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4Louisiana State University, Baton Rouge, LA 70803, USA

(Dated: May 3, 2011)

We present momentum resolved single-particle spectra for the three-dimensional Hubbard model
for the paramagnetic and antiferromagnetically ordered phase obtained within the dynamical cluster
approximation. The effective cluster problem is solved by continuous-time Quantum Monte Carlo
simulations. The absence of a time discretization error and the ability to perform Monte Carlo
measurements directly in Matsubara frequencies enable us to analytically continue the self-energies
by maximum entropy, which is essential to obtain momentum resolved spectral functions for the
Néel state. We investigate the dependence on temperature and interaction strength and the effect
of magnetic frustration introduced by a next-nearest neighbor hopping. One particular question we
address here is the influence of the frustrating interaction on the metal insulator transition of the
three-dimensional Hubbard model.

PACS numbers: 71.10.Fd 71.15.-m 71.28.+d 71.30.-h

I. INTRODUCTION

One of the paradigms for correlation effects and com-
peting orders in solid state physics is the Hubbard
model1–3

H =− t
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c†iσcjσ − t′
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2

)
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The operators c†iσ (ciσ) create (annihilate) an electron

with spin σ ∈ {↑, ↓} at lattice site i, niσ = c†iσciσ is
the particle number operator, t describes the hopping
between neighboring sites (denoted by 〈i, j〉), t′ the hop-
ping between next -nearest neighbors (denoted by 〈〈i, j〉〉)
and U implements the local Coulomb repulsion.
The Hubbard model – despite its simple structure –

can only be solved exactly in one4 and infinite5 spa-
tial dimensions. There are several expectations one can
deduce from general energetic arguments and in partic-
ular from the connection between the Hubbard model
and the Heisenberg hamiltonian in the limit of large in-
teraction strength t/U → 06. For a three-dimensional
simple-cubic lattice and t′ = 0, the Hubbard model at
half filling shows antiferromagnetic order at finite tem-
perature for any value U > 0. The doubling of the unit
cell causes this ordered state to be an insulator. With
increased next-nearest neighbor hopping this transition
is suppressed and a Mott-Hubbard metal-insulator tran-
sition (MH-MIT) is expected to appear in the param-
agnetic state at some non-zero critical value Uc of the
interaction.
Quantum Monte Carlo (QMC) methods are powerful

tools that enable the controlled calculation of proper-
ties of large interacting quantum many-particle systems.
Examples include spin models and many bosonic sys-

tems. However, simulations of fermionic models away
from particle-hole symmetry are often severely hampered
by the fermionic sign problem7. In particular, the identi-
fication of ordered phases, which requires a reliable finite
size scaling, becomes exceedingly complicated. Indepen-
dent of the sign problem, the direct investigation of the
properties of ordered phases possibly present in the ther-
modynamic limit is not possible as any QMC simulation
is performed on a finite system which cannot exhibit a
spontaneously broken symmetry.

Therefore an approximation scheme allowing (i) cal-
culations in the thermodynamic limit while (ii) includ-
ing dynamical correlations in a controlled way is highly
desirable. The dynamical mean-field theory (DMFT)5,8

and its cluster extensions9 are such theories. The DMFT
maps the lattice problem onto an effective single-site im-
purity model, at the cost of neglecting non-local many-
body correlation effects. In many cases, the sign prob-
lem of the resulting impurity model is either absent or
manageable. However, these non-local correlation effects
are often crucial for the interplay between Fermi liquid
and more exotic states of matter. Cluster mean-field
theories are extensions of the DMFT to finite clusters,
re-introducing non-local (short-ranged) correlations in a
systematic manner but at the same time increasing the
complexity of a simulation. In the limit of infinite cluster
size they become exact. The controlled extrapolation of
cluster results to the thermodynamic limit is often feasi-
ble in practice10,11.

DMFT has proven to be a very powerful tool to study
the fundamental aspects of the MH-MIT8. Within the
DMFT, however, the MH-MIT is completely hidden in-
side an antiferromagnetic phase, which is insulating by
symmetry12. Introducing magnetic frustration, e. g. by
a non-zero t′, tends to suppress the magnetic order and
shift the critical interaction strength Uc towards lower
values. Thus the MH-MIT eventually emerges from the
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antiferromagnetic phase for large values of t′13.
In low-dimensional systems (single site) DMFT is in

general not a good approximation. In particular, for
the one-dimensional Hubbard model non-local correla-
tions are in fact dominant14, leading to a complete break-
down of Fermi liquid physics and the formation of a novel
low-energy fixed point, the Luttinger liquid4. Similarly,
in two dimensions a strong influence of spin-fluctuations
in the Hubbard model is expected, in particular at and
close to half filling. Since the Mermin-Wagner theorem
forbids the formation of an ordered state in two dimen-
sions at finite temperature, the existing strong magnetic
correlations will lead to correspondingly strong dynam-
ical fluctuations at T > 0 and will possibly trigger a
similar breakdown of Fermi liquid physics as in the one-
dimensional case. Evidence for this behavior has indeed
been observed in various numerical simulations9,15–25.
The importance of short-ranged correlations in the

three-dimensional Hubbard model is less clear and less
well studied, and detailed studies of the phase dia-
gram at high temperature have only recently begun to
appear10,26. On the one hand, the precise value of the
Néel temperature and critical exponents for the transi-
tion into the antiferromagnetic state will be directly in-
fluenced by the presence of spin fluctuations27. Since
the antiferromagnetically ordered phase is an insulator,
we expect the antiferromagnetic spin fluctuations in the
paramagnetic phase to stabilize the MH-MIT, thus shift-
ing the critical Uc towards lower values. Adding frustra-
tion by e. g. next-nearest neighbor hopping t′ will further
enhance this effect. One may surmise that the MH-MIT
will eventually emerge from the antiferromagnetic phase
as in DMFT. To our knowledge this has not yet been
investigated in detail.
In this work we study the Hubbard model for a three-

dimensional cubic lattice using the dynamical cluster ap-
proximation (DCA)28,29 cluster dynamical mean field al-
gorithm on clusters of size 18. We present momentum
resolved single-particle spectra in the paramagnetic and
in the antiferromagnetic phase, and investigate the influ-
ence of frustration effects caused by a next-nearest neigh-
bor hopping t′. We focus our investigation on the inter-
play of frustration and spin fluctuations in the vicinity of
the paramagnetic metal insulator transition.

II. METHOD

We study the Hubbard model in three dimensions
within the DCA to include both the short- to medium-
ranged antiferromagnetic fluctuations and the possibility
of actual long-range antiferromagnetic order. Since the
DCA maps the lattice problem onto an effective peri-
odic cluster coupled to a dynamic bath, numerically ex-
act quantum Monte-Carlo (QMC) algorithms are ideally
suited to solve this effective model.
Of particular interest in correlated electron systems are

dynamical correlation functions such as single-particle

spectra. However, QMC provides data only on the imag-
inary time or frequency axis, and the necessary analytic
continuation of these data has proven to be difficult. The
standard tool to solve this problem is the maximum en-
tropy method (MEM)30.
Previously, the quasi-standard for simulations of

fermionic many-particle systems was the Hirsch-Fye
algorithm31, which uses a discretization of the imaginary
time axis. An alternative has evolved in recent years
by the development of QMC algorithms in continuous
imaginary time32–36. The absence of a time discretiza-
tion error and the possibility of Monte Carlo measure-
ments directly in Matsubara frequencies32 enhance the
quality of the data significantly37 and hence enable us to
directly analytically continue self-energies38. This avoids
the extraction of the self-energies from already contin-
ued Green functions by a numerically difficult multi-
dimensional root finding algorithm39. In this paper we
use an implementation of the CT-INT QMC algorithm
initially described by Rubtsov and co-workers32,33 which
performs a systematic expansion in the interaction term
of the Hamiltonian.
For a simple cubic lattice in three dimensions the dis-

persion including nearest and next-nearest neighbor hop-
ping reads

ǫk = −2t

3
∑

i=1

cos(ki)− 4t′ [cos(k1) cos(k2)

+ cos(k2) cos(k3) + cos(k1) cos(k3)] , (2)

where k = (k1, k2, k3) is an element of the first Brillouin
zone of the simple cubic lattice. The full bandwidth

W =

{

12t for |t′| ≤ t/4

8t+ 16|t′| for |t′| > t/4
(3)

of this dispersion is used as energy scale in this paper.
Let us briefly recall the essential aspects of the DCA.

The central quantity is the single particle Green function
in imaginary time τ , defined by

Gσij(τ) = −〈T cσi(τ)c
†
σj〉 . (4)

Here T is the imaginary-time ordering operator, 〈·〉
denotes a thermal expectation value and cσi(τ) =
e−Hτ cσie

Hτ . The spatial and temporal Fourier trans-
form of the Green function is

Gσk(iωn) =
1

N

∑

ij

exp [ik(Ri −Rj)]×

×

β
∫

0

dτ exp (iωnτ)Gσij(τ) , (5)

where k is located in the first Brillouin zone and ωn =
(2n + 1)π/β with n ∈ Z and β = 1/kBT denotes the
fermionic Matsubara frequencies. T is the temperature
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FIG. 1: (color online) The dynamical cluster approximation
illustrated for a 8-site cluster in two dimensions. In real space
(a) the origin of a cluster is labeled by r̃. Each site of the
cluster is identified by R. A Fourier transformation maps the
coordinate r = r̃ + R of each lattice site to a vector k in
the first Brillouin zone (b). The cluster momentum K now
identifies the center of a cell in momentum space. All points
inside this patch can be reached by k̃. The DCA integrates
out k̃ and thus replaces the full k-dependence of the lattice
by the cells labeled by K.

and kB Boltzmann’s constant. With Dyson’s equation,
we write the Green function as

Gσk(iωn) =
1

iωn + µ− ǫk − Σσk(iωn)
(6)

thus introducing the single-particle self energy Σσk(iωn)
which contains all many-body correlations effects in the
system and, in general, is a function of both momentum
k and energy ωn.
Within DCA, the full lattice model is approximated by

a finite cluster of size N embedded in a mean field. We
tile the first Brillouin zone into N non-overlapping cells,
each represented by its central momentumK (see Fig. 1b
for an example). The full k-dependence of the model is
approximated by the discrete set of N cluster momenta
K by setting Σσk(iωn) ≈ ΣσK(iωn). Averaging over the
volume V of the cell corresponding to cluster momentum
K one obtains the quantity

ḠσK(iωn) =
1

V

∫

dk̃
1

iωn + µ− ǫK+k̃ − ΣσK(iωn)
,

(7)
which defines an effective non-interacting cluster via

GσK(iωn)
−1 = ḠσK(iωn)

−1 +ΣσK(iωn) . (8)

GK −→ QMC Cluster Solver −→ GK

↑ ↓

(GK)−1 = (ḠK)−1 +ΣK ΣK = (GK)−1
− (GK)−1

↑ ↓

ḠK =
1

V

∫

dk̃
(

iωn + µ− ǫ
K+k̃

− ΣK

)−1

FIG. 2: The self-energy ΣσK(iωn) is determined self-
consistently by iterating the depicted procedure until con-
vergence is reached. The bottom line shows the calculation of
the coarse-grained Green function ḠK by averaging over the
momentum patch centered around K via integrating k̃ over
the volume V of the patch. The dependency of the Green
functions and the self-energy on iωn and σ is omitted for sim-
plicity.

With this set of quantities, a suitable method to solve
the effective cluster defined by GσK(iωn) and the inter-
action U , one can determine the self-energy ΣσK(iωn)
iteratively as depicted in Fig. 2.
From the QMC algorithm used to solve the effective

cluster, we obtain the cluster Green function ḠσK(iωn).
Usually one then uses the maximum entropy method30

to analytically continue this quantity to the real axis.
In order to be able to reverse the coarse-graining, i. e.,
calculate Gσk(ω + i0+) for all k from the first Brillouin
zone, one needs access to the self-energy ΣσK(ω+ i0+)9,
which needs to be obtained by numerical inversion of
Eq. 7. While this is feasible in the paramagnetic phase,
the matrix structure appearing in the antiferromagneti-
cally ordered phase (see section IV) renders this approach
impractical.
We follow here an alternative route and analytically

continue the self-energy instead38, which is related to the
cluster Green function by

ΣσK(iωn) = GσK(iωn)
−1 −GσK(iωn)

−1 , (9)

i. e., an inversion of GσK(iωn). This inverse is calcu-
lated directly from the Monte Carlo bins using a jack-
knife procedure40 and therefore incorporates a full error
propagation of the covariance matrix. The bare Green’s
function GσK(iωn) is viewed here as an input parameter
and error propagation of errors contained in our estimate
of it, which would require error propagation over sub-
sequent iterations, is not considered here, such that all
errors in GσK(iωn) are neglected.
The analytic continuation of the self-energy from imag-

inary to real frequencies is then performed by the max-
imum entropy method30, using a standard implementa-
tion of the algorithm following41. To accurately continue
self-energies with MEM, their high frequency behavior
has to be known38. To this end we perform a high-
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frequency expansion of the self-energy

ΣσK(iωn) = Σ0
σ +

Σ1
σ

iωn
+O((iωn)

−2) , (10)

where the coefficients are given by (see Appendix)

Σ0
σ = U

(

〈n−σ〉 −
1

2

)

(11)

and

Σ1
σ = U2〈n−σ〉 (1− 〈n−σ〉) . (12)

We now define the quantity

Σ′
σK(iωn) :=

ΣσK(iωn)− Σ0
σ

Σ1
σ

. (13)

Since the average number density 〈n−σ〉 is a Monte Carlo
measurement, we estimate Σ′

σK(iωn) and its covariance
matrix by a jackknife procedure. The rescaled self-energy
Σ′

σK(iωn) as function of Matsubara frequencies is related
to the imaginary part ImΣ′

σK(ω + i0+) on the real fre-
quency axis through the Hilbert transform

Σ′
σK(iωn) = −

1

π

∞
∫

−∞

dω′ ImΣ′
σK(ω′)

iωn − ω′
. (14)

By virtue of the rescaling Eq. 13 we furthermore have

−
1

π

∞
∫

−∞

dω ImΣ′
σK(ω) = 1 , (15)

i. e., the spectral function − 1
π ImΣ′

σK(ω) is non-negative,
normalized to one, and can thus be calculated by the
MEM from the data on the imaginary axis. The real part
of the self-energy then follows from the Kramers-Kronig
relation

ReΣσK(ω) = −
1

π
P

∞
∫

−∞

dω′ ImΣσK(ω′)

ω − ω′
+Σ0

σ , (16)

where P
∫

denotes a principal value integral. An example
for a full self-energy on the real-frequency axis is shown
in Fig. 3a. An interpolation of the coarse-grained self-
energies yields the self-energy Σσk(ω) for all momenta
k of the Brillouin zone. We use a three-dimensional in-
terpolation based on Akima splines42 which provide a
smooth interpolation along the momentum points while
avoiding spurious oscillations. Finally, the single-particle
spectral function Aσk(ω) is calculated using Dyson’s
equation:

Aσk(ω) = −
1

π
Im

1

ω + µ− ǫk − Σσk(ω)
. (17)

The quantity Aσk(ω)could in principle also be calcu-
lated by a analytic continuation of the Green function
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FIG. 3: (color online) The self-energy on the real-frequency
axis in the paramagnetic phase for K = Γ, U = W , t′ = 0 and
T = 0.02W (a). The default model that entered the MEM
calculation of the imaginary part is also shown. The real
part is obtained from the imaginary part via Eq. 16. Panel
(b) shows real and imaginary parts of the interpolated self-
energy Σk(iω0) for the smallest Matsubara frequency for an
18 site cluster, U = 0.67W and T = 0.03W at half filling.
The self-energy values at momenta between the discrete clus-
ter momenta are obtained from an interpolation using Akima
splines42 in three dimensions. The horizontal straight lines
denote DMFT results. The interpolation follows the path
along the high symmetry points of the first Brillouin zone de-
picted in panel (c). For an estimate of finite size effects in (b)
see also Ref.11
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FIG. 4: (color online) Momentum resolved single-particle spectra for T = 0.02W and t′ = 0. The momenta k follow a path
along high symmetry directions of the first Brillouin zone as depicted in Fig. 3c. The left part of each diagram shows the local
single-particle spectrum A(ω) derived from the direct analytic continuation of the Green function. The dashed line denotes the
bare dispersion ǫk.

at each cluster momentum K followed by an interpola-
tion of the Green function values directly. However, this
procedure neglects the exactly known momentum depen-
dence of the dispersion ǫk, which causes a significant loss
of momentum resolution. We will not consider it any
further.
As an example, Fig. 3b shows the interpolated

momentum-resolved self-energy for the smallest Matsub-
ara frequency iω0 (full and dashed lines). The results
were obtained for a cluster with 18 K momenta and a
Coulomb repulsion U = 0.67W at T = 0.03W . The
comparison with the corresponding DMFT result (dotted
lines) shows that the momentum resolution of the DCA
adds significant k dependence to the self-energy. Thus
the many-particle renormalizations acquire a significant
k-dependence in DCA, even for the three-dimensional
Hubbard model at comparatively weak coupling10,11.
The available computational resources and the qual-

ity of data needed for high precision analytic continu-
ation limit us to study clusters of comparatively small
size. We limit ourselves to a study of a cluster of size
N = 18 described by the basis vectors a1 = (1, 1, 2),
a2 = (2, 2,−2), and a3 = (2,−1,−1). This cluster is the
optimal bipartite cluster of this size27 following the cri-
teria proposed by Betts et al.43. Since we are primarily
interested in identifying trends and basic physical effects
we do not perform calculations for larger clusters to ob-
tain a finite size scaling as would have been necessary,

e.g., for a precise estimation of the equation of state or
the Néel temperature in the thermodynamic limit10,27.

III. PROPERTIES OF THE PARAMAGNETIC

PHASE

We begin the discussion of our results by present-
ing spectral functions in the paramagnetic phase of the
model, i.e., we manually suppress long range order. This
allows us to distinguish dynamical effects coming from
fluctuations from effects caused by the (static) symme-
try breaking.

A. Metallic phase

Fig. 4 presents single particle dispersions in the para-
magnetic phase for T = 0.02W , t′ = 0 and four different
Coulomb repulsions U = 0.67W,U = 0.8W,U = 0.87W,
and U = W . The selected k points follow a path along
the high symmetry points of the first Brillouin zone de-
picted in Fig. 3c. Local single particle spectra are shown
on the left of each panel. For small U = 0.67W we
observe a clear quasi-particle peak at the Fermi level,
both in the DOS and the spectral function. The momen-
tum resolved spectra show that the main contributions to
the quasi-particle peak are situated halfway between the
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FIG. 5: (color online) Momentum resolved single-particle
spectra for T = 0.02W , t′ = 0, and U = 0.93W using a
non-dispersive DMFT self-energy (a) and a momentum de-
pendent cluster self-energy (b). The inset highlights a part of
the spectrum using an alternative color scheme.

Γ and R points and the X and M points, respectively.
Comparison of the peak dispersion in these regions to the
non-interacting dispersion (dashed line) reveals a clear
flattening at the Fermi energy, i. e., an increased effective
mass of the quasi-particles. At higher energies additional
structures – the lower and upper Hubbard bands – are
visible. They follow the curvature of the bare disper-
sion but are shifted to higher energies and connected
to the quasi-particle band through broad “waterfall”-
like pieces reminiscent of structures observed in angle-
resolved photoemission spectroscopy of cuprates44. For
increasing Coulomb repulsion U the quasi-particle band
at the Fermi energy vanishes and is replaced by an insu-
lating gap. At the same time the dispersion of the high-
energy structures flattens: the system becomes more lo-
calized. Thus for the temperature studied a crossover
from a metallic dispersion at U = 0.67W to a Mott insu-
lating phase at U = W is clearly visible. We will return
to the details of the Mott-Hubbard metal-insulator tran-
sition in section III B.

To make the influence of the momentum dependence
of the self-energy in the spectra more transparent, Fig. 5
compares an insulating spectrum based on self-energies

of the 18 site cluster to the corresponding spectrum based
on a momentum-independent DMFT self-energy. While
many overall features are similar, there are qualitative
differences. For example, a blowup of the details of the
spectra close to the Γ point (insets to Fig. 5) shows that
a substantial part of the DMFT spectrum around the Γ
point is located just above the Fermi energy. This con-
tribution is shifted to higher frequencies in the cluster
calculation, and the curvature is reversed, more resem-
bling the structure of the lower Hubbard band but with
much less spectral weight. The feature can be interpreted
as a precursor of the complete symmetry with respect
to the Fermi energy occurring for spectra in the anti-
ferromagnetically ordered phase (see section IV). Thus,
we attribute these pale reflections of the lower Hubbard
band to the so-called shadow bands45 arising due to an-
tiferromagnetic fluctuations not contained in the DMFT
simulation.
Next we examine the influence of a next-nearest neigh-

bor hopping t′. In quantum Monte Carlo calculations,
a non-zero value of t′ introduces a fermionic sign prob-
lem even at half filling that may lead to a significantly
larger computational cost. However, for the tempera-
tures, Coulomb repulsions and cluster size studied here
the average sign is always greater than 0.94 and thus
affects the efficiency of the simulations only marginally.
Fig. 6 shows results of calculations for U = 0.67W

and different values for t′. The particle-hole symmetric
spectrum of Fig. 4a becomes more and more asymmetric
with increasing t′. We attribute most of these changes
to the changes in the bare dispersion ǫk. However, while
for small to moderate t′ the quasi-particle properties do
not seem to change much, one observes a significant re-
duction in the spectral weight at the Fermi energy for
lager t′, resulting in a reduction of the quasiparticle peak
in the analytically continued spectra. For example, at
t′ = −t the integrated weight of the quasi-particle peak
is reduced by 50% compared to the value for t′ = 0 in
Fig. 4a. These observations indicate a reduction of the
quasi-particle mass with increasing t′, in accordance with
previous DMFT findings13.
Frustration effects on the insulating spectrum Fig. 4d

(U = W ) are illustrated in Fig. 7. As for the metallic
spectrum, the features present in Fig. 4d for t′ = 0 ini-
tially change only weakly and in particular the “shadow”
structures seem to be present, albeit with reduced weight.
For strong frustration Hubbard bands become dominant.
These Hubbard bands have a rather well-defined struc-
ture and dispersion reminiscent of the bare dispersion.
Furthermore, a peak develops just below the Fermi en-
ergy, which becomes more pronounced with increasing t′

and appears to have only small momentum dependence.

B. Mott-Hubbard Metal-Insulator Transition

One of the interesting properties of the Hubbard model
is the formation of a correlation driven metal-insulator
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transition in the paramagnetic phase, the so-called Mott-
Hubbard metal-insulator transition (MH-MIT). Different
from the conventional band or Slater insulators for even
electron number, where the insulating behavior is due to
a completely filled band, the MH-MIT occurs in a par-
tially filled band, which within a simple single-particle
picture would thus be conducting. Such a transition
is believed to frequently be present in transition metal
oxides46, and has been discussed both from an experi-
mental and theoretical point of view over the past 50
years. Note that it is also different from the insulating
state originating from an antiferromagnetic order; the
latter implies a broken translational invariance and can
hence be purely explained by band structure effects (see
also section IV).
On a simple cubic lattice with only nearest-neighbor

hopping the MH-MIT of the Hubbard model at half
filling is completely covered by the antiferromagnetic
phase47. Nevertheless, one may study it within a general-
ized mean-field theory by suppressing long-range antifer-
romagnetic order in the system. This is accomplished
by enforcing translational symmetry on the bath and
thereby preventing any symmetry-breaking. One of the
clearest signs, numerically, for identifying the MH-MIT
is given by the value of the DOS at the Fermi energy:
A non-zero value at T = 0 is indicative of a metal, a
zero value of an insulator. Identifying the MIT at T > 0
without a detailed analysis of the temperature depen-
dence is more subtle, but again the DOS at the Fermi
level can serve as “order parameter”: Away from the
MH-MIT the DOS varies smoothly as function of tem-
perature. When approaching the MH-MIT at half filling

as function of U or T , DMFT analyses suggest that the
DOS will show a jump5,48 below a critical end point. Fur-
thermore, the transition is of first order with a nice hys-
teresis in the critical region. This behavior has been con-
firmed for two-dimensional systems within cluster DMFT
on small23 and larger24 clusters. Note that we do not dis-
cuss the approach to the MH-MIT as function of doping.
The behavior of the system at this transition is very dif-
ferent, and has been addressed by a number of groups
both in DMFT and cluster variants on a wide range of
systems25,49–55.
We estimate the density of states at the Fermi

level from the low-frequency behavior of our Matsub-
ara Green’s function Gii(iωn) that is available as direct
Monte Carlo measurement and does not require analytic
continuation. This approach is based on the relation

βGK

(

β

2

)

= −
β

2

∞
∫

−∞

dω
AK(ω)

cosh β
2
ω

β→∞
−→ −πAK(0) (18)

for the long-time behavior of the imaginary time Green’s
function and the fact that the long-time behavior trans-
lates into the low-energy behavior under the Fourier
transform.
Fig. 8a shows the imaginary part of Gloc(iωn) :=

Gii(iωn) for t
′ = 0 and T = 0.01W obtained within the
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FIG. 8: (color online) The imaginary part of the local Green
function in Matsubara frequencies for t′ = 0, T = 0.01W
(a) and T = 0.015W (b). Several values of U around the
MH-MIT are shown.

DCA for a cluster size of 18. The jump from an insulating
Green function at U = 0.80W to a metallic solution at
U = 0.766W clearly shows the location of the MH-MIT
at this temperature. For T = 0.015W we could only de-
tect a crossover from insulating to metallic behavior (see
Fig. 8b). This indicates that the critical endpoint of the
MH-MIT transition line is located between T = 0.01W
and T = 0.015W , substantially below the Néel temper-
ature at this interaction strength (TN = 0.030(3)W at
U = 0.8W 27,47).
Another observable that shows a clear signal of the

MH-MIT is the effective mass, defined as

m∗
k

m
= 1−

∂ReΣσk(ω)

∂ω

∣

∣

∣

∣

ω=0

(19)

where m denotes the bare carrier mass. The effective
mass at non-zero (but sufficiently low) temperature may
be estimated from the QMC without resorting to analyt-
ical continuations as56

m∗
k

m
≈ 1−

ImΣσk(iω0)

ω0

(20)

where ω0 is the lowest Matsubara frequency (see e.g.
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FIG. 9: (color online) The quasi-particle mass m∗
K as function

of mean distance d from the Fermi surface in units of the lat-
tice spacing a (a). The distance dK is defined as the average
of the distances between the Fermi surface and all momenta
in the cluster cell described by the cluster momentumK. The
18 cluster momenta reduce to 5 different masses due to point
symmetries. The labels 1 to 5 refer to the points depicted in
panel b, which also shows the non-interacting Fermi surface
for t′ = 0.

Fig. 10 in Ref.53 for a comparison between directly ob-
tained and analytically continued estimates). At the MH-
MIT m∗

k across the Fermi surface exhibits a sharp in-
crease.

The estimate for the effective mass obtained that way
is shown in Fig. 9a for two different values U = 0.73W <
Uc(t

′ = 0) and U = 0.8W > Uc(t
′ = 0) and t′ = 0

and −0.2 t at T = 0.01W . We do not show the result
for m∗

k from the interpolated data, as the division by ω0

with ω0/W ≪ 1 also strongly enhances spurious artificial
oscillations due to interpolation, but rather present the
masses m∗

K for each of the 18 cluster momenta as func-
tion of their mean distance to the non-interacting Fermi
surface for t′ = 0. The mean distance is calculated by
averaging the distance to the Fermi surface of all points
inside the cluster cell around K. Due to symmetry, some
cluster momenta are equivalent and thus we obtain only
five different effective masses. Fig. 9b depicts one rep-
resentative cluster momentum for each one of these five

equivalence classes.

For both values of t′ the K-dependence of m∗
K for U

deep inside the metallic phase is rather weak, although
nevertheless visible. The insulating phase, in contrast,
shows a dramatic increase of the effective mass for the
cluster momenta near the Fermi surface. For example,
point 1 with the strongest enhancement is situated on the
Fermi surface of the non-interacting system. Thus, the
natural interpretation is that MH-MIT appears first for
k-points at or close to the Fermi surface. Points far away
from the Fermi surface, on the other hand, like points 4
and 5 (5 for example corresponding to Γ respectively R),
experience only weak renormalizations. The interpreta-
tion is further supported by the influence of non-zero t′,
which moderately modifies the mass due to changing dis-
tances of the clusterK points from the Fermi surface and
a different critical Uc, but otherwise shows a similar be-
havior. We however do not observe a significant variation
of m∗

K across the Fermi surface. The difference between
points 1 and 2 in Fig. 9 can be explained by the large
distance of the cluster center from the Fermi surface.

Note that this behavior of the three-dimensional model
is different from the two-dimensional Hubbard model,
where the Mott transition within DCA has been in-
vestigated in some detail24,25,53. In this case, the so-
called “momentum selective Mott transition” has been
observed, where different parts of the Fermi surface un-
dergo a metal insulator transition for different interac-
tion strengths. To conclusively exclude the possibility
of a momentum selective MH-MIT in three dimensions,
larger clusters with a finer grid of K points on different
parts of the Fermi surface would be needed.

In the following we focus on cluster momentum 1,
which is situated directly on the Fermi surface, midway
between Γ and M . Since this point exhibits the strongest
mass enhancement in the insulating phase, it is an ideal
candidate to study the MH-MIT. The effective mass of
this K point is plotted in Fig. 10 as a function of U .

At Uc = 0.766W both an insulating and a metallic so-
lution can be stabilized, depending on the initial Green
function used to start the DCA self-consistency. This
behavior indicates a coexistence region in this regime
of interaction parameters and tells us that the qualita-
tive physical properties of the paramagnetic MH-MIT
do not change at least qualitatively for a true 3D sys-
tem. The figure also shows the corresponding curves for
next-nearest neighbor hopping parameters t′ = −0.1 t
and t′ = −0.2 t. Here the coexistence region has van-
ished at the temperature for which the simulations were
done, while the relatively smooth shape of the curve in-
dicates that one is still observing a crossover and not yet
a sharp phase transition as in the case of t′ = 0. This is
again in accordance with previous DMFT calculations,
where a reduction of the critical temperature and also
critical value of U was observed with increasing t′57. It
is however different from the interaction transition in the
two-dimensional Hubbard model24, where increasing |t′|
lead to an increase of the critical interaction strength.



10

0

10

20

30

40

50

0.64 0.68 0.72 0.76 0.8 0.84 0.88

m
∗ K

1
/
m

U/W

t′ = 0
t′ = −0.1 t
t′ = −0.2 t

FIG. 10: (color online) The quasi-particle mass estimate m∗
K1

at the midpoint between Γ and M (point 1 in Fig. 9b), for
T = 0.01W depending on the interaction parameter U .

It would be highly desirable to perform simulations at
lower temperatures for non-zero t′, but as the compu-
tational effort necessary increases dramatically with de-
creasing temperature, we were not yet able to do these
simulations for the time being.
Previous studies of the interaction driven MH-MIT

at non-zero temperature were largely performed on a
Bethe lattice in the limit of infinite dimension within
the DMFT approximation58,59, respectively for a two-
dimensional Hubbard model using the correlator projec-
tion method17,19 or cluster DMFT16,18,20–25. While the
general features of the MH-MIT appear to be rather
insensitive to the actual non-interacting band struc-
ture, the details like critical values for temperature and
Coulomb interactions vary strongly with details of the
model as well as the approximations involved in the com-
putation and finite size effects.
In order to compare values for lattices with different

noninteracting density of states ρ(ω), Bulla60 suggested
to use the second moment of the DOS

Weff = 4

√

√

√

√

√

√

W/2
∫

−W/2

dω ω2ρ(ω), (21)

as characteristic energy scale instead of the bandwidth
W . From Eq. 21 one obtains Weff = W for the Bethe
lattice and Weff ≈ 0.816W for the simple cubic lattice,
and a rather good agreement of critical values when relat-
ing them to Weff

60,61. Our result Uc = 0.77(3)W for the
coexistence region then translates to Uc = 0.94(3)Weff at
T = 0.012Weff. For a conventional DMFT calculation,
refs.58 and59 located the coexistence region for this tem-
perature around Uc = 1.18(2)Weff . This indicates that
for a true three-dimensional system the critical values of
the MH-MIT will be renormalized, and in particular the
critical Uc will be shifted to lower values. We attribute

L W

K

Γ X

FIG. 11: (color online) The magnetic Brillouin zone of the
simple cubic lattice and the path along high symmetry points
used for the presentation of spectra in the antiferromagneti-
cally ordered state in Fig. 14

these renormalizations to the short-ranged antiferromag-
netic fluctuations present in the DCA. They will have the
tendency to suppress the formation of quasi-particles and
will thus cause the transition to shift to smaller Coulomb
repulsions U . A detailed investigation of the location of
the transition in the thermodynamic limit would require
the study of a range of cluster sizes and a careful finite
size analysis along the lines of10,11,29,62.

IV. ANTIFERROMAGNETIC PHASE

As previously mentioned the thermodynamically sta-
ble low-temperature phase of the Hubbard model at half
filling is, for t′ = 0, antiferromagnetic. This phase com-
pletely covers the MH-MIT13,47. Conventionally, the on-
set of antiferromagnetic long-ranged order is indicated by
a divergence of the staggered susceptibility upon cool-
ing from the paramagnetic state at high temperature62.
Complementary to a paramagnetic simulation and analy-
sis of the susceptibility, the symmetry-broken phase may
be simulated directly. While this scheme is less accurate
at determining the location of phase boundaries, it can
address the properties within the ordered phase and thus
is relevant for comparison to experiments within that
phase. Furthermore, it often is desirable to investigate
the direct change of quantities in the presence of com-
peting phases or orders. For these reasons we present
in this paper results obtained in the antiferromagneti-
cally ordered state. We will show that within the same
framework, with minor modifications, we can also obtain
high-quality spectra from QMC data in a phase with non-
trivial broken symmetry.
The antiferromagnetic order breaks the translational

symmetry of the lattice, leading to a doubling of the unit
cell. This implies that the first Brillouin zone, corre-
spondingly, halves its size. The resulting magnetic Bril-
louin zone (MBZ) is shown in Fig. 11.
In order to explicitly break the full translational sym-

metry alongside with the SU(2) symmetry, we add a stag-
gered magnetic field hi = h0 e

iQ·ri with Q = (π, π, π) to
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the Hamiltonian Eq. 1 as

Hh = H +
∑

i

himi (22)

where mi = ni,↑ − ni,↓ is the spin polarization at lattice
site i. In principle this allows the study of properties as
function of this staggered field. However, because such a
field is of little experimental relevance, one is convention-
ally only interested in the limit h0 → 0. If in this limit
a non-zero polarization remains, we have found a state
with spontaneous symmetry breaking.
In the actual simulation we add a small field and explic-

itly break the symmetry (in our case we chose h0 = 0.01)
in the initialization of our iteration process. The field
is switched off after the first few iterations and the sys-
tem is allowed to evolve freely. Eventually, the process
converges either to a solution with vanishing staggered
magnetization Mi(T ) ∝ 〈mi〉 = eiQ·ri ms(T ) = 0, indi-
cating a parameter regime where the thermodynamically
stable state is paramagnetic, or else have Mi 6= 0 and
thus an antiferromagnetically ordered state.
In order to be able to include such a field in our simu-

lations, we have to ensure that the cluster we use has the
proper translational symmetry with respect to a double
unit cell. These clusters are also referred to as bipartite
clusters. We again employ the systematic classification
by Betts43 to find the optimal cluster of this type with
18 sites. Since the DCA is formulated in momentum
space, the broken translational symmetry introduces ex-
plicit non-diagonal elements in quantities like the Green
function or the self-energy. For the following we will
adopt the notation

GσK1,K2
(iωn) =

1

N

∑

ij

exp [i (K1 ·Ri −K2 ·Rj)]Gσij(iωn) (23)

as extension of Eq. 5 for Green functions with momenta
K1 6= K2. With this notation, the Green function in the
antiferromagnetic phase can be represented by the 2×2
matrix

GσK′(iωn) :=

(

G00
σK′(iωn) G01

σK′(iωn)
G10

σK′(iωn) G11
σK′(iωn)

)

:=

(

GσK′,K′(iωn) GσK′,K′+Q(iωn)
GσK′,K′+Q(iωn) GσK′+Q,K′+Q(iωn)

)

(24)

where K′ is an element of the MBZ. The symmetry re-
lations G00

σK′(iωn) = G11
σ̄K′(iωn) = −

(

G11
σK′(iωn)

)∗
=

−
(

G00
σ̄K′(iωn)

)∗
and G10

σK′(iωn) = G01
σK′(iωn) =

G10
σ̄K′(iωn) = G01

σ̄K′(iωn) hold for the Green function as
well as for the self-energy. The latter is still defined via
Dyson’s equation

ΣσK′(iωn) = GσK′(iωn)
−1 −GσK′(iωn)

−1 . (25)

which however now involves quantities which are 2 × 2
matrices.
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FIG. 12: (color online) Staggered magnetization ms(T ) as
function of T for U = 0.67W as obtained from a DCA calcula-
tion with N = 18 (circles) and the DMFT (squares). Dashed
lines: guide to the eye.

This matrix structure makes it necessary to adapt the
CT-QMC algorithm accordingly. This can most conve-
niently be done using a spinor representation for the field
operators, and rewriting the formulae with these new
composite operators. A detailed account of this proce-
dure will be given elsewhere. Here we just want to note
that one can again perform measurements in Matsubara
space directly and thus obtain an accurate estimate of
the self-energy, which can then be analytically continued
as before.
A first simple test of the method is to calculate the

staggered moment

ms =
∑

i

mi exp (iQ · ri) (26)

and thus locate the antiferromagnetic phase. The re-
sults of such a calculation for U = 0.67W as function of
temperature are shown in Fig. 12 for DCA simulations
(circles) and, for comparison, DMFT calculations us-
ing Wilson’s numerical renormalization group algorithm
as impurity solver63 (squares). The first thing to note
is that within DCA the critical temperature is reduced
by roughly 30% as compared to the DMFT. The val-
ues of TN ≈ 0.03W for DCA and TN ≈ 0.042W for
DMFT nicely agree with the results obtained by Kent
et al.27. This is in agreement with the expectation, that
for a 3D system far enough away from the critical re-
gion one should not see dramatic influence by the or-
der parameter fluctuations any more. Note, however,
that ms(0) ≈ 0.39 for both DMFT and DCA is re-
duced as compared to the Hartree approximation, where
msH(0) ≈ 0.426. Finally, while the functional shape of
ms(T ) for the DMFT nicely follows the standard mean-

field behavior ms(T ր TN ) ∝
√

1− T/TN respectively

ms(T → 0) ∝ 1−2e−2TN/T , the form obtained from DCA
is very different, rather exhibiting a linear behavior just
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below TN and a constant value for T . 0.02W .
With the ability to perform reliable calculations in the

symmetry-broken phase, one is of course interested in
extracting dynamics from the simulations, preferably by

analytically continuing the single-particle self-energy. To
this end we again need the high-frequency behavior of the
self-energy, which can be obtained from a high-frequency
expansion (see Appendix) as

ΣσK′(iωn) = O((iωn)
−2)+U

(

〈nσ̄〉 −
1
2

〈mσ̄〉
〈mσ̄〉 〈nσ̄〉 −

1
2

)

+
U2

iωn

(

〈nσ̄〉 (1− 〈nσ̄〉) + 〈mσ̄〉
2 〈mσ̄〉 (1− 2〈nσ̄〉)

〈mσ̄〉 (1− 2〈nσ̄〉) 〈nσ̄〉 (1− 〈nσ̄〉) + 〈mσ̄〉
2

)

(27)

using the staggered spin polarization

〈mσ〉 =
∑

i

eiQ·ri〈nσi − nσ̄i〉 . (28)

The direct analytic continuation of non-diagonal self-
energies – or Green functions – is not possible, since the
non-diagonal spectral function − 1

π ImΣ10
σK′(ω) has both

negative and positive values while the standard MEM
algorithm can only deal with non-negative spectral func-
tions. In order to solve this problem, we employ the
linear transformation64 (omitting spin and frequency de-
pendencies)

Σ±
K′ =

Σ00
K′ + Σ11

K′

2
± Σ10

K′ (29)

and determine ImΣ±
σK′(ω) along with the diagonal ele-

ments ImΣ00
σK′(ω) and ImΣ11

σK′(ω) using the MEM. As
in the paramagnetic case, the high-frequency coefficients
Eq. 27 are used to normalize the self-energies prior to the
analytic continuation. Finally, the real parts are calcu-
lated by a Kramers-Kronig relation analogous to Eq. 16.
Since the transformation Eq. 29 is linear, it holds for
the analytically continued functions as well and can thus
be solved for the non-diagonal element Σ10

σK′(ω). An
example for a complete self-energy matrix on the real
frequency axis obtained by this procedure is shown in
Fig. 13. Note that the diagonal and off-diagonal elements
have different symmetry properties. For the particle-hole
symmetric situation presented here, the former obey the
relation Σαα

σK′(ω + i0+) = Σαα
σ̄K′(−ω + i0+) respectively

Σᾱᾱ
σK′(ω + i0+) = Σαα

σK′(−ω + i0+) following from the
structure of the Néel state, while the latter are all iden-
tical but obey Σαᾱ

σK′(ω+ i0+) = −Σαᾱ
σ̄K′(−ω+ i0+). This

last relation in particular implies that the real part is an
even function of ω, and the imaginary part is odd.
The resulting self-energies for the cluster K′ points are

then interpolated as in the paramagnetic case, and finally
the spin-averaged spectral function for all momenta k′ of
the magnetic Brillouin zone follows from

Ak′(ω) = −
1

π
ImTr

[(

ω + µ− ǫk′ 0
0 ω + µ− ǫk′+Q

)

−Σk′(ω)

]−1

, (30)
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FIG. 13: (color online) The self-energy for K
′ = Γ,

U = 0.5W , t′ = 0 and T = 0.02W in the antiferro-
magnetic phase. The real and imaginary parts of the ele-
ments Σ00

↑K′(ω) = Σ11
↓K′(ω) = Σ11

↑K′(−ω) = Σ00
↓K′(−ω) and

Σ10
↑K′(ω) = Σ01

↑K′(ω) = Σ10
↓K′(ω) = Σ01

↓K′(ω) are shown.

where Tr denotes the trace over the 2×2-matrix.
Results for single-particle spectra in the antiferromag-

netically ordered phase and different values of U for
T = 0.02W are shown in Fig. 14a–c for paths connecting
high symmetry points in the magnetic Brillouin zone in
Fig. 13b. As expected, the spectral function and DOS
have a gap around the Fermi energy, i. e., we always have
an insulating state. Furthermore, it is symmetric with re-
spect to the Fermi energy, reflecting the back-folding of
the spectrum due to the broken translational symmetry.
Along a large part of the Brillouin zone one has rather
flat bands. For weak and moderate coupling these struc-
tures have a rather high spectral weight, which results in
the formation of characteristic van Hove singularities at
the gap edges. This is a typical weak-coupling result con-
sistent with a conventional Hartree approximation. The
gap increases for increasing U , while at the same time the
weight in the structures at the gap edges is redistributed
to larger energies, leading to a softening of the structures
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FIG. 14: (color online) Spin-averaged single-particle spectra for T = 0.02W in the antiferromagnetic phase for different
interaction strengths. The lower right panel (d) shows a spectrum for non-zero next-nearest-neighbor hopping t′ = −0.2 t. The
left part of each figure depicts the local single-particle spectrum for both the majority spins (full line, red) and the minority
spins (dashed, blue). In figure (a) the edges of the gap are too sharp to resolve properly. In order to avoid a numerical division
by zero, an artificial imaginary shift −iδ with δ = 0.03W was added to the self-energy. The result is a slight broadening of
the gap edges. The interpolation follows the path along the high symmetry points of the reduced Brillouin zone depicted in
Fig. 13b.

in the DOS.
Fig. 14d shows an antiferromagnetic spectrum for non-

zero t′ = −0.2 t. The next-nearest neighbor hopping
breaks the symmetry with respect to the Fermi energy
analogous to the paramagnetic case. Since magneti-
cally frustrating interactions cause the antiferromagnetic
phase to quickly vanish at the present temperature, no
larger value of t′ was simulated.

V. CONCLUSION

The dynamical-cluster approximation is a controlled,
systematically improvable approach to the solution of
strongly correlated electronic model systems. Due to
the size and complexity of the cluster impurity prob-
lem, only quantum Monte Carlo methods are available
as efficient and unbiased quantum impurity solver algo-
rithms. While they yield in principle arbitrarily accurate
imaginary frequency data, extracting spectral functions
from QMC data is an ill-posed numerical problem and
hence remains a difficult task. It requires an analytical
continuation based on maximum entropy or a similar pro-
cedure and a thorough error analysis for the quantity to
be continued including analytically supplemented high-

frequency information. The previously used Hirsch-Fye
QMC impurity solver algorithm made the direct contin-
uation of the irreducible self-energy prohibitively expen-
sive and made comparatively unreliable root-searching
techniques necessary.

The advent of modern continuous-time Monte-Carlo
algorithms allows for a direct simulation of data in fre-
quency space and moreover yields high-quality data for
the self-energy with reliable error estimates, thus allow-
ing for a direct analytical continuation of the self-energy.

Based on this new route we presented a method to
extract momentum resolved dynamical correlation func-
tions from QMC simulations of strongly correlated elec-
tron systems. We showed that QMC simulation of clus-
ters within the dynamical cluster approximation can pro-
vide data accurate enough to enable the calculation of
both momentum and frequency resolved single-particle
spectra. The method can resolve detailed structures in
the spectral functions, including waterfall-like features.
We observe that even in three dimensions momentum re-
solved self-energies lead to spectra that are qualitatively
different from dynamical mean field spectra, and present
a more reliable starting point for an extrapolation to the
lattice system.

In addition we showed that we can access momentum
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and frequency resolved spectra in the paramagnetic state
as well as in more complex ordered phases. As an ex-
ample we discussed spectral properties of the Hubbard
model inside the antiferromagnetic phase, also including
an additional magnetic frustration introduced by a next-
nearest neighbor hopping.
We detected the interaction driven metal-insulator

transition at T = 0.012Weff and Uc = 0.94(3)Weff , a
value which is substantially smaller than the DMFT re-
sult Uc = 1.18(2)Weff. For non-zero values of t′ no MH-
MIT could be detected for temperatures T ≥ 0.01W .
The presence of a smooth cross-over indicates that the
transition has moved to lower temperatures – an effect,
that that has been previously studied within the context
of DMFT57. To clarify this point as well as the t′ de-
pendence of Uc further studies at lower temperatures are
necessary. Furthermore, in contrast to the standard ex-
pectation, the MH-MIT appears not to be purely local,
but rather occurs initially for k-points at the Fermi sur-
face only. This k-dependent behavior is different from
the momentum-selective Mott transition found for the
two-dimensional Hubbard model where the Mott transi-
tion occurs only on selected parts of the Fermi surface.
Such a behavior can not be inferred from our data, al-
though for a definite statement on this issue calculations
for larger clusters would be necessary.
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Appendix: High-frequency expansion of the

self-energies

We expand the results obtained for the dynamical
mean field theory67,68 to the momentum dependent case
suitable for the DCA in both antiferromagnetic and para-
magnetic phases.
The antiferromagnetic coarse-grained Green function

ḠσK′(iωn) in the presence of a staggered magnetic field

can be described by9

ḠσK′(iωn) =
1

V

∫

dk̃

[(

iωn − ξK′+k̃ hσ/2
hσ/2 iωn − ξK′+Q+k̃

)

−ΣK′(iωn)

]−1

(A.1)

using the matrix notation Eq. 24 and ξK′ = ǫK′ − µ. In
order to gain an expression for the high-frequency coeffi-
cients of the self-energy, we use the ansatz

ΣσK′ (iωn) = Σ
0
σK′ +

Σ
1
σK′

iωn
+O

(

(iωn)
−2
)

(A.2)

and expand the coarse-grained Green function up to
fourth order:

ḠσK′(iωn) =
C

1
σK′

iωn
+

C
2
σK′

(iωn)
2
+

C
3
σK′

(iωn)
3
+O

(

(iωn)
−4
)

.

(A.3)
The result is

C
1
σK′ =

(

1 0
0 1

)

, (A.4)

C
2
σK′ =

(

ξK′ hσ/2
hσ/2 ξK′+Q

)

+Σ
0
σK′ , (A.5)

C
3
σK′ =

[(

ξK′ hσ/2
hσ/2 ξK′+Q

)

+Σ0
σK′

]2

+Σ
1
σK′ , (A.6)

where the over-lined quantities are coarse grained over
the momentum patch centered around K′, e. g.

ξK′ =
1

V

∫

dk̃ ξK′+k̃ . (A.7)

A direct calculation of the Green function using
Heisenberg’s equations of motion provides the informa-
tion necessary for the determination of the unknown
coefficients Σ

0
σK′ and Σ

1
σK′ . Starting again with the

Hamiltonian Eq. 22, the high frequency coefficients of
the single-particle Green function in real space

Gσij(iωn) =
C1

σij

iωn
+

C2
σij

(iωn)
2
+

C3
σij

(iωn)
3
+O

(

(iωn)
−4
)

(A.8)

can be obtained68 via

C1
σij =

〈{

cσi, c
†
σj

}〉

, (A.9)

C2
σij =−

〈{

[Hh, cσi] , c
†
σj

}〉

, (A.10)

C3
σij =

〈{

[Hh, [Hh, cσi]] , c
†
σj

}〉

. (A.11)

Here [A,B] ({A,B}) denotes the (anti)commutator of the

http://alps.comp-phys.org
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operators A and B. A straightforward calculation yields

C1
σij = δij , (A.12)

C2
σij = −ξ̃ij − [hσi + U〈nσ̄i〉] δij , (A.13)

C3
σij =

∑

m

ξ̃imξ̃mj +
(

hσihσj + U2〈nσ̄i〉
)

δij

− (hσi + hσj) ξ̃ij

− U (nσ̄i + nσ̄j)
(

ξ̃ij − hσiδij

)

, (A.14)

where ξ̃ij = t +
(

µ+ U
2

)

δij for nearest neighbors, ξ̃ij =

t′+
(

µ+ U
2

)

δij for next-nearest neighbors, and zero oth-

erwise. The high frequency coefficients of the coarse-
grained Green function in cluster momentum space
Eq. A.3 are readily calculated by a Fourier transforma-
tion of Eqs. A.12–A.14 followed by a coarse-graining in
k-space. One obtains

C
1
σK′ =

(

1 0
0 1

)

(A.15)

C
2
σK′ =

(

ξ̃K′ + U〈nσ̄〉 U〈mσ̄〉+ hσ/2

U〈mσ̄〉+ hσ/2 ξ̃K′+Q + U〈nσ̄〉

)

(A.16)

C
3
σK′ =

(

ξ̃2K′ + h2
σ/4 + 2U〈nσ̄〉ξ̃K′ + U2〈nσ̄〉+ Uhσ〈mσ̄〉

(U〈mσ̄〉+ hσ/2)
(

ξ̃K′ + ξ̃K′+Q

)

+ U2〈mσ̄〉+ Uhσ〈nσ̄〉

(U〈mσ̄〉+ hσ/2)
(

ξ̃K′ + ξ̃K′+Q

)

+ U2〈mσ̄〉+ Uhσ〈nσ̄〉

ξ̃2K′+Q + h2
σ/4 + 2U〈nσ̄〉ξ̃K′+Q + U2〈nσ̄〉+ Uhσ〈mσ̄〉

)

, (A.17)

where ξ̃K′ = ξK′ − U/2 and

〈mσ〉 =
∑

i

eiQ·ri〈nσi − nσ̄i〉 . (A.18)

A comparison with Eqs. A.4–A.6 yields

Σ
0
K′ = U

(

〈nσ̄〉 −
1
2

〈mσ̄〉
〈mσ̄〉 〈nσ̄〉 −

1
2

)

(A.19)

Σ
1
K′ = U2

(

〈nσ̄〉 (1− 〈nσ̄〉) + 〈mσ̄〉
2

〈mσ̄〉 (1− 2〈nσ̄〉)

〈mσ̄〉 (1− 2〈nσ̄〉)
〈nσ̄〉 (1− 〈nσ̄〉) + 〈mσ̄〉

2

)

, (A.20)

which is the solution shown in Eq. 27. The non-diagonal
parts vanish for 〈mσ〉 = 0 and the expression simplifies
to the paramagnetic solution Eqs. 11 and 12.
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