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We consider the problem of calculating the weak and strong topological indices in noncentrosym-
metric time-reversal (T ) invariant insulators. In 2D we use a gauge corresponding to hybrid Wannier
functions that are maximally localized in one dimension. Although this gauge is not smoothly de-
fined on the two-torus, it respects the T symmetry of the system and allows for a definition of the
Z2 invariant in terms of time-reversal polarization. In 3D we apply the 2D approach to T -invariant
planes. We illustrate the method with first-principles calculations on GeTe and on HgTe under [001]
and [111] strain. Our approach differs from ones used previously for noncentrosymmetric materials
and should be easier to implement in ab initio code packages.
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I. INTRODUCTION

A series of theoretical developments starting in 2005, showing that non-magnetic insulators admit a topological
Z2 classification in two dimensions (2D)1,2 and then in three dimensions (3D),3,4 has sparked enormous interest,
especially after numerous realizations of such systems were confirmed both theoretically5–9 and experimentally.10–14

These developments, nicely summarized in some recent reviews,15–17 have essentially given rise to a new subfield of
condensed-matter physics, with the topology of the band structure now regarded as a fundamental characteristic of
the electronic ground state for semiconductors and insulators.
The Z2 classification divides time-reversal (T ) invariant band insulators into two classes: ordinary (Z2-even) insula-

tors that can be adiabatically converted to the vacuum (or to each other) without a bulk gap closure, and “topological”
(Z2-odd) ones that cannot be so connected (although they can be adiabatically connected to each other). Even and
odd phases are separated by a topological phase transition, and the bulk gap has to vanish at the transition point,
at least in a non-interacting system.18,19 The Z2-odd states are characterized by the presence of an odd number
of Kramers pairs of counterpropagating edge states in 2D, or by an odd number of Fermi loops enclosing certain
high-symmetry points of the surface band structure in 3D.
In view of all this, there is an obvious motivation to develop simple yet effective methods for computing the topo-

logical indices of a given material. For centrosymmetric crystals, a convenient method was introduced in Ref. 6, where
it was shown that the knowledge of the parity eigenvalues of the electronic states at only four T -invariant momenta
in 2D (or eight of them in 3D) is sufficient to compute the topological characteristics of a given material. This ap-
proach is limited to centrosymmetric systems, however, and the calculation of the Z2 invariant for noncentrosymmetric
insulators is not so trivial.
One possible approach, suggested in Ref. 20, is based on the existence of a topological obstruction to choosing a

smooth gauge that respects the T symmetry in the Z2-odd case. For the implementation of this method, a gauge must
be chosen on the boundary of half of the Brillouin zone (BZ) in such a way as to respect T symmetry, which involves
acting with the time-reversal operator on one of the states from each Kramers pair to construct the other. Although
this method has been implemented in the ab initio framework21–23, its implementation is basis-set dependent and
involves the application of a unitary rotation to the computed eigenvectors when fixing the gauge, which may be
tedious when there are many occupied bands and basis states.
Another existing method7 relies on the fact that the system will necessarily be in the Z2-even (normal) state in

the absence of spin-orbit (SO) coupling. In this method, the strength of the SO coupling is artificially tuned from
λSO = 0 (no SO coupling) to λSO = 1 (full SO coupling), and a closure of the band gap at some intermediate coupling
strength is taken as evidence of an inverted band structure. However, a closure of the band gap in the course of tuning
λSO to full strength is a necessary, but not a sufficient, condition for a topological phase transition. Therefore, in
order to determine whether the system is really in the topologically nontrivial phase, a first-principles calculation of
the surface states is carried out in order to count the number of Dirac cones at the surface of the candidate material.
Such a calculation, although illustrative, is quite demanding in terms of computational resources.
In summary, existing methods have some shortcomings, and it would be very useful to develop a simple and effective

method that would use the electronic wavefunctions, as obtained directly from the diagonalization procedure, to
determine the desired topological indices.
In this paper we develop a method for computing Z2 invariants that meets these criteria, and which is easy to

implement in the context of ab initio code packages. The method is based on the concept of time-reversal polarization24

(TRP), but implemented in such a way that a visual inspection of plotted curves is not required in order to obtain
the topological indices. Instead, all the indices can be obtained directly as a result of an automated calculation. We
describe the method, and then verify it using centrosymmetric Bi and Bi2Se3 as illustrative test examples before
applying it to the more difficult cases of noncentrosymmetric GeTe and strained HgTe.
The paper is organized as follows. In Sec. II we start by reviewing the formalism of TRP in the context of the

Z2 spin pump in one dimension (1D), emphasizing its relation to the charge centers of Wannier functions. We then
discuss the numerical implementation of these ideas to 2D and 3D cases, and suggest a simple numerical procedure for
calculating the Z2 invariant in noncentrosymmetric T -invariant systems in Sec. III. We further illustrate this method
with ab initio calculations in Sec. IV, and present some concluding remarks in Sec. V.

II. Z2 INVARIANT VIA WANNIER CHARGE CENTERS

In this section we review the notion of TRP and the definition of the Z2 invariant in terms of TRP derived in Ref. 24.
The definition arises by virtue of an analogy between a 2D T -invariant insulator and a T -symmetric pumping process
in a 1D insulator. We further reformulate this definition in terms of Wannier charge centers, setting the stage for the
numerical method discussed in the next section.
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A. Review of time reversal polarization

Fu and Kane24 considered a family of 1D bulk-gapped Hamiltonians H(x) parametrized by a cyclic parameter t
(i.e., H [t+ T ] = H [t]) subject to the constraint

H [−t] = θH [t]θ−1, (1)

where θ is the time-reversal operator. This can be understood as an adiabatic pumping cycle, with t playing the role
of time or pumping parameter. The constraint of Eq. (1) guarantees that the Hamiltonian H(x) is T -invariant at
the points t = 0 and t = T/2, while the T symmetry is broken at intermediate parameter values. If we also limit
ourselves to Hamiltonians having unit period, so that H is invariant under x → x + 1, then the eigenstates may be
represented by the periodic parts |unk〉 = e−ikx|ψnk〉 of the Bloch states |ψnk〉. At t = 0 and t = T/2 the Hamiltonian
is time-reversal invariant and the eigenstates come in Kramers pairs, being degenerate at k = 0 and k = π.
Since the system is periodic in both k and t, the |unk〉 functions are defined on a torus. Moreover, the system must

also be physically invariant under a gauge transformation of the form

|ũnk〉 =
∑

m

Umn|umk〉 (2)

where U(k, t) expresses the U(N ) gauge freedom to choose N representatives of the occupied space at each (k, t). We
adopt a gauge that is continuous on the half-torus t ∈ [0, T/2] and that respects T symmetry at t = 0 and T/2 in the
sense of Fu and Kane,24 i.e.,

|uIα,−k〉 = −eiχαkθ|uIIαk〉,

|uIIα,−k〉 = eiχα,−kθ|uIαk〉. (3)

Here the occupied states n = 1, ...,N have been relabeled in terms of pairs α = 1, ...,N/2 and elements I and II
within each pair. Note that Eq. (3) is a property which is not preserved by an arbitrary U(N ) transformation. It
allows the Berry connection

A(k) = i
∑

n

〈unk|∂k|unk〉 (4)

to be decomposed as

A(k) = AI(k) +AII(k) (5)

where

AS(k) = i
∑

α

〈uSαk|∂k|u
S
αk〉 (6)

and S = I, II. Having chosen a gauge that obeys these conventions at t = 0 and T/2 and evolves smoothly for
intermediate t,25 the “partial polarizations”24

PS
ρ =

1

2π

∮

dkAS(k) (7)

can be defined such that their sum is the total charge polarization26

Pρ =
1

2π

∮

dkA(k) = P I
ρ + P II

ρ . (8)

Note that the total polarization is defined only modulo an integer (the quantum of polarization) under a general
U(N ) gauge transformation, while the “partial polarization” is not gauge invariant at all. A quantity that is gauge-
invariant is the change in total polarization during the cyclic adiabatic evolution of the Hamiltonian, and using Eq. (1)
it follows that

Pρ(T )− Pρ(0) = C (9)

where C is the first Chern number, an integer topological invariant corresponding to the number of electrons pumped
through the system in one cycle of the pumping process.27 For a T -invariant pump that satisfies the conditions of
Eq. (1), C must be zero.
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In order to describe the Z2 invariant of a T -symmetric system in a similar fashion, the “time reversal polarization”
was introduced as24

Pθ = P I
ρ − P II

ρ . (10)

Then the integer Z2 invariant can be written as

∆ = Pθ(T/2)− Pθ(0) mod 2. (11)

To summarize, the Z2 invariant is well defined via Eq. (11) when the gauge respects T -symmetry at t = 0 and T/2
and is continuous on the torus between these two parameter values. Note, however, that while such a gauge choice is
possible on the half-torus even for the Z2-odd case (∆=1), it can only be extended to cover the full torus continuously
in the Z2-even case (∆=0).24,28,29

B. Formulation in terms of Wannier charge centers

Let us now rewrite Eq. (11) in terms of the Wannier charge centers (WCCs). By definition the Wannier functions
(WFs) belonging to unit cell R are

|Rn〉 =
1

2π

∫ π

−π

dke−ik(R−x)|unk〉. (12)

The WCC x̄n is defined as the expectation value x̄n = 〈0n|X̂|0n〉 of the position operator x̂ in the state |0n〉
corresponding to one of the WFs in the home unit cell R = 0. Equivalently,26,30

x̄n =
i

2π

∫ π

−π

dk〈unk|∂k|unk〉. (13)

Except in the single-band case, the individual x̄n are not independent of a general gauge transformation as in Eq. (2).
However, the sum over all WCCs in the unit cell is a gauge-independet quantity (modulo a lattice vector, i.e., mod 1
in our notation).26 For the present purposes we adopt the gauge of Eq. (3) and construct WFs |Rα, S〉 by inserting
|uSαk〉 into the definition of Eq. (12). In this gauge

x̄Iα = x̄IIα mod 1, (14)

as follows from Eqs. (3) and (13) and use of the continuity condition χα,−π = χα,π + 2πm, where m is an integer.
Since we have also insisted on the gauge being continuous for t ∈ [0, T/2], it is possible to follow the evolution of each
WCC during the half-cycle. Taking into account that

∑

α x̄
s
α = (1/2π)

∮

BZ
AS for S = I, II, Eq. (11) yields

∆ =
∑

α

[

x̄Iα(T/2)− x̄IIα (T/2)
]

−
∑

α

[

x̄Iα(0)− x̄IIα (0)
]

. (15)

Since the gauge is assumed to be smooth, the evolution of the charge centers must also be smooth. Being defined in
this way, ∆ is clearly a mod-2 quantity, and as shown in Ref. 24 it represents the desired Z2 invariant.
However, if the gauge breaks T symmetry or it is not continuous in the half-cycle, Eq. (15) no longer defines a

topological invariant. A discontinuity in the gauge in the process of the half cycle can change ∆ by 1, so the mod-2
property is lost. Breaking T in the gauge choice means that the corresponding centers are not necessarily degenerate
at t = 0 and t = T/2. In fact, ∆ can even take non-integer values in this case.29

The above argument implies that in order to compute the Z2 invariant via Eq. (15), one needs a gauge that satisfies
both T -invariance and continuity on the half-torus. We now argue that the gauge that corresponds to 1D maximally
localized WFs at each t has the desired properties, as long as these WFs are chosen to evolve smoothly as a function of
t. The criterion introduced in Ref. 31 for constructing the maximally localized WFs was that the gauge choice should
provide the minimum possible quadratic spread Ω =

∑

n[〈0n|r
2|0n〉 − 〈0n|r|0n〉2]. In 1D, the maximally localized

WFs constructed according to this criterion are eigenstates of the position operator X̂ in the band subspace.31,32 Since
this operator commutes with θ, its eigenvalues will be doubly degenerate and its eigenstates will come in Kramers
pairs at t = 0 and T/2.
To prove continuity of this gauge in k, let us briefly discuss how to enforce it on a k-mesh kj+1 = kj + ∆k by

carrying out a multi-band parallel-transport construction along the Brillouin zone.31 At a given value of t, starting
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FIG. 1. Sketch of evolution of Wannier charge centers (WCCs) x̄ vs. time t during an adiabatic pumping process. Regarding
x̄ ∈ [0, 1] as a unit circle and t ∈ [0, T/2] as a line segment, the cylindrical (x̄, t) manifold is represented via a sequence of
circular cross sections at left, or as an unwrapped cylinder at right. Each red rhombus marks the middle of the largest gap
between WCCs at given t. (a) Z2 insulator; WCCs wind around the cylinder. (b) Normal insulator; WCCs reconnect without
wrapping the cylinder.

from k = 0 one constructs overlap matrices M
(kj,kj+1)
mn = 〈umkj

|unkj+1
〉 in such a way that they are Hermitian. This

can be done in a unique way by means of the singular value decomposition M = V ΣW †, where Σ is positive real
diagonal and V and W are unitary matrices. With this decomposition a unitary rotation of the states at kj+1 by

WV † leaves M (kj,kj+1) Hermitian. Repeating this procedure, one finds that states |ψnk〉 at k = 2π are related to
those at k = 0 by a unitary rotation Λ, whose eigenvalues λn = e−ix̄n give the 1D maximally-localized WCCs x̄n. The
corresponding eigenvectors can be used to define a gauge that is continuous in k for a given value of t. The continuity
vs. t on the half-torus is achieved by tracing the evolution of the WCCs x̄n as a function of t, with the n’th state of
the gauge constructed from the eigenvectors associated with the n’th smoothly evolving WCC x̄n(t).
Having established a particular gauge choice in which Eqs. (11) and (15) are valid, it is straightforward in principle

to obtain the Z2 invariant. Indeed, Eq. (15) implies that the Z2 invariant can be determined simply by testing whether
the WCCs change partners when tracked continuously from t=0 to T/2. This is the essence of our approach. We
stress that no explicit construction of a smooth gauge on the half-torus is necessary; we simply track the evolution of
the WCCs on the half-torus.
In practice, when working on a discrete mesh of t values when many bands are present, it may not be entirely

straightforward to enforce the continuity with respect to t. In the next section we present a simple and automatic
numerical procedure that is robust in this respect, and use it to illustrate the calculation of the Z2 invariants for
several materials of interest.

III. NUMERICAL IMPLEMENTATION

The method outlined above, in which the WCCs obtained with the 1D maximally-localized gauge are used to
compute the Z2 invariant via Eq. (15), can be implemented by plotting the WCCs at each point on the t mesh and
then visually tracking the evolution of each WCC, as we describe next in Sec. III A. However, we find that a more
straightforward and more easily automated approach is to track the largest gap in the spectrum of WCCs instead.
This gives rise to our proposed method, which is described in Sec. III B.

A. Tracking WCC locations

Let us first interpret Eq. (15) in terms of the winding of the WCCs around the BZ during the half-cycle t ∈ [0, T/2].
Since the WCCs are defined modulo 1, one can imagine the x̄n living on a circle of unit circumference, as illustrated
in the left panels of Fig. 1. During the pumping process, the WCCs migrate along this circle. The system will be in
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the Z2-odd state (δ=1) if and only if the WCCs reconnect after the half cycle in such a way as to wrap the unit circle
an odd number of times.
Consider, for example, the case of only two occupied bands, as sketched in Fig. 1. The top panel shows the Z2-odd

case; the blue and green arrows show the evolution of the first and second WCC from t0 (= 0) to t4 (=T/2), and
they meet in such a way that the unit circle is wrapped exactly once. Correspondingly, as shown in the right-hand
part of the figure, the WCCs “exchange partners” during the pumping process (i.e., two bands belonging to the same
Kramers pair at t = 0 do not rejoin at t = T/2).24 For the Z2-even case shown in the bottom panel, by contrast, the
unit circle is wrapped zero times, and no such exchange of partners occurs.
If one has access to the continuous evolution of the WCCs vs. t, as shown by the solid blue and green curves

in Fig. 1, this method works in principle for an arbitrary number of occupied bands (i.e., WFs per unit cell). An
illustrative example with many bands appears in Fig. (1) of Ref. 33. Either the “bands” x̄n exchange partners in
going from t = 0 to t = T/2 (φ = 0 to φ = π in their notation), or they do not, implying Z2 odd or even respectively.
Equivalently, one can draw an arbitrary continuous curve starting within a gap at t = 0 and ending within a gap at
t = T/2; the system is Z2-odd if this curve crosses the WCC bands an odd number of times, or Z2-even otherwise.
In practice, however, one will typically have the WCC values only on a discrete mesh of t points, in which case the

connectivity can be far from obvious. Certainly one cannot simply make the arbitrary branch cut choice x̄n ∈ [0, 1],
sort the x̄n in increasing order, and use the resulting indices to define the paths of the WCCs. This would, for
example, give an incorrect evolution from t1 to t2 in Fig. 1(b), since one WCC passes through the branch cut in this
interval, apparently jumping discontinuously from the “top” to the “bottom” of the unwrapped cylinder at right. (A
similar jump happens again near t3.)
One possible approach is that of Ref. 33 mentioned above, i.e., to increase the t mesh density until, by visual

inspection, the connectivity becomes obvious. However, this becomes prohibitively expensive in the first-principles
context, since a calculation of many (typically 10-30) bands would have to be done on an extremely fine mesh of
t points. It is typical for some of the WCCs to cluster rather closely together during part of the evolution in t; if
this clustering happens near the artificial branch cut, it can become very difficult to determine the connectivity from
one t to the next, even if a rather dense mesh of t values is used. Moreover, an algorithm of this kind is difficult to
automate. For these reasons, we find that the direct approach of plotting the evolution of the WCCs is not a very
satisfactory algorithm for obtaining the topological indices, at least in the case of a large number of occupied bands.

B. Tracking gaps in the WCC spectrum

Here we propose a simple procedure that overcomes the above obstacles, allowing the Z2 invariant to be computed
in a straightforward fashion. The main idea is to concentrate on the largest gap between WCCs, instead of on the
individual WCCs themselves. As explained above and illustrated by the red dashed curve in Fig. 1, the path following
the largest gap in x̄n values (with vertical excursions at critical values of t) crosses the x̄n bands a number of times
that is equal, mod 2, to the Z2 invariant. Our approach, in which we choose this path as an especially suitable one
for discretizing, can be implemented without reference to any branch cut in the determination of the x̄n, allowing the
Z2 invariant to be determined from the flow of WCCs on the cylindrical (x̄, t) manifold directly.
As in Fig. 1, we again consider a set ofM circular sections of the cylinder that correspond to the pumping parameter

values t(m) = T (m− 1)/2M , where m ∈ [0,M ]. At each tm we define z(m) to be the center of the largest gap between
two adjacent WCCs on the circle. (If two gaps are of equal size, either can be chosen arbitrarily.) For definiteness we
choose z(m) ∈ [0, 1), but as we shall see shortly, the branch choice is immaterial. In the continuous limit M → ∞, z(t)
takes the form of a series of path segments on the surface of the cylinder, with discontinuous jumps in the x̄ direction
at certain critical parameter values tj . Our algorithm consists in counting the number of WCCs jumped over at each
tj , and summing them all mod 2. As becomes clear from an inspection of Fig. 1 and similar examples of increasing
complexity, the WCCs exchange partners during the evolution from t=0 to T/2 only if this sum is odd, so that this
sum determines the Z2 invariant of the system.

The approach generalizes easily to the case of discrete z(m). Let ∆m be the number of WCCs x̄
(m+1)
n that appear

between gap centers z(m) and z(m+1), mod 2. As we shall see below, this can be computed in a manner that is
independent of the branch cut choices used to determine the x̄mn and z(m). Then the overall Z2 invariant is just

∆ =

M
∑

m=0

∆m mod 2. (16)

This argument is illustrated in the right-hand panels of Fig. 1 for the two band-case and M = 4. The rectangles
represent the surface of the cylinder in the parameter space, and should be regarded as glued along the longer sides.

The circles correspond to x̄
(m)
n values, while each red rhombus represents the center z(m) of the largest gap between
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FIG. 2. Sketch illustrating the method used to determine whether x̄
(m+1)
n lies between z(m) and z(m+1) in the counterclockwise

sense when mapped onto the complex unit circle. (a) Yes, since the directed area of the triangle is positive. (b) No, since it is
negative.

x̄
(m)
n values. In Fig. 1(a) there is one jump that occurs between m=2 and m=3, in which one WCC is jumped over;

thus, ∆m = 0 except for ∆2 = 1, giving ∆=1. In Fig. 1(b), on the other hand, there are two jumps, once between
m=1 and m=2 and again between m=2 and m=3, so that ∆1 = ∆2 = 1 and ∆ = 0 (mod 2).
We now show how the ∆m can be computed straightforwardly in a manner that is insensitive to the branch-cut

choices made in determining the x̄mn and z(m). We use the fact that the directed area of a triangle defined by angles
φ1, φ2, and φ3 on the unit circle is34

g(φ1, φ2, φ3) = sin(φ2 − φ1) + sin(φ3 − φ2) + sin(φ1 − φ3). (17)

Therefore the sign of g(φ1, φ2, φ3) tells us whether or not φ3 lies “between” φ1 and φ2 in the sense of counterclockwise

rotation. Identifying φ1 = 2πz(m), φ2 = 2πz(m+1) and φ3 = 2πx̄
(m+1)
n , as in Fig. 2, it follows that

(−1)∆m =

N
∏

n=1

sgn
[

g(2πz(m), 2πz(m+1), 2πx̄(m+1)
n )

]

, (18)

where sgn(x) is the sign function. The ∆m defined in this way is precisely the needed count of WCCs jumped over,
mod 2, in evolving from m to m+ 1.
As a last detail, we discuss the case of possible degeneracies between the three arguments of g(φ1, φ2, φ3). First, note

that z(m+1) = x̄
(m+1)
n is impossible, since z(m+1) is by definition in a gap between x̄

(m+1)
n values. If the mesh spacing

in t is fine enough, then by continuity we expect that z(m) = x̄
(m+1)
n will also be unlikely. It is recommended to test

whether these values ever approach within a threshold distance, and restart the algorithm with a finer t mesh if such
a case is encountered; two cases of this kind are discussed later in Sec. IV. Finally, it can happen that z(m) = z(m+1).
In this case, the signum function (which technically assigns value 0 to argument 0) should be replaced in Eq. (18) by
a function that returns s whenever z(m) = z(m+1), where s is chosen once and for all to be either +1 or −1. Since the
same degeneracy appears in every term of the product over N factors in Eq. (18), where N is even, the choice of s is
arbitrary as long as it is applied consistently.
The above-described algorithm, based on Eqs. (16-18), constitutes one of the principal results of the present work.

The implementation of this algorithm is straightforward, and allows for an efficient and robust determination of the
Z2 invariant even when many bands are present, and even for only moderately fine mesh spacings. In Sec. IV, we will
demonstrate the successful application of this approach to the calculation of the strong and weak topological indices
of some real materials.

C. Application to 2D and 3D T -invariant insulators

As pointed out in Ref. (24), the pumping process discussed above for a 1D system is the direct analogue of a
2D T -invariant insulator, i.e., one whose Hamiltonian is subject to the condition H(−k) = θ−1H(k)θ. To see this,
let k =

∑

i kibi/2π, where b1 and b2 have been chosen as primitive reciprocal lattice vectors. Then we can let k1
and k2 play the roles of k and t respectively. Just as H(k, t) displays T symmetry of H(x) at t=0 and T/2, so
H(k1, k2), regarded as the Hamiltonian H(x1) of a fictitious 1D system for given k2, is T -invariant at k2 = 0 and
π. The Wannier functions of the effective 1D system can be understood as “hybrid Wannier functions” that have
been Fourier transformed from k space to r space only in direction 1, while remaining extended in direction 2. The
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topological Z2 invariant of the 2D system can therefore be determined straightforwardly by applying the approach
outlined above.
A topological phase of a 3D T -symmetric insulator is described by one strong topological index ν0 and three weak

indices ν1, ν2, and ν3.
3,4,35 These indices may be understood as follows. Again letting k =

∑

i kibi/2π, there are eight
T -invariant points Γ(n1,n2,n3), where ni = 0 or 1 denotes ki = 0 or π respectively. These eight points may be thought
of as the vertices of a parallelepiped in reciprocal space whose six faces are labeled by n1=0, n2=0, n3=0, n1=1,
n2=1, and n3=1. On any one of these six faces, the Hamiltonian H(k), regarded as a function of two k variables, can
be thought of as the Hamiltonian of a fictitious 2D T -symmetric system, and the argument of the previous paragraph
can thus be applied to each of these six faces separately. The three weak indices νi=1,2,3 are defined to be the Z2

invariants associated with the three surfaces n1=1, n2=1, and n3=1.3 These weak indices obviously depend on the
choice of reciprocal lattice vectors. The strong index ν0 is the sum (mod 2) of the Z2 invariants of the nj=0 and
nj=1 faces for any one of the j (implying some redundancy among the six indices); it is also a Z2 quantity, but is
independent of the choice of reciprocal lattice vectors.3,4

Thus, a complete topological classification in 3D, given by the index ν0; (ν1ν2ν3), can be obtained by applying
our analysis to each of these six faces in the 3D Brillouin zone. Note that in general, this determines the strong
index ν0 with some redundancy, providing a check on the internal consistency of the method. However, symmetry
considerations often play a role. For systems having a 3-fold symmetry axis, for example, one typically needs to
compute the Z2 index on only two faces, as we shall see below.

IV. APPLICATION TO REAL MATERIALS

In this section we discuss the application of the above-described method to real materials. First, we illustrate the
validity of the approach for centrosymmetric Bi and Bi2Se3, where weak and strong indices may alternatively be
computed directly from the parities of the occupied Kramers pairs at the eight T -invariant momenta.6 We then apply
the method to noncentrosymmetric crystals of GeTe and strained HgTe, showing that the first is a trivial insulator,
while the latter is a strong topological insulator under both positive and negative strains along [001] and under positive
strain along [111].
The calculations were carried out in the framework of density-functional theory36 using the local-density approxi-

mation with the exchange and correlation parametrized as in Ref. 37. We used HGH pseudopotentials38 with semicore
5d-states included for Hg, while for all other elements only the s and p valence electrons were explicitly included. The
calculations were carried out using the ABINIT code package39,40 with a 10× 10× 10 k-mesh for the self-consistent
field calculations and a 140Ry planewave cutoff. The spin-orbit interaction was included in the calculation via the

HGH pseudopotentials. Note that the overlap matrices M
(kj,kj+1)
mn defined in Sec. II B, are the same as those needed

for the calculation of the electric polarization26 or the construction of maximally-localized Wannier functions,31 and
are thus readily available in many standard ab initio code packages including ABINIT.

A. Centrosymmetric materials

We start by illustrating the method with the examples of Bi and Bi2Se3. Although Bi is a semimetal, its ten
lowest-lying valence bands are separated from higher ones by an energy gap everywhere in the BZ, so in this case the
topological indices describe the topological character of a particular group of bands. Since this is not the occupied
subspace of an insulator, these topological indices are not “physical,” but it is still of interest to compute them and
compare with methods based on the parity eigenvalues.6 According to the latter approach, the group of ten lowest-
lying bands of Bi was shown to be topologically trivial.6 Bi2Se3, on the other hand, is a true insulator, and the parity
approach demonstrated that it is a strong topological insulator.7

Bi and Bi2Se3 both belong to the rhombohedral space group R3̄m (#166), which has a 3-fold rotational axis. Thus,
it is enough to compute only one weak Z2 index, say for n1 = 1, since all three of them are equal by symmetry. To
get the strong index, one just needs to compute just one more of the Z2 invariants, say for n1=0.
Our results for Bi, obtained with the lattice parameters used in previous studies,41 are presented in Fig. 3. Panels

(a) and (b) show the determination of the Z2 invariant at n1=0 and n1=1 respectively, with k2 treated as the pumping
parameter (like t) for an effective 1D system with wavevector k3. The k2 axis was initially discretized into ten equal
intervals (m = 1, ..., 10) running from 0 to π, but for reasons discussed below an extra point (number 10 on the
horizontal axis of the plot) was inserted midway in the last segment to make a total of eleven m values in Panel
(b). As noted above, we are treating a group of ten valence bands labeled by n, so we have an array of WCC values

x̄
(m)
n whose values are indicated by the black circles in the plot. These form Kramers pairs at k2=0 and π, but not
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FIG. 3. Evolution of Bi WCCs x̄n (circles) in the r3 direction vs. k2 at (a) k1=0; (b) k1=π. Red rhombus marks midpoint
of largest gap. k2 is sampled in ten equal increments from 0 to π, except that an extra point is inserted midway in the last
segment in panel (b) (see text).

elsewhere. Each red rhombus indicates the center z(m) of the largest gap between adjacent x̄
(m)
n values, as discussed

in Sec. III.
Looking first at Fig. 3(a), we see that the gap center jumps over one WCC at m=1, and then over three WCCs at

m=7, for a total of four, which is even. In Fig. 3(b) we get a total of 2+7+3+4 = 16 jumps, which is again even. The
visual determinations of the number of jumped bands is confirmed by the application of the automated procedure
of Eqs. (16-18). Thus, both Z2 indices are 0, and the 3D index is 0; (000), indicating a normal band topology as
anticipated.6,20

We now discuss the above-mentioned insertion of one extra k2 point in Fig. 3(b). This was necessary because the
gap center z(9) at k2 = 0.9π had almost the same value as one of the WCC values at k2 = π (now labeled as ‘11’ on
the horizontal axis), making it ambiguous whether or not that xn value should be counted as one of the ones that
has been jumped over. To resolve this difficulty, we included an extra step at k2 = 0.95π (now labeled as ‘10’ on the
horizontal axis). The reason for the fast motion of the WCC in this case is that the minimum gap to the next higher
(eleventh) band becomes rather small near k2 = π.
Note that the detection of this kind of problem does not have to be done by visual inspection, but can be automated

in the context of Eqs. (16-18). As already mentioned in Sec. III B, we simply test whether any x̄
(m+1)
n approaches

within a certain threshold of z(m) (mod 1); if so, we flag the interval in question for replacement by a finer mesh.
Still, it is recommended to choose a mesh that is fine enough so that this threshold is rarely encountered, with a finer
mesh recommended in cases where the minimum band gap is small.42

The analysis of the same n1=0 and n1=1 faces for the 28 WCCs of Bi2Se3 is illustrated in Fig. 4. The experimental
lattice parameters43 were used. Here there are no jumps over WCCs except for a single one in the very first step in
the top panel (n1=0). It follows that the topological index is 1; (000), in accord with previous studies.7

B. Noncentrosymmetric materials

We now proceed to systems without inversion symmetry, which are the principal targets of our method since an
analysis based on parity eigenvalues is not possible.
GeTe belongs to the rhombohedral R3m space group (#160) and has no inversion symmetry, although like Bi

and Bi2Se3 it has a 3-fold rotational symmetry, so that only two reciprocal-space faces have to be studied. The
experimental lattice parameters44 were used, and the evolution of the 10 WCCs is presented in Fig. 5 following
similar conventions as for Bi and Bi2Se3. For both faces Eq. (18) gives a trivial Z2 index, with the center of the
largest gap making no jumps, so that GeTe is in the topologically trivial state 0; (000). This result could have been
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FIG. 4. Evolution of Bi2Se3 WCCs x̄n (circles) in the r3 direction vs. k2 at (a) k1=0; (b) k1=π. Red rhombus marks midpoint
of largest gap. k2 is sampled in ten equal increments from 0 to π.
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FIG. 5. Evolution of GeTe WCCs x̄n (circles) in the r3 direction vs. k2 at (a) k1=0; (b) k1=π. Red rhombus marks midpoint
of largest gap. k2 is sampled in ten equal increments from 0 to π.

anticipated from the fact that the spin-orbit interaction in GeTe is weak, as reflected in the approximate pairwise
degeneracy of the WCCs throughout the evolution.

Finally, let us consider the more interesting case of strained HgTe. In the absence of strain this is a zero-band-gap
material. Any anisotropic strain breaks the four-fold symmetry at Γ, making it possible that the gap might open.
Based on an adiabatic continuity argument, HgTe was predicted to be a strong topological insulator under compressive
strain in the [001] direction.6 This was later verified with tight-binding calculations.5,45 Application of our approach
to HgTe under uniaxial strain also confirms that HgTe is a strong topological insulator, with index 1; (000), under
both positive and negative6 2% strains along the [001] direction (not shown). This means that although the positive-
strain and negative-strain states are separated by a gap closure at zero strain, there is no topological phase transition
associated with this gap closure.
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FIG. 6. Band structure along high-symmetry lines of the undistorted FCC structure for HgTe under tensile strain in the [111]
direction. (a) +2% strain. (b) +5% strain.
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FIG. 7. Evolution of WCCs for HgTe under +2% strain in the [111] direction. WCCs x̄n (circles) in the r3 direction are plotted
vs. k2 at (a) k1=0; (b) k1=π. Red rhombus marks midpoint of largest gap. k2 is sampled in ten equal increments from 0 to π,
except that an extra point is inserted midway in the first segment in panel (a) (see text).

We also studied strains in the [111] direction. Under compressive strains of −2% and −5% the system becomes
metallic and the direct band gap vanishes, so that no topological index can be associated with the occupied space.
Under tensile strain of +2% we find that HgTe becomes a narrow-gap semiconductor with an indirect energy gap of
Eg = 0.054 eV, while for +5% strain it becomes metallic. Even at +5% strain, however, the lowest 18 bands remain
separated from higher ones by an energy gap at all k, so that, as for Bi, one can still assign a topological index to this
isolated group of bands. The computed band structures for both cases are illustrated in Fig. 6 along lines connecting
the high symmetry points of the undistorted FCC structure.

The space group of [111]-strained HgTe is rhombohedral R3m (#166), the same as for GeTe, so that again only
two Z2 indices need to be calculated. The results of our WCC analysis for the case of +2% strain are shown in Fig. 7.
We find Z2=1 and Z2=0 for n1=0 and n2=1 respectively, so that the topological class is 1; (000). The behavior in
Panel (b) is rather uninteresting, since the gap is large everywhere on the n2=1 face. However, in Panel (a) we again
find an example of a rapid change of WCCs with k2, which was repaired by inserting an extra point (the one now
labeled ‘1’ on the horizontal axis) at k2 = 0.05π. Actually, we anticipated the need for this denser sampling for small
k2 from the fact that the zero-strain gap closure occurs at Γ, so that a delicate dependence on k near the BZ center
was expected.
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V. SUMMARY AND CONCLUSIONS

We have proposed a new approach for calculating topological invariants in T -invariant systems. The method is
based on following the evolution of hybrid Wannier charge centers, and is very general, being easily applicable in
both tight-binding and DFT contexts. The needed ingredients are the same as those needed for the calculation of
the electric polarization or the construction of maximally-localized Wannier functions, and are thus readily available
in standard code packages. The present algorithm is relatively inexpensive, however, because the analysis is confined
to a small number of 2D slices of the 3D Brillouin zone. The method is easily automated and remains robust even
when many bands are present. We hope that our method can help to make the search for topological phases in
noncentrosymmetric materials a routine task, and that it will lead to further progress in this rapidly developing field.
Note: In the final stages of preparing this manuscript, we became aware of independent work by Yu et al.46 that

is closely related. These authors carry out a similar analysis based on WCCs, but without the automated analysis
described in our Sec. III.
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