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We address the problem of a magnetic impurity in a two dimensional U(1) spin liquid where
the spinons have gapless excitations near the Fermi-surface and are coupled to an emergent gapless
gauge field. Using a large N expansion we analyze the strong coupling behavior and obtain the
Kondo temperature which was found to be the same as for a Fermi-liquid. In this approximation we
also study the specific heat and the magnetic susceptibility of the impurity. These quantities present
no deviations from the Fermi-liquid ones, consistent with the notion that the magnetic impurity is
only sensitive to the local density of fermionic states.

PACS numbers: 71.27.+a, 71.10.Hf

I. INTRODUCTION

A large number of theoretical proposals for the
low-energy description of spin-liquid phases consider
fractionalized fermionic degrees of freedom, the spinons,
carrying spin 1/2 but no electric charge, coupled to an
emergent U(1) gauge field, a gapless photon-like mode.
The spinons are gapless having either nodal points1 or
a Fermi-surface. The latter case arises naturally in the
slave particle approach to the t − J model2 but also in
other physical contexts such as the half-filled Landau
level3 and the description of metals at a Pomeranchuk
instability4. It presents non-Fermi liquid behavior due
to the strong interactions between the spinons and the
gauge field that lead to a spectrum with no well defined
quasi-particles. This phase has a number of remarkable
thermodynamical and transport properties5, for example
at low temperatures soft gauge modes contribute to the
specific heat with a term proportional to T 2/3 2,6.

Magnetic impurities embedded in a parent material
provide an experimental probe to the bulk properties
and can help to discriminate between possible candidate
phases. Moreover in order to be observed experimentally
the system itself should be stable to a dilute density
of such impurities. In a Fermi-liquid an antiferromag-
netically coupled spin impurity leads to the well known
Kondo effect7 characterized by a cross-over from the
low temperature strong coupled regime, where the
magnetic moment of the impurity is completely screened
by the bulk quasi-particles, to the high temperature
regime, where the impurity susceptibility follows a
Curie law. This cross-over occurs near the Kondo
temperature which is an example of a dynamically
generated energy scale. The study of impurities in
different bulk phases has attracted much attention8–12,
in particular for bosonic10 and algebraic spin liquids11,12.

The purpose of the present work is to study the
behavior of a magnetic impurity embedded in a U(1)

spin liquid with a Fermi-surface. Being a charge insu-
lator this system still presents a Kondo like behavior
since the spin degrees of freedom are free to screen the
magnetic impurity at low energies. We will pay special
attention to the role of the gauge field, which is absent
in the conventional Kondo problem. The article is
organized as follows: in sec.II we describe the model and
give some details of the 1/N expansion (sec. II A and
IIB), the specific heat and the local spin susceptibilities
are respectively computed in sec. II C and IID. Finally
in sec.III we conclude discussing the implications of our
results.

II. METHODS

Starting from the t − J model in 2-D, the action de-
scribing the spin-liquid phase with a spinon Fermi surface
coupled to a compact U(1) gauge field can be obtained
within the slave-boson formalism2 or using a slave-rotor
representation13, when fluctuations around the mean-
field solution are considered. We assume that due to
the presence of a large number of gapless fermions the
system is deconfined i.e. one can consider a non-compact
U(1) gauge theory14. The partition function is writen as
a path integral over the spinon grassmanian fields fσ=±1

and the bosonic gauge fields aµ = (a0,a) with action

SSL =

ˆ
d3x

∑

σ=±

{
f†σ (∂τ + ia0) fσ (1)

+
1

2m

[
(∂ − ia) f†σ

]
. [(∂ + ia) fσ]− 1

b
ia0

}
,

where b is the microscopic lattice volume and m the
spinon mass. The integration over the temporal com-
ponent of the gauge field a0 acts as an on-site chemical
potential for the spinons enforcing b

∑
α f
†
α fα = 1. We

use the notation
´
d3x =

´ β
0
dτ
´
d2x.

At x = 0 the interaction with the magnetic impu-
rity is given by SK = SBerry + JKb

´
dτ Sf (0).S, where
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SBerry is the action of the free impurity spin, JK is the
Kondo coupling and Sf (0) = f†α (τ,0)σα,β fα (τ,0).
Using a fermionic representation for the impu-
rity spin S = c†ασα,β cα, this term becomes
SK =

´
dτ
{∑

σ c
†
σ (∂τ + iλ) cσ − iλ− JKbSf,0.S

}
,

where λ is an integration parameter inserted in order to
enforce the constraint

∑
α c
†
α cα = 1.

A. Large N expansion

Perturbative expansions for the Kondo problem are
plagued with infrared logarithmic divergences signaling
the fact that, for low energy, the system flows to a strong
coupled fixed point where the impurity forms a singlet
with the bulk electrons. Even if resummation of the
divergent terms is possible this method is not well suited
to describe the low temperature phase. Alternatively the
large N expansion reproduces the essential features of
the Kondo effect in the strong coupling regime. However
for temperatures of the order of the Kondo temperature
TK , where a cross over to the asymptotic free regime
is expected, this technique becomes unreliable due
to the violation of the single occupancy constraint
and instead predicts a continuous phase transition15.
Therefore our results are restricted to the low energy
regime. For the U(1) spin liquid the large N expansion
corresponds to the random-phase-approximation (RPA)
used to obtain most of the physical predictions for this
phase5. Recently the validity of this method applied to
this specific problem was questioned16 since all planar
diagrams were shown to contribute to leading order. A
possible resolution was proposed in17 using a double
expansion to control higher loop contributions and
essentially recovering the RPA result.

In order to perform a saddle-point expansion we
generalize the above action to su(N) following the stan-
dard procedure8,15,18: the Pauli matrices σ = {σ1, ..., σ3}
are replaced by the generators of su(N) τ = {..., τa, ...}
with the index a = 1, .., N2−1 and the coupling constant
is rescaled JK → JK

N . The representation of the impurity
spin is taken to be conjugate to the spinons one. Using
the Fierz-like identity8 the Kondo term writes

SK =

ˆ
dτ

{∑

σ

c†σ (∂τ + iλ) cσ − iλQf

+
JK
N
b
(
f†α (0) cαc

†
βfβ (0)

)
+ JK

}
, (2)

and the last term of Eq. (1) is now multiplied by Qf
defined such that b

∑
σ f
†
σ (x) fσ (x) =

∑
σ c
†
σcσ = Qf .

Following18, the interaction term is decoupled in-
serting a bosonic Hubbard-Stratonovich field χ = κeiφ.
The integration over φ can be absorbed by a shift
in λ leaving a single real dynamical variable κ. The
integration over the fermionic degrees of freedom can

then be performed and the partition function is given by
Z =

´
DaDλDκe−N sb where

sb = − 1

N
Tr ln

[
−G−1

]
− 1

N
Tr ln

[
−F−1

]
+

+

ˆ
dx0

{
1

JK
κ2 − iλQf

}
−
ˆ
d3x

Qf
Nb

ia0 (3)

is the action for the bosonic fields aµ, λ and κ only and
F−1 and G−1 are the inverse of the full interacting prop-
agators of the impurity and spinon fermions. We proceed
performing a saddle-point expansion in the large N limit
imposing the a static ansatz

κ(τ) = κ0 6= 0, (4)
λ(τ) = −iεc, (5)
aµ(x) = δ0,µ iµ. (6)

At T = 0, the variations of the action in order to a1,2 are
trivially zero and the ones for a0, λ and κ give, respec-
tively,

1

β
Tr [G0] =

V

b

Qf
N
, (7)

1

π
tan−1

(
∆

εc

)
=

Qf
N
, (8)

n(0)b ln

(
Λ√

ε2
c + ∆2

)
=

1

JK
. (9)

The first equation fixes the chemical potential µ, where
G0 (iωn,k) = (iωn − εk)

−1 is the bare propagator of
the spinons with single-particle energies εk = 1

2mk
2 − µ.

n(0) = m
2π is the spinon density of states at the Fermi

level and Λ is a high-energy cutoff for the dispersion
relation. The last two equations were obtained by Read
and Newns for the Coqblin-Schrieffer Hamiltonian18.
In the limit where Λ is much smaller than the Fermi
energy but much larger than the other energy scales
the propagator of the impurity fermions is given by
F0 (iωn) = 1

iωn−εc+i∆sgnωn
(see Fig. 4-(a)), where

∆ = πn(0)κ2
0b, corresponding to a Lorentzian den-

sity of states ρ(ν) = 1
π

∆
(ν−εc)2+∆2 . The saddle-point

values εc and ∆ are thus the resonance position and
the hybridization width respectively. Identifying the
phase shift of a bulk spinon scattered by the impurity
δf (ω) = tan−1

(
∆

εc−ω

)
, Eq. (8) is a particular example

of the Friedel sum rule. Finally Eq. (9) defines the
Kondo energy scale kBTK =

√
ε2
c + ∆2 = Λe

− 1
b n(0)JK .

At zero order in 1/N there is no influence of the gauge
field on the dynamics of the impurity.

A comment about the procedure is in order at this
point. One could imagine starting with the bulk theory
fixed point obtained in ref.17, this would correspond
first to renormalize the bulk propagator and then to
introduce the impurity. However, since 1/N is the
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F0

G0

λ
κ
a

Vertices

Internal lines External lines
(bosonic)(fermionic propagators)

(−κ0) (1) (j)(−i)

Figure 1: Propagators, vertices and external lines used to
obtain the bubble-like diagrams. G0(iωn,k) denotes the bare
propagator of the bulk spinons and F0(iωn) stands for the
propagator of impurity fermions at zeroth order in 1/N .

small parameter of our expansion entering in both the
spinon and the impurity Hamiltonians, it is natural to
start with the bare bulk action. The equivalence of
both results can be checked replacing the bare spinon
propagator by the interacting one.

B. Fluctuations

Fluctuations due to the bosonic fields are obtained
summing the fermionic bubbles in the RPA approxi-
mation. Without the Kondo term (JK = 0) the prop-
agator Dµν = Π−1

µν of the longitudinal and transverse
components of the gauge field is given by the density-
density and current-current response functions. Using
the Coulomb gauge ∇.a = 0, the longitudinal part
is fully gaped Π00 ' m

2π , leading to screening, by the
spinons, of a U(1) test-charge. Therefore one can safely
ignore the dynamics of a0. The transverse component
Πi,j =

(
δi,j − qiqj

q2

)
Π is gapless and results from the

Landau damping of the collective transverse modes by
the gapless spinons. For |Ωu| < vF q we can write

Π (iΩu,q) = γ
|Ωu|
q

+ χq2 (10)

where γ = kF
π and χ = 1

12πm
19.

Using the diagrammatic rules of Fig. 1 the bubble-like
diagrams, including the transverse gauge as well as the κ
and λ fluctuations, are given in Fig. 2 and are divided in
impurity diagrams, mixed diagrams and gauge diagrams.
The transverse component of the gauge vertex is such
that q× j = − 1

mq× k.

The impurity diagrams, corresponding to the fluc-
tuations of κ and λ, were obtained in ref.18 and are
given explicitly in the Appendix A 2.

Impurity

Mixed

Gauge

Π X Z

Figure 2: Bubble diagrams obtained summing over the
fermionic degrees of freedom. Due to parity arguments, the
Z and all the mixed diagrams vanish.

= 0
,

(a) (b)

= 0

Figure 3: (a) Pieces of diagrams that vanish due to parity
arguments. (b) X diagram contribution to the free energy.

It is easy to prove that, due to parity considerations,
all the diagrams including the pieces of Fig.3-(a) vanish.
(see Appendix A 1). These include the mixed diagrams
as well as the ones labeled by Z in Fig. 2 and implies
that, at this order in the 1/N expansion, the gauge and
the impurity propagators decouple. The influence of im-
purity scattering on the gauge field enters only through
the X diagrams contribution:

Xi,j (iΩu,−q,q′) =
1

β

∑

n

ˆ
dk

(2π)
2 × (11)

bκ2
0F0 (iωn)G0 (iωn,k− q)G0 (iωn,k− q′)×

{
1

m
+

(k× q)i (k× q′)j
m2 |q| |q′| [G0 (iωn−u,k) +G0 (iωn+u,k)]

}
.

Taking into account all non-zero terms the bosonic ac-
tion (3), developed at Gaussian order, writes sb = s0 +
1
N (simp + sa), where

s0 = −Tr ln
[
−G−1

0

]
− Tr ln

[
−F−1

0

]

+
β

JK
κ2

0 − εc
Qf
N
β + β

V

b
µ
Qf
N

(12)

is the value of the action at the saddle-point, simp in-
cludes the fluctuations of the impurity degrees of free-
dom (given the original Read and Newns paper18 and
in Appendix A 2) and sa is the action for the transverse
component of the gauge field

sa =
1

β

∑

u

ˆ
dq dq′

(2π)
4 ā (iΩu,q) a (iΩu,q

′)×
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[δ (q− q′) Π (iΩu,q) +X (iΩu,−q,q′)] ,

where a = q̂⊥a and Xi,j = (q̂⊥)i

(
q̂′⊥
)
j
X.

C. Specific Heat Capacity

We compute the specific heat considering the temper-
ature dependence of the free energy defined as:

F = − 1

β
lnZ

=
N

β

{
s0 +

1

N

(
1

2
Tr ln Γ +

1

2
Tr ln [Π +X]

)}
(13)

The s0 term gives the contribution of the bulk fermionic
spinons C

(spinon)
v = N π2

3 V n(0)T and the leading
order impurity term C

(imp)
v = N π2

3 ρ(0)T . Here
ρ(0) = ρ(ν = 0) and ρ(ν) is the Lorentzian impurity
density of states defined earlier. The 1/N terms carry
the contributions from the bosonic degrees of freedom.
For low temperature all internal (fermionic) propagators
of Fig.2 can be computed at T = 0 and the temperature
dependence is given by the bosonic degrees of freedom18.
The first next-to-leading order correction due to the
impurity bosons (proportional to Tr ln Γ in Eq. 13) has
been shown to give a correction to the impurity contribu-
tion to the specific heat18. Defining C(imp)

v = γimpT one
obtains γimp = (N − 1) π

2

3 ρ(0) which can be interpreted
as the suppression of one of the N impurity degrees of
freedom due to the presence of the constraint.

Since the fluctuations of the gauge and impurity
fields factorize new phenomena can only arise from the
X corrections to the propagator of the gauge field. In
a system with a dilute number of magnetic scatterers
this term is of the order of the density of impurities,
and in the present case of a single impurity it is simply
proportional to 1/V . It is therefore natural to expand
Tr ln [Π +X] = Tr ln [Π] + Tr

[
Π−1X

]
+ .... The first

term in the expansion is responsible for the gauge field

contribution to the specific heat C(gauge)
v ∝ V

(
γT
χ

)2/3

.

The correction to the free energy ∆F = 1
β

1
2Tr

[
Π−1X

]

is given by the diagram of Fig. 3-(b). It is easy to prove
that such contribution vanishes remarking that one can
rewrite it as

1

β
Tr
[
Π−1X

]
=

1

β

∑

n

ˆ
dk

(2π)
2 × (14)

2bκ2
0F0 (iωn)G0 (iωn,k)G0 (iωn,k) Σf (iωn) = 0

where Σf (iωn) ∝ −isgn (ωn) |ωn|
2
3 is the spinon self-

energy17 given in Fig. 4-(b). The vanishing of this
contribution is a consequence of the independence of Σf
from the spinon momentum.

Thus the only contribution to the specific heat due
to the presence of the impurity is given by the correction
to γ(imp). All other terms vanish either by parity
considerations or by using the above argument.

D. Spin Susceptibility

In this section we consider the local spin-spin
correlations at the impurity site and its dif-
ferent contributions coming from the impurity-
impurity χimp,imp (τ) = 〈S(τ).S(0)〉 , impurity-
spinon χimp,spinon (τ) =

〈
S(τ).Sf,(x=0)(0)

〉
and

from the local spinon-spinon χspinon,spinon (τ) =〈
Sf,(x=0)(τ).Sf,(x=0)(0)

〉
susceptibilities. In order to

investigate the role of the impurity and gauge degrees
of freedom we consider the 1/N corrections of the
propagators and external vertices.

1

N

−

+ ...+

+

+

+

−

F−1
0

= 0

−1

=

    

              

=
−1

G−1

F−1

G−1
0

Σf

1

N

−1
− + ...

−iωn − εc

F−1

(a)

(b)

Figure 4: Dyson’s equation for the impurity (a) and spinon
(b) propagators up to order 1/N , for sake of clarity symmetry
related diagrams are not shown.

Fig.4 shows, diagrammatically, the impurity and
spinon propagators up to order 1/N . One can see
that, up to this order, the impurity propagator has
no corrections due to the presence of the gauge field
since terms like

´
dk G0G0Σf = 0 vanish as a con-

sequence of the independence of Σf from the spinon
momentum. Alternatively one can use the renormalized
spinon propagator to compute the self energy of the
impurity (second term of F−1

0 in Fig.4-(a)) which would
correspond to a rearrangement of the terms in 4-(a)
leading to the same result. The impurity propagator is
thus the same as if the bulk was a regular Fermi-liquid.
In which case one can use the results in ref.18 where the
fluctuations of the bosonic impurity fields λ and κ were
shown to renormalize the Kondo temperature.
Besides the self energy term, the spinon propagator,
given in Fig. 4-(b), has also a 1/V contribution from
impurity scattering processes. This correction can be
safely ignored in the computation of the local suscep-
tibility since it gives a contribution proportional to 1/V 2.
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= 0

    

+ ...1

N
= + +

+

other impurity

contributions







1

N
= +







= 0

    

+
1/V corrections due to

impurity scattering

+ ...

(a)

(b)

Figure 5: Impurity-impurity and local spinon-spinon spin sus-
ceptibilities. The vertex corrections are given to order 1/N ,
the bosonic propagators are obtained inverting the bubble like
diagrams of Fig. 2. The external zigzag line carry spin and
frequency indices.

The impurity-impurity susceptibility is given, at
leading order in 1/N , by the bubble diagram of Fig.5-(a)
(first term in the r.h.s.). 1/N vertex corrections due
to the gauge field arising in the impurity-impurity
susceptibility also vanish (see Fig.5) since they contain
the terms like the ones in Fig.3-(a). One thus concludes
that the impurity-impurity susceptibility χimp,imp has
no contribution from the gauge field at this order in
1/N . So the impurity degrees of freedom only see
the local density of the spinons. In particular the
result given in18 for the static susceptibility holds:
χimp,imp (iΩn = 0) = 1

3J(J + 1)(2J + 1)ρ (0) where
N = 2J + 1.

Gauge contributions are known to enhance Friedel-
like oscillations in U(1) spin-liquids11,17,20. This is a
consequence of the renormalization of the 2kF compo-
nent of the susceptibility vertex. One could thus expect
that the local spinon-spinon susceptibility carried some
trace of this behavior. Remarkably no vertex corrections
to the local susceptibility due to the gauge field are
possible since simple parity arguments like the one used
in Appendix A 1 show that the contribution given by
the second diagram in the r.h.s of Fig.3-(b) vanishes.

Finally, the crossed impurity-spinon susceptibility
can also be shown to remain unaffected by the presence
of the gauge field using the same simple arguments.
Local measurements of the susceptibility at the impurity
site are thus completely insensitive to the gauge degrees
of freedom.

III. DISCUSSION

We considered the Kondo screening in a bulk system
of spinons strongly interacting with a U(1) gauge field.
While it is remarkable that Kondo screening can occur
for a charge insulator, the results obtained here predict
that no particular signature due to the presence of the
gauge field can be measured if only the impurity degrees
of freedom or local magnetic properties are monitored.

Let us put this seemingly negative result in context.
First, to leading order in 1/N , gauge fluctuations are re-
sponsible for singular corrections of the bulk specific heat
and susceptibility, giving non-Fermi liquid signatures2,3.
Without a detailed calculation, it is not a priori obvious
whether the Kondo effect of such a non-Fermi liquid will
be modified. Secondly, it is known that the gauge fluctu-
ations give rise to enhancement of the 2kF spin suscepti-
bility, again to leading order in 1/N 20. Such singularity
gives rise to enhanced Friedel oscillations of the spinon
density11,21. Perturbating in JK , one finds that the lo-
cal moment of the Kondo Hamiltonian is coupled to the
local spin susceptibility of the spinons which is the sum
of all Fourier components, including 2kF . Thus naively
one might expect singular corrections to leading order of
1/N . In this context our finding that no trace of such
singular behavior was found at order 1/N in the impu-
rity quantities is a significant one. Measurements such as
specific heat and susceptibility will be unable of distin-
guish the bulk spinons from a Fermi-liquid. In particular
the Wilson ratio R =

π2χimp,imp(0)
J(J+1)γimp

= N
N−1 for this case

is the same as the one found for a magnetic impurity
embedded in a Fermi-Liquid18.

Finally we should emphasize that the results reported
here are only valid up to order 1/N . Higher order cor-
rections can, in principle, introduce non-FL features that
unveil the presence of the gauge field. Unfortunately, to
our knowledge the next order calculation has not been
carried out even in the conventional Kondo problem, and
we have not attempted that calculation here.
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Appendix A:

1. Vanishing of the diagram of Fig.3-(a)

The diagram of Fig. 3-(a) is given by

W = bκ2
0

ˆ
dk

(2π)
2G0 (iωn,k)

(k× q)

m |q| G0 (iωn−u,k− q) .
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Changing variables k → k′ = 2q.k
q.qq − k, where k′ is

obtained reflecting k on axes q (see Fig.6), leaves the
norms |k| = |k′| and |k− q| = |k′ − q| invariant and
changes the sign of k×q = −k′×q. Since G0 (iωn,k) =
G0 (iωn, |k|) for a spherically symmetric Fermi surface it
follows that W = −W = 0.

q
k

k�

Figure 6: Change of variables k′ = 2q.k
q.q

q− k ,implying that
the diagram in Fig.3-(a) is zero.

2. Impurity Fluctuation’s Matrix

The impurity action at Gaussian level is given by

simp =
1

β

∑

n

1

2

[
κ̄(iΩu)
λ̄(iΩu)

]T
Γ(iΩu)

[
κ(iΩu)
λ(iΩu)

]

where

Γ(iΩu) =

[
δ2s
δκ̄δκ

δ2s′

δλ̄δκ
δ2s′

δλ̄δκ
δ2s′

δλ̄δλ

]

is the fluctuation matrix. Evaluating the fermionic Mat-
subara sums at zero temperature one obtains:

δλ̄δλs =
∆

π |Ωn| (2∆ + |Ωn|)
ln

[
ε2
c + (|Ωn|+ ∆)

2

ε2
c + ∆2

]
;

δλ̄δκs =
2ibn(0)κ0

|Ωn|

[
tan−1

( |Ωn|+ ∆

εc

)
− tan−1

(
∆

εc

)]
;

δκ̄δκs = bn(0)

(
2∆

|Ωn|
+ 1

)
ln

[
ε2
c + (|Ωn|+ ∆)

2

ε2
c + ∆2

]
.
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