), and the boundary at
|E| = |E0| of the specular reflection and retroreflection
can well maintain. Furthermore, even under very large

disorder strength (e.g., one hundred times larger than
the superconductor gap), two kinds of Andreev reflec-
tions can be still well separated and manipulated, and
the boundary between them still clearly exists. We also
study the effect of Anderson disorder for comparison, and
found that the boundary at |E| = |E0| is held much more
obviously in this case. In order to quantitatively describe
to what degree the boundary is blurred, a quantity D is
introduced, from which we confirm that the quantity D
of the boundary blurring is much smaller than the dis-
order strength W , and D/W approximatively is 0.003
for the charge puddles disorder and 0.0003 for the An-
derson disorder. The D-W relations for different values
of the spatial correlation length η and the superconduc-
tor gap are studied as well. Finally, the fluctuations of
Andreev reflection coefficient are studied. Under a typ-
ical experimental disorder strength (e.g. W = 30∆),
the fluctuations are very small while energy E is away
from the boundary |E| = |E0|, again confirming that the
retroreflection and specular reflection can be clearly dis-
tinguished and detected in the presence of disorder.
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Sancho, J. M. López Sancho and J. Rubio, J. Phys. F: Met.
Phys. 15, 851 (1985).

33 Q.-F. Sun, J. Wang, and T.-h. Lin Phys. Rev. B 59, 3831
(1999); 59, 13126 (1999); Q.-f. Sun, B.-g. Wang, J. Wang,
and T.-h. Lin, Phys. Rev. B 61, 4754 (2000).

34 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys.
Rev. B 25, 4515 (1982); G. Deutscher, Rev. Mod. Phys.
77, 109 (2005).

35 Q.-f. Sun and X. C. Xie, Phys. Rev. lett. 104, 066805
(2010).

36 Electronic Transport in Mesoscopic Systems, edited by S.
Datta (Cambridge University Press 1995).


