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1Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
2 Departamento de Ciencias de la Tierra y F́ısica de la Materia Condensada,
Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain

3Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland

Based on recent advances in first-principles theory, we develop a general model of the band
offset at metal/ferroelectric interfaces. We show that, depending on the polarization of the film,
a pathological regime might occur where the metallic carriers populate the energy bands of the
insulator, making it metallic. As the most common approximations of density functional theory are
affected by a systematic underestimation of the fundamental band gap of insulators, this scenario
is likely to be an artifact of the simulation. We provide a number of rigorous criteria, together with
extensive practical examples, to systematically identify this problematic situation in the calculated
electronic and structural properties of ferroelectric systems. We discuss our findings in the context
of earlier literature studies, where the issues described in this work have often been overlooked. We
also discuss formal analogies to the physics of polarity compensation at LaAlO3/SrTiO3 interfaces,
and suggest promising avenues for future research.

PACS numbers: 71.15.-m, 73.61.-r, 77.55.-g, 77.80-e

I. INTRODUCTION

Advances in oxide thin film growth techniques over the last ten years have led to the fabrication of many novel oxide-
based metal-insulator heterostructures with a dizzying range of functionalities. Not only are the current technological
limits of information storage density and speed being pushed forward by the use of, e.g., nanoscale ferroelectric
memories,1–6 but entirely new concepts in device applications are also emerging, in which the electrical and the
magnetic degrees of freedom are both present within the same active element and strongly coupled.7,8 Examples of
this trend include thin-film capacitors,4 strongly correlated field-effect devices,9 and magnetic/ferroelectric tunnel
junctions.10–13

Density functional theory (DFT) methods, either within the local density (LDA) or generalized gradient (GGA)
approximation, have been an invaluable tool in achieving a fundamental understanding of this class of systems,4,14,15

particularly with recent developments which allow the application of finite electric fields to periodic solids or layered
heterostructures.16–20 However, since this domain of research is relatively new, it is important to identify, in addition
to the virtues, also the limitations of DFT that are specific to metal/ferroelectric interfaces, and that when overlooked
might lead to erroneous physical conclusions.
For most practical applications, a capacitor must be insulating to DC current; transmission of electrons via non-zero

conductivity and/or direct tunneling (leakage) is generally an undesirable source of heating and power consumption.
At the quantum mechanical level, the insulating properties of a capacitor are guaranteed by the presence of a dielectric
film with a finite band gap at the Fermi level, where propagation of the metallic conduction electrons is forbidden. In
the language of semiconductor physics, we can alternatively say that both Schottky barrier heights (SBH), respectively
φn and φp for electrons and holes, need to be positive for the device to behave as a capacitor. (By convention we
assume that, if the Fermi level of the metal lies in the gap of the insulator, both φn and φp are positive.)
If, on the contrary, either φp or φn is negative, injection of holes or electrons into the dielectric becomes energetically

favorable and the device behaves instead as an Ohmic contact. Most importantly, at such a junction there is necessarily
(at thermodynamic equilibrium) a spill-out of charge from the metal to the insulator, as the system re-equilibrates
the chemical potential of the free carriers on either side. Such intrinsic space charge induces metallicity (by intrinsic
doping) in the dielectric film, and overall profoundly alters the electronic and structural properties of the interface.
While in principle the charge spillage might be a real physical feature of a given system, there are several arguments

that advise caution in the interpretation of DFT calculations where this effect is found. The use of an approximate
functional to model the exchange and correlation energy, such as LDA or GGA, generally produces severe and system-
atic errors in the values of φp and φn, which can be generally traced back to the well-known band-gap problem.21,22

This implies that finding a negative value of either φp or φn is unlikely to be a robust result of an LDA or GGA
calculation. Furthermore, the total amount of spilled-out charge depends on the DFT values of φp and φn (the more
negative the SBH, the larger the number of states of the insulator that cross the Fermi level). This means that, in
such a pathological regime, the error in φp or φn will directly propagate to the charge density, and potentially affect
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a number of fundamental ground-state properties of the interface. In order to avoid undesirable artifacts in the DFT
results, it is therefore crucial to clearly identify whether this scenario applies to a given interface calculation.
Such an analysis is not entirely straightforward, as physics governing the band alignment in a ferroelectric capacitor

significantly departs from the well-established concepts of semiconductor physics. First, the imperfect screening at
the electrode interface produces a potential drop15,23 that is roughly linear in the polarization P ,24 and modifies
the lineup between the bands of the insulator and the Fermi level of the metal.20 This phenomenon, central to the
physics of ferroelectric capacitors, has important implications for the stability of a monodomain polar state,15 and for
devices based on the tunneling electroresistance effect.25 Second, the residual “depolarizing” electric field produces a
linearly increasing electrostatic potential in the film. This prevents a precise determination of the band lineup,20 as
a proper (and physically meaningful) definition of the latter requires a macroscopically constant reference energy in
the insulating region. Third, the marked covalent character of bonding in perovskites produces non-trivial changes
in the band structure of the insulator, depending on the magnitude of the polar distortion. This further complicates
the extraction of an accurate band lineup by means of standard first-principles procedures, as the bulk reference
calculation needs to accurately match the electrical, in addition to the mechanical, boundary conditions of the film.
Finally, and most importantly, one must keep in mind that all these new physical ingredients may coexist with the
more traditional features that are typical of metal/semiconductor interfaces, e.g. the phenomenon of metal-induced
gap states (MIGS).26 To guide future works in this field, and to build a firm theoretical basis for the interpretation
of the experiments, it is becoming increasingly urgent to rationalize all these many competing effects into a coherent
picture, where the limitations of the current simulation methods can be clearly drawn.
Here we develop a general and intuitive model of the band offset at a ferroelectric/metal interface, and its de-

pendence on the polarization. We identify two qualitatively distinct regimes, corresponding to (i) that of a normal
Schottky alignment and (ii) that of a pathological Ohmic junction. We demonstrate the artifacts typically associated
with (ii) by performing extensive calculations of technologically relevant ferroelectric/metal interfaces. We discuss
the relevant literature works, pointing out those where our results suggest a revision of the currently accepted in-
terpretation. We further identify a direct relationship between the pathological Ohmic regime and the physics of
“electronic reconstruction”27 at polar oxide interfaces such as LaAlO3/SrTiO3, and trace a viable route towards a
unified description of these two phenomena. Finally, we discuss a number of viable methodological perspectives to
overcome the limitations of DFT illustrated in this work.
The paper is organized as follows: In Sec. II we develop our theoretical model of the band offset at a ferroelec-

tric/metal interface, illustrating the main consequences of a “pathological” band alignment. In Sec. III we present
a self-contained overview of the theoretical methods we use to detect such features in a first-principles calcula-
tion. In Sec. IV we present the results of our simulations for paraelectric capacitors, by comparing non-pathological
(PbTiO3/SrRuO3 and BaTiO3/SrRuO3) and pathological cases (KNbO3/SrRuO3 and BaTiO3/Pt). In Sec. V we
demonstrate that the two cases which we find to be non-pathological in the paraelectric configuration indeed become
pathological when the polarized ferroelectric state is fully relaxed. In Sec. VI we discuss the implications of this work
with respect to the existing literature on the subject. Finally, in Sec. VII we present our conclusions and outlook for
future research.

II. GENERAL THEORY OF THE BAND OFFSET

A. Metal/semiconductor interfaces

The Schottky barrier, a rectifying barrier for electrical conduction across a metal/semiconductor junction, is of vital
importance for the operation of any modern electronic device. For the case of an n-type semiconductor, the Schottky
barrier height is the energy difference between the conduction band minimum and the Fermi level across the interface,
and we indicate it as φn. The nature of the microscopic mechanisms governing the magnitude of φn has troubled
scientists for several decades. In spite of the ongoing debates, it seems to be widely accepted now that, while bulk
material properties certainly play a substantial role, φn is best understood as a genuine interface property. This is
in agreement with the intuitive picture one gets from quantum mechanics: the charge rearrangement due to chemical
bonding at the interface produces an interface dipole, and this will uniquely determine the offset between the energy
bands of the insulator and the Fermi level of the metal.
To be more specific, it is useful to consider the electrostatic Hartree potential at the interface between two semi-

infinite solids,

VH(r) =

∫

ρ(r′)

|r− r′|d
3r′, (1)

where ρ(r) is the total charge density (including electrons and nuclei). VH is a rapidly varying function of the position,
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FIG. 1: Schematic representation of the band offset at a metal/insulator junction, illustrating the main quantities discussed in
the text.

reflecting the underlying atomic structure. In order to filter out the large oscillations and preserve only those features
that are relevant on a macroscopic scale, it is convenient to apply an averaging procedure.28,29 This consists of (i)
performing a global average of VH(r) over planes parallel to the interface, and (ii) convoluting the resulting one-
dimensional function with a Fourier filter to suppress the high spatial frequency components. (See Ref. 30 for a
detailed description of the method, and Ref. 31 for an extensive review of its applications to SBH calculations.) After

this “nanosmoothing”30 procedure, the doubly-averaged V H(z) reduces to a step function, from which we can extract
the electrostatic lineup term,28,29

∆〈V 〉 = 〈V dielectric
H 〉 − 〈V metal

H 〉, (2)

which includes all the physics of the interface dipole formation. [〈V dielectric
H 〉 and 〈V metal

H 〉 are the asymptotic values

of V H(z) far from the interface.] To determine the band offsets from ∆〈V 〉 it is then necessary to know how the bulk
energy bands of the insulator and the Fermi level of the metal are related to their respective average electrostatic
potential. In full generality, one can write (recall that we defined both φp and φn as positive when the Fermi level
lies in the gap)

φp = −EV + EF −∆〈V 〉, (3a)

φn = EC − EF +∆〈V 〉. (3b)

EV, EC and EF are usually referred to as the band structure term,28,29 and are bulk properties of the two materials.
They are defined as the energy positions of the valence (EV) and conduction (EC) band edges of the insulator, and
the Fermi level of the metal (EF), all referred to the average 〈VH〉 in the respective bulk (see Fig. 1).
In Sec. III we provide further details of the standard computational procedures used to calculate these quantities

in practice. In the following Section we discuss how the above theory needs to be revised and extended in the case of
metal/ferroelectric interfaces.

B. Metal/ferroelectric interfaces

Ferroelectric materials entail a new degree of freedom, the macroscopic polarization P , which is absent in the
semiconductor case. It is natural then to expect that the above picture of the band offset at metal/insulator interfaces
may need to be extended to take this new variable into account. In the following, we discuss how P affects both the
lineup and the band-structure terms in Eqs. (3a) and (3b).

1. Lineup term

We represent a simple ferroelectric material as a non-linear dielectric, which in bulk is characterized by an internal
energy Ub per unit cell of the form

Ub(D) = A0 +A2D
2 +A4D

4 +O(D6). (4)
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FIG. 2: Schematic representation of a symmetric short-circuited ferroelectric capacitor in a polarized configuration within the
imperfect-screening model. t is the thickness of the ferroelectric film. M and FE represent, respectively, the metal electrode
and the ferroelectric film. Both materials are assumed to be separated by a vacuum layer of thickness λeff . The thick solid line
indicates the opposite of the electrostatic potential, −V (z).

Here D is the electric displacement field, A0 is an arbitrary reference energy, A2 is negative and the highest expansion
coefficient positive. (As we are concerned with the essentially one-dimensional case of a parallel-plate capacitor, we
only consider the component of the D vector that is normal to the interface plane, indicated as D henceforth.) The
A0,2,4,... coefficients implicitly contain all the complexity of the microscopic physics, and can be calculated from first
principles using the methods of Ref. 32. It follows from elementary electrostatics32 that the internal electric field,
E(D), is the derivative of U(D),

Eb(D) =
1

Ω

dUb(D)

dD
, (5)

where Ω is the cell volume.
The electrostatics of a parallel-plate capacitor configuration can be well described23,24,33 within the imperfect

screening model, as sketched in Fig. 2. The N -layer thick ferroelectric film can be thought of as separated from the
ideal metal electrode by a thin layer of vacuum, of thickness λeff . Of course, in real capacitors there is physically
no vacuum at the interface, but rather a thin layer with a lower local permittivity, or some other mechanism that
produces a spatial separation between bound charges and free screening charges. λeff is an “effective screening length”
that takes into account the overall effect of all these mechanisms, regardless of their microscopic nature,24 including
electronic and chemical bonding effects.33 In other words, only the “interface capacitance density”33 really matters,
and this is uniquely defined by λeff . At the interface between the ferroelectric and the vacuum layer D must be
preserved. Therefore, an homogeneous electric field appears inside the vacuum layer, of magnitude Evac = D/ǫ0.
Recalling that the energy density of a static electric field E in vacuum is u = ǫ0E2/2 = D2/2ǫ0, the energy of the
N -layer thick ferroelectric film can then be written as

UN(D) = NUb(D) + 2Sλeff
D2

2ǫ0
, (6)

where S is the surface cell area. [Note that two symmetric electrodes of equal λeff are considered in Eq. (6).] The
second important consequence of a non-zero λeff is that the lineup term, Eq. (2), now linearly depends on the external
parameter D, due to the additional potential drop at the interface, that can be computed as the product of the electric
field within the vacuum layer times its width,

∆〈V 〉(D) = ∆〈V 〉(0) + λeff
D

ǫ0
. (7)

[It is worth noting that, whenever Eb(D) 6= 0, at the microscopic level ∆〈V 〉(D) contains an intrinsic arbitrariness;
furthermore, in such a case it is no longer justified to think in terms of an “isolated” interface between two semi-infinite
solids. Techniques to deal with these issues in practical calculations are described in Ref. 20.]
To give a more quantitative flavor of the impact of this D-dependence in real systems, we can use the values of

λeff reported in the literature for PbTiO3/SrRuO3 and BaTiO3/SrRuO3 capacitors. Upon polarization reversal, the
interface lineup term ∆〈V 〉 will undergo a variation corresponding to

∆φ = ∆〈V 〉(DS)−∆〈V 〉(−DS) = 2λeff
DS

ǫ0
, (8)

where DS is the spontaneous polarization of the ferroelectric material (in the spontaneous configuration the internal
electric field within the ferroelectric, Eb, vanishes and DS equals the spontaneous polarization.) The values reported
in Table I indicate that this effect can be rather large, of the order of 1-2 eV, even for ideal defect-free interfaces.
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DS (C/m2) λeff (Å) ∆φ (V)

BaTiO3 0.39 0.20 1.8

PbTiO3 0.75 0.15 2.6

TABLE I: Estimation of the change in the lineup term ∆φ of typical ferroelectric capacitors upon polarization reversal. DS

is the bulk spontaneous polarization of the ferroelectric material. λeff were calculated in Ref. 33 for capacitors with SrRuO3

electrodes.

2. Band-structure term

The polar displacements in the ferroelectric film modify not only the lineup term, but also the bulk band-structure
term. This is most easily understood by recalling the role played by covalent bonding in the ferroelectric instability
of perovskite titanates. Hybridization effects between the cation 3d states and the oxygen 2p states are intimately
linked to the off-centering of the Ti sublattice. This implies that the polar distortions can significantly modify both
the conduction and valence band structure. For example, in both BaTiO3 and PbTiO3 the fundamentamental gap
increases when going from the centrosymmetric cubic structure to the polar tetragonal phase. Using the arguments
of Ref. 20, we can think of a continuous dependence of both EV and EC, respectively in Eq. (3a) and Eq. (3b), on
the electric displacement D. The Fermi level EF, of course, remains fixed as the electric displacement does not affect
the bulk of the metallic electrode. In summary, the general expression for the n-type SBH at a metal/ferroelectric
interface (an analogous expression follows for the p-type one) is

φn(D) = EC(D)− EF +∆〈V 〉(D), (9)

where at the lowest order EC is quadratic in D (the linear order is forbidden by symmetry), and in most cases of
interest ∆〈V 〉(D) can be approximated by a linear function as in Eq. (7). In the following, we shall elaborate on
this expression and identify a new, qualitatively different regime, with important implications for the physics of the
interface.

C. Ferroelectric capacitors in a pathological regime

Equation (9) implies that φn(D) might become negative for some values of D. From the point of view of first-
principles calculations, already by looking at the values of Table I we can be reasonably sure that this will happen at
the PbTiO3/SrRuO3 interface: 2.6 eV is already larger than the LDA gap of PbTiO3 in the ferroelectric phase (∼2.0
eV). This possibility has been almost systematically overlooked in the literature. As this is a central point of this
work, we shall illustrate in detail the consequences of such a regime, and explain why we regard it as “pathological”.
We discuss in the following two possible occurrences of this scenario: (i) φn is negative already in the paraelectric
configuration at D = 0 and (ii) φn is positive at D = 0 but becomes negative at some value of |D| < DS.

1. The centrosymmetric case

We start with a capacitor in the reference paraelectric structure with two symmetric electrodes, and we hypothesize
that, for whatever physical reason, the interface dipole that forms between the metal and the film leads to a negative
φn. (Similar arguments apply to the case, not explicitly discussed here, of a negative φp.) As the quantum states of
the conduction band of the film lie at lower energy than the Fermi level of the metal, the former will be filled up to
EF, leading to a nonzero free charge density, ρfree, in the film. Neglecting quantum confinement effects, we can use the
Thomas-Fermi model and treat the free charge distribution as macroscopically uniform. Within this approximation,
ρfree is exactly given in terms of φn and the electronic density of states of the bulk insulator, ρb(E), in a vicinity of
the conduction band bottom, EC,

ρfree = − e

Ω

∫ EC−eφn

EC

ρb(E)dE. (10)

This additional charge density, superimposed on an otherwise charge-neutral insulating film, will produce a strong
electrostatic perturbation in the system. For example, if such a charge rearrangement occurred in vacuum, the Poisson
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equation

d2V (z)

dz2
= −ρfree

ǫ0
, (11)

would imply a parabolic potential of the form

V (z) = −ρfree
2ǫ0

z2. (12)

(We assume that z = 0 corresponds to the center of the ferroelectric film.) Throughout this work, we shall assume that
the interface is oriented along the z axis, and each material is periodic in the plane parallel to the interface, referred
to as the (x, y) plane. As typical ferroelectric materials are exceptionally good dielectrics, in a first approximation
we can assume that V (z) will be perfectly screened by the polar displacements of the lattice. However, this does
not mean that electrostatics has no consequences – quite the contrary. Macroscopic Maxwell equations in materials
indeed dictate that

dD(z)

dz
= ρfree. (13)

Hence, if we assume perfect bulk screening, we have E(z) = 0, D(z) = ǫ0E(z) + P (z) = P (z) and, after integrating
Eq. (13), P (z) = ρfreez. So, since the sign of the electronic charge and ρfree are negative within our convention, we
have a non-uniform and linearly decreasing polarization in the ferroelectric film [see Fig. 3(d)]. This means that, at
the film boundaries (z = ±t/2, where t is the thickness), the local electric displacement has now opposite values,
proportional to the total amount of free charge that was transferred,

D(− t

2
) = − t

2
ρfree, D(

t

2
) =

t

2
ρfree. (14)

Of course, the band offset at the interface depends on the local value ofD in the film region adjacent to the interface, so
φn will be consequently shifted in energy according to Eq. (9). We can expect that for small D values the (quadratic)
polarization effects on the band structure will be less important than the (linear) dependence of the lineup term on
D. (Note that the presence of additional charge in the conduction band might also alter the bandstructure term,
e.g. through on-site Coulomb repulsions or other exchange and correlation effects; in the limit of weak correlations
we expect these to be even smaller and essentially irrelevant for this discussion.) Therefore, we approximate Eq. (9)
with Eq. (7), and write

φn = φ0n − λeffD

ǫ0
= φ0n − tλeffρfree

2ǫ0
. (15)

[The minus sign comes from the fact that at the z < 0 interface, which is the one for which Eq. (7) is valid within our
conventions, D is negative.] In turn, the new φn will modify ρfree through Eq. (10). For some value of φn, Eq. (10) and
Eq. (15) will be mutually self-consistent and the system will reach electrostatic equilibrium. This can be expressed
through an integral equation where we have eliminated ρfree,

e

Ω

∫ EC−eφn

EC

ρb(E)dE =
2ǫ0(φn − φ0n)

tλeff
. (16)

To qualitatively appreciate the physical implications of this expression, we can explicitly solve it by using a constant
ρb(E) = α. (Note that this assumption is not completely unrealistic as the t2g bands forming the bottom of the
conduction band in many ferroelectric perovskites have a marked 2D character; in other words, the in-plane effective
mass m∗

‖ is much smaller than the out-of-plane one, m∗
⊥. Within the approximation m∗

⊥ = ∞, the constant density

of states of the six-fold degenerate, free-electron-like 2D band is uniquely determined by m∗
‖.) This leads to

φn − φ0n
φn

= −e
2tλeffα

2ǫ0Ω
, (17)

and with a few rearrangements to

φn =
φ0n

Ctλeff α̃+ 1
, (18)
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FIG. 3: Schematic representation of the effect of free-charge redistribution onto the band diagram of a paraelectric capacitor
with a negative φn. (a) band alignment under perfect interface screening (i. e. when ρfree vanishes), and (b) after charge
spill-out and electrostatic re-equilibration. The corresponding profiles of the electric displacement field within the ferroelectric
films are displayed in panels (c) and (d), obtained after integrating Eq. (13).

where C = e2/2ǫ0 is a constant, and α̃ = α/Ω is the density of states per unit energy and volume of the bulk. In
spite of the drastic simplifications, Eq. (18) already contains most of the relevant ingredients for our analysis. A few
notable ones are missing – we shall come back to those in Sections II C2 and IIC 3. Before going into more detailed
considerations, however, it is important to spell out the direct implications of Eq. (18), which we shall be concerned
with in the following.
First, note that all quantities appearing at the denominator at the right-hand side of Eq. (18) are positive. This

means that φn will be negative, and will satisfy φ0n < φn < 0. The lower limit corresponds to the perfect interface
screening case, λeff = 0. The upper limit corresponds to no screening, λeff → ∞. The situation is schematically
represented in Fig. 3(a) and Fig. 3(b). Given a negative φ0n [Fig. 3(a)], the charge redistribution will induce an
upward energy shift of the conduction band minimum (CBM), bringing φn closer to the Fermi level [Fig. 3(b)].
Second, in the limit of t→ ∞ (infinite thickness) φn will tend to zero from below as φn ∝ −1/t. This means that the
self-consistent band offset φn is not determined by the local physical properties of the junction, i.e. it is no longer
an interface property – the spilled-out charge will redistribute over the whole film thickness as t is varied. Third, the
density of states of the conduction band, represented in Eq. (18) by the parameter α, will also affect the value of
φn: the larger α, the strongest the reduction in φn upon charge spill-out and electrostatic re-equilibration. (To avoid
confusion, note that in the above paragraphs, we used the word “screening” in two different contexts. By “perfect
bulk screening” we mean Eb(D) = 0. By “perfect interface screening” we mean λeff = 0.)
We can attempt a semiquantitative assessment of Eq. (18) in a representative capacitor of thickness t = 50 Å

(comparable to those that are typically simulated within DFT). In atomic units, we use λeff = 0.3 (of the order of the
values reported in Table I), C = 2π, and α̃ = 0.05 (appropriate for the conduction band of SrTiO3, a prototypical
perovskite material, with a calculated m∗

‖ = 0.77 and Ω = 385 a.u.). We obtain

φn ∼ φ0n
10
. (19)

This implies that the effect is quite strong – even if φ0n is a rather large negative value (e.g. of the order of -1 eV), in
most practical cases the conduction charge redistribution will reduce it to a value that lies just below the Fermi level.
Most importantly, this implies that, when φ0n < 0, the physical parameters, φ0n and λeff , governing the band offset at
the interface are neither accessible in a simulation, nor are they directly measurable in an experiment – only φn might
be. Note, however, that the “self-consistent” φn value is generally not a well-defined physical quantity – this is only
true within the many approximations used in the above derivations. In particular, we have neglected band-bending
effects: in general the electrostatic potential will be non-uniform in the film (see Sec. II C 3) and φn will be a function
of the distance from the interface. But even if we put this caveat aside for a moment, the reader should keep in mind
that φn is determined here by space-charge effects through several independent contributions. Furthermore, the film
is no longer insulating but becomes a metal. This is a substantial, qualitative departure from the physical concepts
that were developed in the context of semiconductor/metal interfaces, and that led to the consensus understanding
of φn as a genuine interface property.
Given this situation, one needs to revisit the very foundations of the methodological ab-initio approaches that have

been used with great success in the past to compute Schottky barrier heights. This success has critically relied on a
key observation: the interface dipole, that one identifies with the lineup term Eq. (2), is a ground-state property, i.e.
is not directly affected by the well-known limitations of the Kohn-Sham eigenvalue spectrum. This is excellent news:
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FIG. 4: (Color online) (a) Paraelectric capacitor with a Schottky-like band alignment in the paraelectric structure. (b) When
the polar instability sets in, the band alignment becomes pathological, the conduction band is locally populated (red shaded
area) and the film becomes partially metallic (light shaded area bounded by the dashed line).

one can efficiently (and accurately) calculate ∆〈V 〉 within DFT, and combine it with a band-structure term (EV or
EC) calculated at a higher level of theory (e.g. GW); within this formally sound procedure, theoretical calculations
have shown remarkable agreement with the experimental observations in the past.
In the spill-out regime (i.e. φ0n < 0) described in this Section the above key observation no longer holds – the

erroneous DFT value of φ0n plays a direct and dominant role in the interface dipole formation, as is apparent from
Eq. (18). Furthermore, as φ0n is systematically underestimated within LDA or GGA, there is the concrete possibility
that the spill-out regime itself (φ0n < 0) might be an artifact of the band-gap problem. Thus, the ground-state
properties of the system found in a simulation might be qualitatively wrong due to this issue, in loose analogy to,
e.g., the erroneous LDA prediction of metallicity in many transition metal compounds. It goes without saying that
the results of a simulation where significant spill-out of charge is found because of the mechanism described in this
Section should be regarded with great suspicion.

2. The broken-symmetry case

Even if the band aligmnent is Schottky-like in the reference paraelectric structure of the capacitor, Eq. (9) entails
the possibility that it might become pathological in the ferroelectric regime (i.e. when the polar instability is allowed
to fully relax). Unfortunately, for this case many of the simplifying assumptions used above are no longer valid,
and for a detailed description one would need to take into account the more refined physical ingredients discussed in
Sec. II C 3. At the qualitative level, however, we can already draw some important conclusions, as we shall briefly
illustrate in the following.
Eq. (9) predicts that, if φ0n is positive and the capacitor is compositionally symmetric [as in Fig. 4(a)], at finite D

at most one of the two opposite interfaces will have a negative φn. This implies that only part of the ferroelectric
film, i.e. the region adjacent to this “pathological” interface, will become metallic, while the rest of the film will
stay insulating [Fig. 4(b)]. (To understand this point, note that in contrast with the previous case one has now
a finite “depolarizing” electric field in the insulating part of the capacitor. This wedge-like potential will keep the
conduction electrons electrostatically confined to the pathological side.) In the insulating region, the polarization will
be macroscopically constant, as in a well-behaved capacitor [recall Eq. (13)]. According to the same Eq. (13), D(z)
[and hence P (z)] will be non-homogeneous, with a negative slope, in the metallic region.
In this context it is worth pointing out an important physical consequence of such a peculiar electronic ground

state. This concerns the response of the capacitor to an applied bias potential. In well-behaved cases, the polarization
of the capacitor will respond uniformly to a bias, i.e. all the perovskite cells up to the electrode interface will undergo
roughly the same polar distortion. In the present “ferroelectric-pathological” regime, part of the ferroelectric film has
become metallic, i.e. the metal/insulator interface has moved to a place that lies somewhere in the film. This means
that, if one tries to switch the device with a potential, the electric field won’t affect the dipoles that lie closest to
the pathological interface – they will be screened by the spilled-out free charge. A consequence is that the dipoles
near a pathological interface will appear as if they were pinned to a fixed distortion, that is almost insensitive to
the electrical boundary conditions. This pinning phenomenon has been studied in earlier theoretical works, and was
ascribed to chemical bonding effects. In Sec. V we shall substantiate with practical examples that “dipole pinning”
is instead a direct consequence of the problematic band-alignment regime described here. In Sec. VI we shall come
back to this point and put it in the context of the relevant literature.

3. Towards a quantum model

In order to draw a closer connection between the semiclassical arguments of the previous sections and the quantum-
mechanical results that we present in Sections IV and V, we briefly discuss here how to improve our physical under-
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FIG. 5: Schematic representation of the effects of dielectric nonlinearity on the band diagram of a centrosymmetric capacitor.

The effective potential felt by the conduction electrons is −V H(z) (see text). (a): Ferroelectric material. (b): Paraelectric
material.

standing of the charge spill-out process by lifting some of the simplifying approximations used so far. As a detailed
treatment goes beyond the scope of the present work, we shall limit ourselves to qualitative considerations.
The most drastic approximation of our model appears to be the assumption of perfect dielectric screening within

the ferroelectric material, where the spill-out charge is perfectly compensated by the polar displacements of the lattice.
This implies that the electric field in the film vanishes, and the excess conduction charge can spread itself spatially at
essentially no cost. In this scenario, the macroscopically uniform distribution of ρfree postulated in Sec. II C 1 appears
very reasonable. In reality, the internal E field in the bulk ferroelectric material does not vanish, but is a non-linear
function of D, that can be written by combining Eq. (4) and Eq. (5),

Eb(D) ∼ 1

Ω

(

2A2D + 4A4D
3
)

(20)

Of course, solving for the self-consistent ρfree(z) in a non-linear medium would require a numerical treatment. Still,
we can gain some insight about qualitative trends by starting, for example, from the linearly decreasing D(z) found in
the D = 0 case of Sec. II C 1. Using Eq. (20) we can write E(z) = Eb[D(z)]. The electrostatic potential is then given

by integrating E(z). This essentially leads to V H(z) = Ub[D(z)]/Q0, where Ub is the internal electrostatic energy of

Eq. (4), and Q0 is a (positive) constant with the dimension of a charge. This means that the spatial variation in V H(z)

reflects the energy landscape of the bulk material: V H(z) will be a double-well potential in a ferroelectric material
(A2 < 0), and a single-well potential in a paraelectric material (A2 > 0). Remarkably, the double-well potential
accounts for the possibility of free-charge accumulation in the middle of the centrosymmetric film [Fig. 5(a)], which
would produce a head-to-head domain wall in the polarization P (z). Conversely, for a paraelectric material one would
expect the free charge to be (more or less loosely) bound to the interface, and have a minimum in the middle of the
film [Fig. 5(b)]. Of course, these considerations are valid for a centrosymmetric capacitor, and are presented just to
give the reader an idea of the physics – in the ferroelectric case, more complex patterns can occur and exploring them
all would require an in-depth study that is beyond the scope of this manuscript.
A second important approximation is the neglect of (i) quantum confinement effects beyond the simple Thomas-

Fermi filling of the bulk-like density of states and (ii) the band-structure changes due to the polar distortions, which
we briefly mentioned in Sec. II B 2. These will further modify the equilibrium distribution of the free charge, and we
expect them to be important to gain a truly microscopic understanding of the system, although not essential for the
points of this work. Remarkably, a promising model taking all these ingredients into account (dielectric non-linearity
and band-structure effects) was recently proposed in the context of the (at first sight unrelated) LaAlO3/SrTiO3

interface.34 This indicates that the physics of a ferroelectric capacitor in the pathological band-alignment regime
described here is essentially analogous to that of the “electronic reconstruction”27 in oxide superlattices. Further
work to explore these interesting analogies is under way.

D. Implications for the analysis of the ab-initio results

The above derivations show that there are two qualitatively dissimilar regimes in the physics of a metal/insulator
interface, Ohmic-like and Schottky-like. During the derivation, we have evidenced some distinct physical features that
we expect to be intimately associated with the “pathological” Ohmic case. As these are of central importance to help
distinguish one scenario from the other, we shall briefly summarize them in the following, mentioning also how each
of these “alarm flags” can be detected in a first-principles simulation.
First, even after the electron re-equilibration takes place, the band edges cross the Fermi level of the metal, i.e. the

apparent Schottky barrier is negative. Therefore, the analysis of the local electronic structure and of the SBH appears
to be the primary tool to identify a pathological case. However, as the “self-consistent” φn tends to stay very close
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to the Fermi level, this analysis should be performed with unusual accuracy – techniques to do this will be discussed
in Sec. III A.
Second, the presence of a substantial density of free charge populating the conduction band of the insulator is

another important consequence of the pathological regime. In Sec. III B 1 we illustrate how to rigorously define ρfree
in a ferroelectric heterostructure.
Finally, a remarkable consequence of charge spill out is the presence of an inhomogeneous polarization in the system.

Note that this feature has been ascribed in earlier works to phenomena of completely different physical origin. We
shall devote special attention in Sections IV and V to demonstrating the intimate relationship between ρfree and
spatial variations in P .

III. METHODS

In this Section we spell out the practical techniques that we use to extract the SBH from first-principles calcula-
tions, the operational definitions of free charge and bound charge, and the methods we use to control the electrical
boundary conditions in supercell calculations. We also summarize the other relevant computational parameters used
in Sections IV and V.

A. Schottky barrier estimations

First, we briefly review the methods that were used in earlier works to compute Schottky barriers at
metal/semiconductor interfaces, pointing out advantages and limitations of each of them. Then, we illustrate po-
tential complications that might arise, with special focus on ferroelectric oxide systems and the issues discussed in
Sec. II.

1. From the local density of states

In order to calculate the band offset at a metal/insulator interface, one needs to identify the location of the band
edges deep in the insulating region, with the Fermi level of the metal taken as a reference. To that end, it has become
common practice35 to define a spatially-resolved density of states,

ρ(i, E) =
∑

n

∫

BZ

dk |〈i|ψnk〉|2 δ(E − Enk), (21)

where |i〉 is a normalized function, localized in space around the region of interest. When |i〉 = |r〉 is an eigenstate of
the position operator, the resulting ρ(r, E) is commonly known as local density of states (LDOS). Conversely, when
|i〉 = |φnlm〉 is an atomic orbital of specified quantum numbers (n, l,m), we call it instead projected density of states
(PDOS). The integral is performed over the first Brillouin zone (BZ) of the supercell and the sum runs over all the
bands n. Enk stands for the eigenvalue of the electronic wave function ψnk.
The LDOS defined in Eq. (21), that depends on the position in real space as well as on the energy, gives a very

intuitive picture of the band offset: “sufficiently far” away from the interface, the LDOS converges to a bulk-like
curve,35 and in principle the location of the band edges (and hence the SBH) can be directly extracted by visual
inspection. However, several approximations are used in practice to make the calculation tractable, and these can
introduce significant deviations in the SBH computed by means of either the LDOS or PDOS. First, all studies are
done on a finite supercell, usually with a symmetric capacitor geometry. This implies that the LDOS of the most
dispersive bands will be altered by quantum confinement effects, which might produce a spurious gap opening. Also,
the LDOS associated to the evanescent metal-induced gap states (MIGS) might be still important at the center of
an insulating film that is not thick enough, thus preventing an accurate identification of the band edge. Second, a
discrete k-point mesh is used instead of the continuous one implicitly assumed in Eq. (21). Such a k-point mesh is
generally optimized for efficiency, which means that high-symmetry (HS) points are often excluded.36 As the edges of
the valence and conduction band manifolds are usually located at the HS points,37 estimating those features from the
calculated LDOS might lead to substantial inaccuracies. For materials that display a very dispersive band structure
(see e.g. Ref. 38) it is not unusual to have deviations of the order of several tenths of an eV. Third, a fictitious
electronic temperature (or Fermi surface smearing) is commonly used, in order to alleviate the errors introduced by
the k-mesh discretization. This implies that the Dirac delta function in Eq. (21) needs to be replaced by a normalized
smearing function (e.g. a Gaussian) with finite width. This is a again potential source of inaccuracies, because the
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apparent edges of the smeared LDOS/PDOS actually might not correspond to the physical band edges but to the
(artificial) tail of the smearing function used.
Summarizing the above, we get to the following operational definition of the smeared LDOS,

ρ̃(r, E) =
∑

nk

wk |ψnk(r)|2 g(E − Enk), (22)

where the BZ integral has been replaced with a sum over a discrete set of special points k with corresponding weights
wk, and the Dirac delta has been replaced with a smearing function g. As will become clear shortly (a detailed
analysis is provided in Appendix B), it is very important to use in Eq. (22) a g function that is minus the analytical
derivative of the occupation function used in the actual calculations. The Gaussian smearing (G) and the Fermi-Dirac
(FD) smearing are by far the most popular choices. These correspond to the following definitions of g,

gG(x) =
1√
πσ

e−x2/σ2

, (23a)

gFD(x) =
σ−1

2 + ex/σ + e−x/σ
, (23b)

where σ is the smearing energy used during self-consistent minimization of the electronic ground state.

2. From the electrostatic potential

To work around these difficulties, it is in most cases preferrable to avoid the direct estimation of the SBH based
on the LDOS/PDOS, and use instead the indirect procedure, based on the nanosmoothed electrostatic potential,

V H, described in Sec. II A. The interface lineup term, ∆〈V 〉, generally (a notable exception is the pathological spill-
out regime described in Sec. II – for further details see Sec. III A 4) converges much faster than the LDOS/PDOS
with respect to all the computational parameters described above (slab thickness, k-mesh, Fermi surface smearing).
The band-structure terms, EV and EC, can be then accurately and economically evaluated in the bulk, without the
complications inherent to MIGS and quantum confinement effects. While this is in principle a very convenient and
robust methodological framework it is, however, also prone to systematic errors. In particular, great care must be
used when performing the reference bulk calculations. In the vast majority of cases these must not be performed
on the equilibrium structure of the bulk solid, but will be constructed to accurately match (i) the mechanical and
(ii) the electrical boundary conditions of the insulating film in the supercell. The issue (i) is well known: in a
coherent heterostructure the insulating film is strained to match the substrate lattice parameter, and for consistency
the “bulk” calculation should be performed at the same in-plane strain. (The dependence of the band-structure term
on the lattice strain is well known in the literature, and referred to as “deformation potentials”.39) Issue (ii) concerns
ferroelectric systems, and is therefore not widely appreciated within the semiconductor community. Whenever the
symmetry of the capacitor is broken and there is a net macroscopic polarization in the ferroelectric film, the structural
distortions may alter the band structure significantly, often more than purely elastic effects do.34 Note that in most
capacitor calculations the film is only partially polarized (i.e. it has neither the centrosymmetric non-polar structure,
nor the fully polarized ferroelectric structure because of the depolarizing effects described in Sec. II B). The “bulk”
reference calculation should then accurately match the polar distortions of the film, extracted in a region where the
interface-related short-range perturbations have healed into a regular pattern.

3. The “best of both worlds”

In order to minimize the drawbacks associated with either of the two methods described above, we find it very
convenient to combine them in the following procedure. First, we compute the LDOS in the supercell at an atomic
site (or layer) located far away from the interfaces, where the relaxed atomic structure has converged into a regular
pattern. Second, we extract the relaxed atomic coordinates from the same region of the supercell, and build a periodic
bulk calculation based on them, by preserving identical structural distortions and strains, and by using an equivalent
k-mesh. (An approximation is made here, since the periodic bulk simulation is carried out at zero macroscopic field
while the LDOS in the supercell might contain the effects of a non-zero depolarizing field. The problem of computing
the bulk layer-by-layer LDOS under a finite electric field remains an open question.) Third, we extract the LDOS
from the bulk at the same atomic site or layer; we construct the bulk LDOS using Eq. (22) and an identical g function
to that used in the supercell. Finally, we superimpose the bulk LDOS on the supercell LDOS at each layer j; we align
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them by matching the sharp peaks of a selected deep semicore band, which are located at energies Esupercell
sc (j) and

Ebulk
sc . The deep semicore states are insensitive to the chemical environment and have negligible band dispersion; this

means that they provide an excellent, spatially localized reference energy for the estimation of the lineup term.
At this point, we look at either LDOS curve in the vicinity of the Fermi level. If it is non-zero we are probably facing

a pathological spill-out case (see the following Section). If it is zero, then we can go one step further and accurately
estimate the positions of the local band edges. To this end, we compute from the bulk calculation Ebulk

C and Ebulk
V ,

together with Ebulk
sc . (A further non-selfconsistent run might be needed if the original k-mesh did not include the HS

k-points where the band edges are located.) Finally, assuming that Esupercell
sc (j) are all referred to an energy zero

corresponding to the self-consistent Fermi level of the supercell, we define the local position of the band edges as

Esupercell
C,V (j) = Esupercell

sc (j)− Ebulk
sc + Ebulk

C,V (24)

This procedure avoids the (often inaccurate) estimate of the band edges based on the tails of the smeared LDOS,
and at the same time preserves the advantages of the “lineup + band structure” technique. In principle, the latter
method should accurately match the results of Eq. (24), except for quantum confinement effects in the metallic slab
used to represent the semi-infinite electrode, as discussed in Ref. 40.
Note that this technique is not only useful to detect pathological band alignments and extract accurate band offsets

in the non-pathological cases. Given that we are superimposing two LDOS calculated with identical computational
parameters and structures, their direct comparison can be very insightful. Most importantly, one expects all the
features to closely match unless there are MIGS or confinement effects. Therefore, one has also a powerful tool
to directly assess the impact of the latter physical ingredients in the supercell electronic structure. This procedure,
therefore, yields far more physical information than the separate use of either the PDOS/LDOS or the nanosmoothing
method.

4. The pathological regime

In the pathological regime described in Sec. II, many of the conditions that formally justify application of the above
methods to the estimation of the SBH break down. First, the presence of a non-uniform electric displacement D(z)
implies that the polar distortions are also non-uniform, and they may not converge to a regular bulk-like pattern
anywhere in the film. Second, electrostatic and exchange and correlation effects due to the partial filling of the
conduction band imply that the band structure may significantly depart from what one computes in the insulating
bulk (note that this is distinct from the effect of the structural distortions discussed in the previous Section). Third,
the usual assumption of fast convergence of the interface dipole with respect to slab thickness, k-mesh resolution
and smearing energy also breaks down, as the conduction band DOS (which converges slowly with respect to these
parameters) is now directly involved in the electrostatic re-equilibration process. Based on this, the reader should
keep in mind that there is an intrinsic arbitrariness, of physical more than methodological nature, in the definition of
the band edges in spill-out cases. This arbitrariness reflects itself in the fact, already pointed out in Sec. II, that the
band alignment at a pathological interface is no longer a well-defined interface property, nor is it directly measurable
in an experiment. The position of the bands is essentially the result of a complex electron redistribution process that
may occur on a scale that is almost macroscopic, and is driven by different factors than those usually involved in the
SBH formation.
Of course, by using all the precautions that are valid at well-behaved interfaces one might still gain some qualitative

insight into the local electronic properties of the system. However, the data must be interpreted with some caution,
and it is most appropriate to combine the analysis with other post-processing tools before drawing any conclusion.
We shall discuss some of these further analysis tools in the following Sections.

B. Electrical analysis of the charge spill-out

In this Section we introduce the methodological tools that we use to analyze in practice the spill-out regime, in light
of the theory developed in Sec. II. In particular, we illustrate how to rigorously define the “local electric displacement”
D(z) and the “conduction charge” ρfree. To evaluate the former, we discuss two approaches. The first one is based
on a Wannier decomposition of the bound charges. The second one is an approximate formula in terms of the ionic
distortions and the Born effective charges (BEC). This simplified formula is very practical for a quick analysis, but
is generally affected by systematic errors. We address this issue by proposing a simple correction that significantly
improves the accuracy of the BEC estimate.
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1. Definition of bound charge and conduction charge

In a typical metal, it is difficult to rigorously identify conduction electrons and bound charges, as usually the
respective energy bands intersect each other in at least some regions of the Brillouin zone. (This is true, for example,
in all transition metals, where the delocalized sp bands cross the more localized d bands.) By contrast, in all perovskite
materials considered here, even upon charge spill out and metallization, a well-defined energy gap persists between
the bound electrons and the partially filled conduction bands. Therefore, it is straightforward to separate the two
types of charge densities, free and bound, simply by integrating the local density of states, defined in Eq. (22), over
two distinct energy windows. For example, for the conduction charge ρfree we have

ρfree(r) =

∫ EF

E0

ρ̃(r, E)dE =
∑

Enk>E0

wkfnk |ψnk(r)|2 , (25)

where E0 is an energy corresponding to the center of the gap between valence and conduction band, ρ̃ is the smeared
density of states of Eq. (22), fnk are the occupation numbers and the sum is restricted to the states with eigenvalue
Enk higher than E0. [Note that Eq. (25) only holds if the g-smearing of ρ̃ is compatible with the definition of fnk,
see the last paragraph of Sec. III A 1 and Appendix B.] Since we are working with layered systems that are perfectly
periodic in plane, we will be mostly concerned with the planar average of ρfree,

ρfree(z) =
1

S

∫

S

ρfree(r)dxdy, (26)

where S is the area of the interface unit cell. In some cases, it is also useful to consider the nanosmoothed function,30

which we indicate by a double bar symbol, ρfree(z).
Concerning the bound charges, we shall approximate the local electric displacement D(z) with the local polarization

P (z). This is an excellent approximation in many ferroelectric materials, where P is of the order of 0.1-1 C/m−2 and
D − P = ǫ0E is typically much smaller than 10−3 C/m−2. (The largest electric fields E that can be applied without
dielectric breakdown41 are of the order of 0.1 GV/m.) Thus, assuming D(z) ∼ P (z) entails errors of 1% or less, which
we consider negligible for the purposes of our discussion. Techniques to extract P (z) from a supercell calculation are
described in the following sections.

2. Local polarization via Wannier functions

A very useful tool to describe the local polarization properties of layered oxide superlattice are the “layer polar-
izations” introduced by Wu et al.42 First, we transform the electronic ground state into a set of “hermaphrodite”
Wannier orbitals42,43 by means of the parallel-transport44 procedure. Note that we restrict the parallel-transport
procedure only to the orbitals that we consider as “bound charge”, i.e. those with an energy eigenvalue lower than
E0. Then, we group the Wannier centers and the ion cores into individual oxide layers, and define the dipole density
of layer j as

pj =
1

S

(

∑

α∈j

ZαRαz − 2e
∑

i∈j

zi

)

, (27)

where Zα is now the bare valence charge of the atom α, whose position along z is Rαz, and zi is the location of the
Wannier orbital i.
Note that individual oxide layers in II-IV perovskites like BaTiO3 or PbTiO3 are charge-neutral and the pj are

well-defined; however, in I-V perovskites like KNbO3, individual layers are charged, and the pj become meaningless
as they are origin dependent. To circumvent this problem, one can either combine the layers two by two as was done
in Ref. 45, or perform some averaging with the neighboring layers, as for example in Ref. 43. It is important to keep
in mind that, depending on the specific averaging procedure, one might end up with the formal or with the effective
local polarization;46 in this work we find it more convenient to work with the latter. As we do not need, for the
purpose of our discussion, to resolve P into contributions from individual AO and BO2 oxide layers, at variance with
Ref. 43 we perform a simple average

p̄j =
1

4
pj−1 +

1

2
pj +

1

4
pj+1. (28)
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We then define the local polarization by scaling this surface dipole density by the average out-of-plane lattice param-
eter, c, of the oxide film, and by taking into account that every individual oxide layer occupies only half the cell. We
thus define the local polarization as

Pj =
2

c
p̄j . (29)

The local polarization Pj is, of course, a discrete set of values, but we can think of it as a continuous function of
the z coordinate, P (z), which is sampled at the oxide plane locations. In the remainder of this work, we will write
Pj or P (z) depending on the context, but the reader should bear in mind that these two notations refer to the same
object.

3. Approximate formula via Born effective charges

While the above definition of Pj in terms of Wannier functions is accurate and rigorous, it is not immediately
available in most electronic structure codes. An approximate estimate of the local polarization can be simply inferred
from the bulk Born effective charges Z∗

α and the local atomic displacements. Analogously to the above formulation,
we can write the Z∗

α-based approximate layer dipole density, pZj , as

pZj =
1

S

∑

α∈j

Z∗
αRαz, (30)

where Z∗
α is now the bulk Born effective charge associated with the atom α. Again, pZj are ill-defined in perovskite

materials, as typically individual oxide layers do not satisfy the acoustic sum rule separately. To address this issue,
we perform an analogous averaging procedure and define

p̄Zj =
1

4
pj−1 +

1

2
pj +

1

4
pj+1. (31)

The approximate local polarization then immediately follows,

PZ
j =

2

c
p̄Zj . (32)

Such an approximation provides an exact estimate, in the linear limit, of the polarization induced by a small polar
distortion under short-circuit electrical boundary conditions, i.e. assuming that the macroscopic electric field vanishes
throughout the structural transformation. Neither of these conditions is respected in a ferroelectric capacitor, where
the polar distortion is generally large (close to the spontaneous polarization of the ferroelectric insulator), and where
there is generally an imperfect screening regime, with a macroscopic “depolarizing field”.24 We investigate both issues
in the Appendix, where we find that a simple scaling factor corrects, to a large extent, the discrepancy between Pj

and PZ
j . In particular, we write the “corrected” P̃Z

j as

P̃Z
j =

(

1 +
χ∞

χION

)

PZ
j , (33)

where χ∞ and χION are, respectively, the electronic and ionic susceptibilities of the bulk material in the centrosym-
metric reference structure, calculated at the same in-plane strain as the capacitor heterostructure. Note that for
a ferroelectric material in the centrosymmetric reference structure, χION is negative, which is a consequence of the
polar unstable mode in the phonon spectrum. This means that the scaling factor will be smaller than 1 (∼0.9 for the
materials considered in this work). Practical methods to calculate χ∞ and χION are reported in the Appendix.

C. Constrained-D calculations

In Sec. II we have shown that a pathological spill-out regime can be triggered by the ferroelectric displacement D of
the film, as the band offset generally strongly depends on D. It is therefore important, in order to perform the analysis
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described in the previous sections, to calculate the electronic and structural ground state of a metal/ferroelectric
interface at different values of D. To this end, we can use two different approaches in first-principles calculations.
The first, and more “traditional” approach, involves the construction of capacitor of varying thicknesses t, and the
relaxation of the corresponding ferroelectric ground states within short-circuit boundary conditions. Due to the
interface-related depolarizing effects mentioned in Sec. II (these are strongest in thinner films and tend to reduce
P from the bulk value Ps), the polarization will increase from P = 0 (for t < tcrit, where tcrit is the “critical
thickness”24,33) to P ∼ Ps, in the limit of very large thicknesses. This might be cumbersome in practice: thicker
capacitor heterostructures imply a substantial computational cost, due to the larger size of the system; this severely
limits the range of P values that can be studied within short-circuit boundary conditions.
An alternative, more efficient methodology to explore the electrical properties of the interface as a function of

polarization, is to use the recently developed techniques to constrain the macroscopic electric displacement to a fixed
value.20,32 With this method, one is able, in principle, to access at the same computational cost the structural and
electronic polarization of the capacitor for an arbitrary polarization state. In the specific context of the present work,
however, there are two drawbacks related to the use of the constrained-D method as implemented in Refs. 32 and
20. First, fixed-D strategies make use of applied electric fields to control the polarization of the system. This is a
problem here, where the metallicity associated with the space charge which populates the ferroelectric film makes
such a solution problematic. (If a capacitor becomes metallic, it is a conductor and no metastable polarized state can
be defined at any given bias.) Second, our philosophy in this work is to adopt “standard” computational techniques,
i.e. those that are in principle available in any standard electronic structure package.
To this end, we introduce here an alternative way of performing constrained-D calculations for a metal-insulator

interface, which does not rely on the direct application of macroscopic electric fields or on the calculation of the
macroscopic Berry-phase polarization. We adopt a vacuum/ferroelectric/metal geometry. To induce a given value of
the polarization in the ferroelectric film, we introduce a layer of bound charges (Q per surface unit cell S) at its free
surface. If we do so in such a way that the surface region remains locally insulating, at electrostatic equilibrium, the
difference in the macroscopic displacement D on the left and on the right side of the surface will exactly correspond
to the additional surface charge density Q/S. By applying a dipole correction in the vacuum region, we ensure that
D = 0 in the region near the surface on the vacuum side; then on the insulator side we have exactly

D =
Q

S
. (34)

In practice, the additional charge density is introduced by substituting a cation at the ferroelectric surface by a
fictitious cation of different formal valence. As we are interested in exploring intermediate values of D, we use the
virtual crystal approximation to effectively induce a fractional nuclear charge.
The reader might have noted that this method to control D is just a generalization of Eq. (13) to consider other

forms of “external” charge that are not “free” in nature. Indeed, in the most general case, one can state

∇ ·D(r) = ρext(r), (35)

whereD encompasses all bound-charge effects that can be referred to the properties of a periodically repeated primitive
bulk unit, and ρext contains all the rest (e.g. delta-doping layers, metallic free charges, charged adsorbates, variations
in the local stoichiometry, etc.). In Eq. (34) we simply applied Eq. (35) to the vacuum/ferroelectric interface, where
the “bound” nature of the external charge allows us to control it as an external parameter.

D. Computational parameters

To demonstrate the generality of our arguments, which are largely independent of the fine details of the calculation
(except for the choice of the density functional), we use two different DFT-based electronic structure codes, Lautrec
and Siesta.47 In both cases, the interfaces were simulated by using a supercell approximation with periodic boundary
conditions.48 A (1 × 1) periodicity of the supercell perpendicular to the interface is assumed. This inhibits the
appearance of ferroelectric domains and/or tiltings and rotations of the O octahedra. A reference ionic configuration
was defined by piling up m unit cells of the perovskite oxide (PbTiO3, BaTiO3, or KNbO3), and n unit cells of the
metal electrode (either a conductive oxide, SrRuO3, or a transition metal, Pt). In order to simulate the effect of the
mechanical boundary conditions due to the strain imposed by the substrate, the in-plane lattice constant was fixed to
the theoretical equilibrium lattice constant of bulk SrTiO3 (a0 = 3.85 Å for Lautrec and a0 = 3.874 Å for Siesta).
To simulate the capacitors in an unpolarized configuration in Sec. IV, we imposed a mirror symmetry plane at

the central BO2 layer, where B stands for Ti or Nb, and relaxed the resulting tetragonal supercells within P4/mmm
symmetry. For the ferroelectric capacitors described in Sec. V a second minimization was carried out, with the
constraint of the mirror symmetry plane lifted. Tolerances for the forces and stresses are 0.01 eV/Å and 0.0001
eV/Å3, respectively. Other computational parameters, specific to each code, are summarized below.
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TABLE II: LDA values of φn and φp, obtained with two different methods: using the decomposition into EV,C and ∆〈V 〉 (BS
+ Lineup), or using the method of Sec. III A 3 (Semicore). In the “Semicore” case we used the sharp Ti(3s)-derived peak of the
LDOS (extracted from the central TiO2 layer of the capacitor) to align the energies of the bulk band edges with the supercell
Fermi level.

Capacitor BS + Lineup Semicore

SrRuO3/PbTiO3/SrRuO3

φp (eV) 0.97 0.99

φn (eV) 0.38 0.37

SrRuO3/BaTiO3/SrRuO3

φp (eV) 1.39 1.41

φn (eV) 0.19 0.23

1. Lautrec

Calculations in Sec. IVB and VA were performed with Lautrec, an “in-house” plane-wave code based on the
projector-augmented wave method.49 We used a plane-wave cutoff of 40 Ry and a 6×6×1 Monkhorst-Pack50,51 mesh.
As the systems considered here are metallic, we adopted a Gaussian smearing of 0.15 eV to perform the Brillouin-zone
integrations.

2. Siesta

Computations in Sec. IVA and VB on short-circuited SrRuO3/PbTiO3 and SrRuO3/BaTiO3 capacitors were
performed within a numerical atomic orbital method, as implemented in the Siesta code.47 Core electrons were
replaced by fully-separable52 norm-conserving pseudopotentials, generated following the recipe given by Troullier and
Martins.53 Further details on the pseudopotentials and basis sets can be found in Ref. 54.
A 6×6×1 Monkhorst-Pack50,51 mesh was used for the sampling of the reciprocal space. A Fermi-Dirac distribution

was chosen for the occupation of the one-particle Kohn-Sham electronic eigenstates, with a smearing temperature of
0.075 eV (870 K). The electronic density, Hartree, and exchange-correlation potentials, as well as the corresponding
matrix elements between the basis orbitals, were computed on a uniform real space grid, with an equivalent plane-wave
cutoff of 400 Ry in the representation of the charge density.

IV. RESULTS: PARAELECTRIC CAPACITORS

A. Non-pathological cases

In the centrosymmetric unpolarized reference structure, some metal/ferroelectric interfaces such as BaTiO3/SrRuO3

or PbTiO3/SrRuO3 are “well-behaved” within LDA. [We focus here on the TiO2/SrO termination – the properties
of the alternative (Ba,Pb)O/RuO2 termination might differ.] This conclusion emerges from the analysis shown in
Fig. 6 for the PbTiO3-based capacitor; qualitatively similar results, not shown here, are obtained for the BaTiO3-
based capacitor. Figure 6(a) represents schematically the Schottky barriers for electrons (φn) and holes (φp) at the
ferroelectric/metal interfaces, computed using the nanosmoothed electrostatic potential method described in Sec. II A.
The bottom of the conduction band of the ferroelectric lies above the Fermi level of the metal (φn amounts to 0.38
eV for the PbTiO3-based capacitor, and only to 0.19 eV in the BaTiO3-based case). Note that, if the experimental
band gap could be reproduced in our simulations, φn would be much larger [dashed lines in Fig. 6(a); we have taken
the experimental indirect gap of the cubic phase of PbTiO3, 3.40 eV55 and assumed that the quasiparticle correction
on the valence band edge is negligible]. The results summarized in Table II indicate that, in all the cases discussed
here, different methodologies yield Schottky barrier values that are consistent within a few hundredths of an eV. The
flatness of the profile of the nanosmoothed electrostatic potential at the central layers of PbTiO3 confirms the absence
of any macroscopic electric field, as expected from a locally charge-neutral and centrosymmetric system.
Figure 6(b) displays ρ̄free(z), as defined in Sec. III B 1. As expected, ρ̄free(z) has a rapid decay in the insulating

layer, consistent with the evanescent character of the metallic states (MIGS): these cannot propagate in the insulator
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FIG. 6: (a) Schematic representation of φn and φp in an unpolarized SrRuO3/PbTiO3/SrRuO3 capacitor. EV, EC, EF and

∆〈V 〉 were defined in Sec. IIA. The calculated values are also indicated in the Figure. The black solid line represents −V H(z).
The dashed line represents the hypothetical position of the CBM if EC were shifted to reproduce the experimental band gap.
(b) Profile of ρ̄free as defined in Eq. (26). (c) Profile of the layer-by-layer polarization PZ

j . The size of the capacitor corresponds
to n = 5.5 unit cells of SrRuO3 and m = 12.5 unit cells of PbTiO3. Only the top half of the symmetric supercell is shown.

as their energy eigenvalues fall within the forbidden band gap. Fig. 6(c) shows the layer-by-layer polarization, PZ
j ,

computed using Eqs. (30)-(32). Consistent with the absence of space charge, the PZ
j profile is remarkably flat. Due

to the imposed mirror-symmetry constraint, PZ
j also vanishes inside the ferroelectric material.

Fig. 7 shows the layer-resolved PDOS of the Ti(3s) semicore peaks, the O(2s) peak, the upper valence band and the
lower conduction band (black curves, shaded in gray). On top of the heterostructure PDOS we superimpose the bulk
PDOS, calculated with an equivalent k-point sampling and aligned with the Ti(3s) peak (dashed red curves). Note
that all PDOS curves were calculated using Eq. (22), and the smearing function gFD of Eq. (23b) with σ = 0.075 eV,
consistent with the parameters used in the calculation. The PDOS of the conduction and valence bands converges
fairly quickly to the bulk curve when moving away from the interface – they are practically indistinguishable already
at the fourth layer. The estimated energy locations of the conduction and valence bands converge even faster [these
are directly related to the shifts of the Ti(3s) state, which are less affected by quantum confinement effects]. All curves
except those adjacent to the electrode interface vanish at the Fermi level, confirming the absence of charge spill-out
in this system.
As a summary of this Section we can conclude that, when a centrosymmetric unpolarized interface is non-

pathological in the sense that the bottom of the conduction band of the ferroelectric is above the Fermi level of
the metal, (i) the free charge, as defined in Sec. III B 1, vanishes due to the absence of charge spill-out; (ii) the local
polarization profile (Sec. III B 3) is perfectly flat as the interface-induced polar lattice distortions heal rapidly (within
the first unit cell); (iii) the LDOS/PDOS vanishes at the Fermi level, except for one or two interface layers where the
signatures of the MIGS might be still present (they are barely detectable in the curves of Fig. 7).
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FIG. 7: (Color online) PDOS of the inequivalent TiO2 layers in the unpolarized PbTiO3/SrRuO3 capacitor (solid curves with
gray shading). The bottom curve lies next to the electrode, the top one lies in the center of the PbTiO3 film. Only the PDOS
on half of the symmetric supercell are shown. The bulk PDOS curves (red dashed) are aligned to match the Ti(3s) peak at
E ∼ −57 eV. The Fermi level is located at zero energy.

B. Pathological cases

We analyze now two examples of capacitors that are characterized by a pathological band alignment already in
their centrosymmetric reference structure: NbO2-terminated KNbO3/SrRuO3, and TiO2-terminated BaTiO3/Pt.
This choice of materials is motivated by the fact that there exist recent theoretical works on these systems,56,57 where
the consequences of the pathological band alignment were neglected.

1. KNbO3/SrRuO3

We construct a heterostructure consisting of m=6.5 KNbO3 unit cells and n=7.5 SrRuO3 cells, for a total of 14
perovskite units; we use symmetrical NbO2 (SrO) terminations of the KNbO3 (SrRuO3) film. After full relaxation
with a mirror symmetry constraint at the central NbO2 layer, we perform the analysis of the LDOS, the conduction
charge and the local polarization as explained in Sec. III. In Fig. 8 we show the local density of states integrated
over the NbO2 layers (the bottom one is adjacent to the electrode interface, the top one lies on the mirror plane in
the middle of the film). The unphysical Ohmic band alignment is evident from the location of the conduction band
bottom – the whole film is clearly metallic. This points to the pathological situation that is sketched in Fig. 3. Note
that the LDOS does not converge to the bulk curve anywhere in the heterostructure. There are non-trivial shifts
of all peaks that make it difficult to identify a well-defined alignment with the bulk curves. In Fig. 8 we choose to
align the O(2s)-derived feature at E ∼ −19 eV. In this specific system, aligning the O(2s) peaks appears to yield a
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FIG. 8: (Color online) LDOS integrated over the NbO2 layers of the KNbO3/SrRuO3 heterostructure (solid curves with gray
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of the symmetric supercell are shown. The bulk LDOS (red dashed curves) are aligned to match the O(2s)-derived peaks. The
Fermi level is located at zero energy.
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FIG. 9: (Color online) Calculated free charge for paraelectric SrRuO3/KNbO3/SrRuO3 heterostructure. Black curve: planar-
averaged ρfree. Red dashed: ρfree, nanosmoothed using a Gaussian filter. Blue symbols: finite differences of the local Pj (shown
as a black curve in Fig. 10), calculated using the Wannier-based layer polarization described in Sec. III B 2.

reasonably good match of the conduction and valence band edges (the most relevant features from a physical point of
view); this, however, leads to a marked mismatch, e.g. in the position of the semicore Nb(4s) state. We show in the
following that these effects stem from a number of (rather dramatic) electrostatic and structural perturbations acting
on the KNbO3 film, which are a direct consequence of the pathological band alignment.
First we show that the non-vanishing LDOS at the Fermi level results in a sizeable spill-out of conduction charge into

the ferroelectric film. To that end, we plot ρfree(z), which represents the planar average of the artificially populated
part of the KNbO3 conduction band, and the corresponding nanosmoothed version, ρfree(z), in Fig. 9 respectively as
black continuous and red dashed lines. The additional electron density in the ferroelectric region is apparent, and
reaches a maximum of about 0.15 electrons in the central perovskite unit cell. Such a density is significant – it can be
thought as resulting from an unrealistically large doping of, e.g. one Sr2+ cation every six or seven K+ ions. However,
unlike in a doped perovskite, the spurious electron spill-out here is not compensated by an appropriate density of
heterovalent cations. The system is therefore not locally charge neutral, and as a consequence strong, non-uniform
electric fields arise in the insulating film that act on the ionic lattice.
In order to elucidate how the underlying polarizable material responds to such an electrostatic perturbation, we plot

in Fig. 10 the effective polarization profile in the KNbO3 film calculated in two ways, (i) the rigorous Wannier-function
analysis of the layer polarizations and (ii) the approximate expression based on the renormalized bulk dynamical
charges. The matching between the curves is excellent, indicating that the approximate Z∗-based formula provides a
reliable estimate of P (z); this suggests that the electrostatic screening is indeed dominated by structural relaxations,
as anticipated in Sec. II, and as expected in a ferroelectric material. To substantiate this point, we compare in Fig. 11
the relaxed layer rumplings in KNbO3/SrRuO3 to those of the non-pathological case, PbTiO3/SrRuO3, discussed in
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FIG. 10: (Color online) Local polarization profile in the SrRuO3/KNbO3/SrRuO3 capacitor. Black circles: polarization from
Wannier-based layer polarizations. Red squares: approximate polarization from “renormalized” Born effective charges (see Sec.
III B 3). Analogous results for a paraelectric SrRuO3/BaTiO3/SrRuO3 capacitor are shown for comparison (blue diamonds).
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FIG. 11: (Color online) Layer rumplings (cation-oxygen vertical relaxations) in the centrosymmetric KNbO3/SrRuO3 (black
line, empty circles) and PbTiO3/SrRuO3 (red line, filled circles) capacitors. Dashed vertical lines indicate the location of the
BO2 planes. The shaded areas correspond to the SrRuO3 electrode region.

Sec. IVA. The KNbO3 film is characterized by strong non-homogeneous distortions, which are consistent with the
polarization pattern shown in Fig. 10. Conversely, the distortions are negligible in the PbTiO3/SrRuO3 capacitor,
where all the oxide layers are essentially flat.
The polarization profile Pj is characterized by a uniform, negative slope. This nicely confirms the prediction of

our semiclassical analysis in Sec. II of a uniform linear decrease of D(z) throughout the film. Pj varies from 0.3
to -0.3 C/m2 when moving from the bottom to the top interface. Note that such spatial variation is completely
absent in, e.g., isostructural paraelectric BaTiO3/SrRuO3 (diamonds in Fig. 10), and PbTiO3/SrRuO3 [Fig. 6(c)]
capacitors, where the profile is remarkably flat with P vanishing throughout the film. We stress that the non-uniform
perturbation experienced by KNbO3/SrRuO3 is qualitatively different from a ferroelectric distortion, which involves
an almost perfectly rigid displacement of the ionic sublattices: in absence of space-charge effects, a macroscopically
uniform rumpling pattern across the film is typically found.20

To demonstrate that the spatial variation in P (z) is directly related to ρfree according to Eq. (13), we perform a
numerical differentiation of the polarization profile derived from the Wannier-based layer polarizations. The result,
plotted in Fig. 9 as a blue line, shows an essentially perfect match between dP/dz and −ρfree illustrating the fact that
the polarization profile is really a consequence of KNbO3 responding to the spurious population of the conduction
band, rather than of interface bonding effects.56

2. BaTiO3/Pt

We next present results of an analogous investigation for a paraelectric (BaTiO3)m/(Pt)n capacitor, with m = 8.5
and n = 11. We consider symmetric TiO2 terminations, with the interfacial O atoms in the on-top positions. (Note
that this interface structure is different than the AO-terminated films simulated, e.g. in Refs. 20 and 33, where a
Schottky-like band offset was found.) We find this interface to have a pathological band alignment, similar to the
KNbO3/SrRuO3 case discussed above. The comparative analysis of the bound-charge polarization profile and of the
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FIG. 12: (Color online) (a) Calculated free charge and (b) local polarization profile for a paraelectric Pt/BaTiO3/Pt capacitor
with TiO2-type interfaces. All symbols have the same meaning as in Fig. 9 and Fig. 10.
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FIG. 13: (Color online) n-type Schottky barrier as a function of interface doping in KNbO3/AO-terminated SrRuO3, where A
is a fictitious atom with atomic number Z = 37 + x. Only the Sr atoms at the interfacial layer are replaced by this fictitious
atom. The dashed line is a linear regression of the data between x = 0 and x = 0.3, where the interface is non-pathological
from the band alignment point of view. Blue and red empty symbols represent, respectively, the results for x = 0.5 and x =
1.0, where the interface is already pathological. All values were obtained from Eq. (24), using either the Nb(4s) (squares) or
the O(2s) (circles) semicore peaks of the central NbO2 layer as a reference.

excess conduction charge, shown in Fig. 12, again shows excellent agreement between ¯̄ρfree(z) and the compensating
bound charge. The effect is analogous to KNbO3/SrRuO3, with an overall magnitude which is smaller by roughly a
factor of two; the polarizations at the two extremes of the film reach values of about ±0.15 C/m2.
The almost perfect similarity in behavior between these two chemically dissimilar systems is further proof that

the unusual effects described here and in Ref. 56 – the apparent head-to-head domain wall in the ferroelectric film –
have little to do with the bonding at the interface, but are merely a consequence of the artificial charge spill out, as
discussed in Sec. II.
Before moving on to the next Section we briefly comment on the physical nature of the conduction charge that

spills into the ferroelectric film. In particular, it is important to clarify that the charge densities plotted in Fig. 9 and
Fig. 12(a) indeed originate from population of the conduction band of the insulator, and not from metal-induced gap
states (MIGS) as some authors have recently argued.58 First, all charge density plots show a maximum in the middle
of the ferroelectric layer, rather than a minimum, which one would expect if the former hypothesis were true, given
the evanescent character of the MIGS. Second, if MIGS were present they would be clearly identifiable in the local
density of states; however, the LDOS plotted in Fig. 8 shows no evidence of quantum states lying within the energy
gap of the KNbO3 film. Therefore, we must conclude that these are genuine conduction band states, and not MIGS.
The maximum of ¯̄ρfree in the middle of the ferroelectric film can be interpreted either as a quantum confinement effect
[the lowest-energy solution of the electron-in-a-box problem is indeed a sine function with a shape reminiscent of the
¯̄ρfree plots of Fig. 9 and Fig. 12(a)], and/or as a result of the dielectric nonlinearities discussed in Sec. II C 3.

C. Estimating the “pre-spill” band offset

We mentioned in Sec. II that, whenever an electrode/ferroelectric interface enters the pathological spill-out regime,
the transfer of charge into the conduction band of the insulator produces an upward shift of the CBM. This effect
prevents a direct, unambiguous determination of the interface parameter φ0n. To circumvent this problem, and obtain
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FIG. 14: (Color online) (a) Conduction electrons, and (b) local (Wannier-based) polarization profiles extracted from the
calculations with x =0.0, 0.1, 0.2 and 0.3 (filled circles, thin black curves); 0.5 (empty blue circles, dashed blue curve) and 1.0
(empty red circles, solid red curve). In (a) only half of the KNbO3 film is shown.

an approximate estimate of the negative “pre-spill” Schottky barrier φ0n, we use an approach inspired by a recent
work.59 The authors of Ref. 59 show that the Schottky barrier at the interface between a perovskite insulator (SrTiO3)
and a perovskite electrode (La0.7A0.3MnO3, where A is Ca, Sr, or Ba) evolves linearly as a function of the compositional
charge of the interface layer. (This interface layer is of the type LaxSr1−xO, where x interpolates between a +3 and
a +2 cation.) Of course, this linear behavior refers to a range of x values where the interface is non-pathological;
our arguments indicate that as soon as the system enters the spill-out regime, the value of φn saturates to a nearly
constant value. Based on this observation, if one knows the linear behavior of φn in a range of x values for which
the interface is non-pathological, one can extrapolate this straight line to the values of x which cannot be directly
calculated, and obtain an estimate for φ0n.
We apply this strategy to the same KNbO3/SrRuO3 capacitor system described in Sec. IVB 1. To tune the interface

charge, we replace the Sr cation in the interface SrO layer with a fictitious atom of fractional atomic number Z = 37+x.
x = 1 corresponds to the example already shown in Sec. IVB 1, with a charge-neutral SrO interface layer, and x = 0
corresponds to a RbO layer of net formal charge -1. The results for the Schottky barrier are plotted in Fig. 13. The
region from x = 0.0 to x = 0.3 is non-pathological and shows an almost perfectly linear evolution of φn (dashed
line). By extrapolating this linear trend to x = 1 we obtain φn ∼ −1.2 eV, which is about 1 eV lower than the
value calculated from first principles. This confirms the remarkable impact of the space-charge effects described in
Sec. II C 1. Assuming a polarization of ∼ 0.3 C/m2 for KNbO3 near the interface, a potential drop of 1 eV would be
accounted for by an effective screening length of 0.3 Å at the electrode interface. This value is quite reasonable, and
similar in magnitude to those reported in Table I .
In order to examine the crossover between the Schottky (non-pathological) and the Ohmic (pathological) regimes

in terms of the analysis tools developed in this work, we plot in Fig. 14 the polarization profiles and the density of
conduction electrons for each of the calculations summarized in Fig. 13. These plots confirm that from x = 0 to
x = 0.3 the capacitors are non-pathological, with absence of conduction charge in the insulating region [panel (a),
thinner lines] and a flat polarization profile [panel (b), filled circles – all these curves overlap on this scale]. Conversely,
at x = 0.5 the conduction band starts populating significantly [thicker dashed blue line in (a), empty blue circles in
(b), note that the corresponding points in Fig. 13 starts to depart from the linear regime]. At x = 1.0 population
of the conduction band has become dramatic, and so is the corresponding slope in the polarization profile. The
departure from linearity in Fig. 13 is correspondingly large. Note that the use of either the Nb(4s) or the O(2s)
semicore peaks in Eq. (24) yields identical results in the non-pathological regime (the filled squares and circles overlap
in Fig. 13). Conversely, the result depends significantly on this (completely arbitrary) choice at x = 0.5, and even
more so at x = 1.0 (the circles and squares split). This is another proof that in the pathological regime the band
lineup is ill-defined – due to the electrostatic effects discussed throughout this work, the LDOS does not converge to
a bulk-like value in the center of the KNbO3 film (see Fig. 8), and there is no obvious reference energy to determine
the offset.

V. RESULTS: FERROELECTRIC CAPACITORS

As discussed in the Introduction, although some of the unpolarized reference structures (e.g. the PbTiO3/SrRuO3

interface) appear artifact-free within LDA, because of the strong dependence of the Schottky barrier on D [Eq. 9]
they might become problematic when the constraint of mirror symmetry is lifted and the system is polarized. To
address this issue, in this section we first use the fixed-D strategy described in Sec. III C to explore the behavior of the
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FIG. 15: (Color online) Results for the polarized PbTiO3/SrRuO3 interface for increasing polarization of the film. (a) planar
averaged ρfree. Black, red, green and blue curves correspond to the results for d =0.20, 0.40, 0.60 and 0.74 e, respectively. The
sharp peaks in ρfree correspond to the Ti ions in the PbTiO3 film. (b) layer polarizations from the Wannier-based analysis.
Same color code as in (a).
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FIG. 16: (Color online) Calculated results for the fully polarized PbTiO3/SrRuO3 interface at d = 0.74. (a) local polarization
from the Wannier-based layer polarizations, and (b) planar averaged ρfree (black curve), macroscopically averaged ρfree (red
dashed curve), and finite differences of the polarization shown in the panel (a) (blue squares) for an m = 8-unit cell thick
PbTiO3 film. Panels (c) and (d) are the corresponding figures for an m = 5-unit cell thick PbTiO3 film. The sharp peaks in
ρfree correspond to the Ti ions in the PbTiO3 film.

PbTiO3/metal interface over a wide range of polarization states. Then, we will demonstrate that the behavior that
we calculate using the fixed-D method corresponds exactly to that of a true short-circuited capacitor by performing
more “standard” large-scale calculations for a few selected thickness values.

A. Open-circuit calculations

We construct a vacuum/PbTiO3/SrRuO3 heterostructure as explained in Sec. III C. The reduced macroscopic
displacement field32, d = DS, is controlled by substituting the Ti at the PbTiO3/vacuum interface with a fictitious
cation of atomic number Zleft = 40+ d (i.e. Zr for d=0). The thickness of the PbTiO3 slab is set to 5 unit cells, and
that of SrRuO3 to 4; other computational parameters are kept the same as in the rest of this work. We considered four
different values of d: 0.2, 0.4, 0.6 and 0.74, the latter one corresponding to the ferroelectric ground state of PbTiO3

at the SrTiO3 in-plane lattice constant. In each case, we verify by examining the LDOS that the free surface remains
locally insulating; therefore, the macroscopic D = d/S in the film corresponds exactly to the value enforced by the
artificial pseudopotential.
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The evolution of ρfree and of the Wannier-based layer polarization profiles for 0.2 ≤ d ≤ 0.74 is shown in Fig. 15.
It is apparent from the plots of ρfree that already for the smallest value of the polarization [d = 0.20, black curve in
Fig. 15(a)] the TiO2 layer closest to the electrode has an important density of conduction electrons. This is expected,
as the evanescent tails of the metal-induced gap states (MIGS) penetrate into the insulating region for some distance
at any metal/insulator junction. However, these states do not propagate very far, and already at the second TiO2

layer they are barely noticeable on the scale of the plot. At d = 0.4 [red curve in Fig. 15(a)] the peak on the second
TiO2 layer significantly increases in magnitude, and a new small peak appears at the third TiO2 layer. Analysis of
the local density of states (not shown) shows that these new peaks are conduction band states of PbTiO3, rather than
evanescent SrRuO3 states. The reason why ρfree decays relatively fast when moving into the insulator is due here to
the internal field in PbTiO3, which generates a confining wedge-like potential. We stress again that this mechanism
is fundamentally different from the usual quantum-mechanical damping of the MIGS that fall in a forbidden energy
window of the insulator. We identify this mechanism with the onset of the Schottky breakdown, which becomes
increasingly apparent if the polarization of the film is further increased to d = 0.60 [green curve in Fig. 15(a).] As in
the discussion of the paraelectric capacitors, the presence of the space charge is reflected in the progressive “bending”
of the layer polarization profile [Fig. 15(b)].
At d = 0.74, the population of the conduction band becomes rather dramatic, and the charge distributes over the

whole film. Here, the space charge is no longer confined by the depolarizing field: in the fully polarized ferroelectric
state the internal field of PbTiO3 vanishes. Therefore, the intrinsic carriers are only loosely bound to the interface by
the band bending effect, analogous to the mechanism that confines the compensating carriers at the LaAlO3/SrTiO3

interface.34 Since the dielectric permittivity of PbTiO3 is rather large, the band bending is very efficiently screened,
and the distribution of charge can reach quite far into the insulator. To demonstrate this fact, we have repeated the
simulation with the same value of d=0.74, but with a thicker PbTiO3 film of 8 unit cells [Fig. 16 (b)]; indeed, the
conduction electrons redistribute over the whole volume of the film to minimize their kinetic energy. Thus, in close
analogy to the LaAlO3/SrTiO3 case, the metallization of the fully polarized PbTiO3 film at d=0.74 can be thought as
a form of “electrostatic doping” induced by spill-out of electrons from the electrode to the PbTiO3 conduction band.
We shall further elaborate on this point in Sec. VI F.
Fig. 15(b) illustrates a further important consequence of the charge spill-out regime, which was mentioned already

in Sec. II C 2: in the pathological regime the dipoles that lie closest to the electrode interface may appear “pinned” to
a fixed value. This is indeed the case for the TiO2 layer adjacent to the electrode, which seems to saturate at ∼ 0.08
nC/m for increasing values of D. Again, we caution against interpreting this dipole pinning effect as a robust physical
result.

B. Short-circuit calculations

To demonstrate in practice that the conclusions of Sec. VA, inferred by using open-circuit boundary conditions, are
directly relevant to short-circuited capacitors, we have performed simulations on SrRuO3/PbTiO3 heterostructures,
with m = 12.5 and n = 5.5. A soft-mode distortion of the bulk tetragonal phase, inducing a polarization perpendic-
ular to the interface, is superimposed on the PbTiO3 layers of the previous unpolarized configurations discussed in
Sec. IVA. Then the atomic positions of all the ions, both in the ferroelectric and in the metallic electrodes, and the
out-of-plane stress are relaxed again with the same convergence criteria as before.
By means of the approximate Eq. (33), derived in Sec. III B 3, we computed the local layer-by-layer polarization,

P̃Z
j , plotted in Fig. 17 (a). Far enough from the interface, the polarization profile is rather uniform, with a polarization

that amounts to 0.53 C/m2 in PbTiO3 (64 % of the strained bulk polarization), which we identify as the macroscopic
P of the PbTiO3 film. This corresponds to d ∼ 0.5, i.e. a value that in the open-circuit study of the previous section
(see Fig. 15) we found to be already pathological. To verify that the same happens here, we analyze the density of
conduction electrons. The planar average of ρfree(r) for the relaxed polar configuration is plotted in Fig. 17(b). The
existence of a charge populating the Ti 3d orbitals is evident from the peaks of ρ̄free(z) at the TiO2 layers, which are
detectable up to four unit cells away from the interface. Indeed the profile of the conduction charge appears to be
intermediate between the d = 0.4 and d = 0.6 cases of Sec. VA, consistent with the present estimate d ∼ 0.5.
As we already anticipated in the previous Sections, ρfree is responsible for non-trivial lattice relaxations, which act

to screen the electrostatic perturbation. Fig. 17(a) indeed shows a small bending of the local polarization profile,

starting roughly three unit cells away from the top interface and with a negative slope of the local polarization, P̃Z
j .

To prove that such a spatial variation of P (z) [which in PbTiO3 provides a reasonably accurate estimate of the local
electric displacement D(z)] is a direct consequence of the presence of the non-vanishing conduction charge [recall
Eq. (13)], we numerically differentiatiate the polarization profile and compare it with ¯̄ρfree(z) in Fig. 17(b). As in the
SrRuO3/KNbO3/SrRuO3 unpolarized case (see Fig. 9), the bound charge (divergence of P) accurately neutralizes
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FIG. 17: (Color online) (a) Profile of the layer-by-layer polarization P̃Z
j , defined in Eq. (33), in the relaxed polar configuration

of a short-circuited SrRuO3/PbTiO3/SrRuO3 capacitor. The dashed line represents the bulk spontaneous polarization under
the same in-plane strain as in the capacitor. (b) ρ̄free(z) as defined in Eq. (26) (black solid line), and its nanosmoothed average
¯̄ρfree(z) (red dashed line). The blue line represents the profile of the bound charge, computed as a finite-difference derivative

of P̃Z
j .
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FIG. 18: (Color online) Layer-by-layer PDOS on the TiO2 layers of the polar SrRuO3/PbTiO3/SrRuO3 ferroelectric capacitor.
Meaning of the lines as in Fig. 7, but now the PDOS on all the TiO2 layers are plotted (there is no longer a mirror symmetry
plane). The squares represent the position of the local band edges, computed following the recipe of Sec. IIIA 3. The dashed
lines are a linear interpolation of the calculated local band edges.

the conduction charge (nanosmoothed profile of ρfree).
In order to further prove that the present case fits into the model description of Sec. II C 2, in Fig. 18 we plot the

layer-resolved PDOS. The curves were constructed exactly as in Fig. 7, except that (i) the capacitor is now polarized;
and (ii) consistent with the discussion of Sec. III A 3 we set up the bulk reference calculation by using the PbTiO3

structure extracted from the polarized supercell calculation (i.e. with atomic distortions and out-of-plane strain
consistent with a polarization of 0.53 C/m2). The agreement is again very good, showing that our approximation
of neglecting the macroscopic depolarizing field in the bulk reference calculation is a reasonable one, and that the
most important effects on the LDOS originate from the lattice distortions. In the capacitor we clearly distinguish two
regions. In the lower part of the PbTiO3 film, the PDOS at the Fermi level vanishes, which implies that the system is
locally insulating. Furthermore, the PDOS in each layer appears rigidly shifted with respect to the neighboring two
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layers, consistent with the presence of a depolarizing field. In the upper region, close to the top electrode, the PDOS
crosses the Fermi level and the system is locally metallic. All these features are in full agreement with the scheme
drawn in Fig. 4.
In Fig. 18 we also plot the estimated band edges for each layer, EV,C(j), obtained from Eq. (24). We used the

semicore Ti(3s) peak at each layer as Esc(j), and we calculated the bulk contributions in Eq. (24) from a non-self-
consistent bulk calculation (based on the ground state charge density of the bulk reference calculation at P =0.53
C/m2 described above) that included the high-symmetry k-points. The resulting data points lie very accurately on a
straight line. By extrapolating this straight line, we see that it crosses the Fermi level near the fourth PbTiO3 cell
from the top electrode interface. This illustrates the pathological character of the band alignment in this system,
consistent with the model of Fig. 4.
As a final remark, we mention that we performed similar calculations for a polarized BaTiO3/SrRuO3 capacitor,

and found a very similar scenario, with the conduction band locally crossing the Fermi level as the mirror symmetry
plane is lifted and a spontaneous polarization is allowed to develop. In general, the onset of such a pathological regime
has important consequences on many physical properties of the capacitor, as we shall discuss in the following Section.

VI. DISCUSSION

In this Section we discuss the important aspects of our work in the context of the existing literature. The discussion
is organized in several categories, corresponding to the different properties of a ferroelectric/electrode interface (or,
more generally, of a perovskite material) that might be affected by the (more or less spurious) presence of free charges
in the system.

A. Structural properties of the film

The authors of Ref. 56 studied KNbO3 thin films placed between symmetric metallic electrodes (either SrRuO3 or
Pt) under short-circuit electrical boundary conditions. In the SrRuO3 case, the layer-by-layer polarization pointed
in opposite directions at the top and bottom interfaces for all thicknesses, creating 180◦ head to head domain walls,
which were denominated interface domain walls (IDW). The physical origin of the IDW was attributed to a strong
bonding between interfacial Nb and O atoms, which would induce a “pinning” of the interface dipoles to opposite
values at the top and bottom electrode interfaces.
Here we have demonstrated with analytical derivations and practical examples that both the inhomogeneous po-

larization and the “dipole pinning” effect are clear signatures of a pathological band alignment. In particular, in an
unpolarized KNbO3/SrRuO3 capacitor analogous to those simulated by Duan et al.56, we obtain a monotonously
decreasing polarization profile, from (∼0.3 C/m2) at the bottom interface to an opposite value of ∼-0.3 C/m2 at
the top, in excellent agreement with the results of Duan and coworkers.56 In contrast with the conclusion of Ref. 56,
however, here we find that the microscopic origin of this strong inhomogeneous polarization is the spillage of charge
from the metallic electrode to the bottom of the conduction band of KNbO3, rather than a bonding effect.
These findings have important consequences concerning the physical understanding of the system with regard to

the relevant observables. First, the ferroelectric material becomes in fact a metal, and such a device would respond
Ohmically with a large direct DC current that would make switching difficult or impossible. This questions the
appropriateness of interpreting the “average” polarization of the film as a macroscopic physical quantity that can be
measured in an experiment (see next Section). Second, our arguments indicate that two essential factors governing
the equilibrium free charge distribution (and hence the spatial variation of P ) are the conduction band structure
(e.g. the density of states) of the ferroelectric material, and the interface band offset. Both ingredients are absent
in traditional Landau-Ginzburg models, e.g. those used in Ref. 56 to interpret the above data on KNbO3/SrRuO3

capacitors, or in Ref. 58 to interpret qualitatively similar results for a hole-doped BaTiO3/SrRuO3 interface. We
therefore caution against overinterpreting the results of such models, as they might fail at capturing the relevant
physics of the free-charge equilibration. A promising route towards overcoming these limitations appears to be the
model Hamiltonian approach proposed in Ref. 34. Extending that strategy to the case of a metal/ferroelectric interface
will be an interesting subject of further research.

B. Stability of the ferroelectric state

The pathological spill-out of charge has important consequences on the spontaneous polarization of a ferroelectric
capacitor. To give a qualitative flavor of such an effect, we consider the case of a capacitor that is only partially
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FIG. 19: (Color online) Schematic representation of the impact of the charge spillage on the ferroelectric stability. M are the
metal electrodes, and FE is the ferroelectric film. The polarization points to the right.

metallic, i.e. there is a depolarizing field that keeps the carriers confined to the pathological side as sketched in
Fig. 19(a). We further consider two symmetric electrodes, i.e. characterized by identical values of φ0n (that we assume
positive) and λeff . Assuming a monodomain state, there are then two stable configurations, related by a mirror
symmetry operation. As φ0n is positive, upon application of an electric field there will always be an insulating region
in the middle of the film, i.e. the polarization can be switched without passing through a globally metallic state.
To appreciate the impact of the charge spill-out on the spontaneous polarization of the film, it is useful to look at

the schematic band diagram of Fig. 19(a), where the conduction band bottom goes below the Fermi level in proximity
of the right electrode (red area). This induces metallicity in a significant portion of the film (light grey shaded area,
up to the dashed line). Based on our arguments of Sec. II, the charge spill-out is associated with a spatially decreasing
D(z) [Fig. 19(b)]. This, in turn, modifies the interface potential barrier by producing a strong upward shift in energy
of the conduction band edge from what one would have if D(z) were uniform and equal to the “physical” value D1.
This implies that the charge spill out generally reduces the depolarizing field [the “pre-spill” estimate is sketched as a
thick dashed line in Fig. 19(a)], and hence overstabilizes the ferroelectric state. This is what one intuitively expects
– population of the conduction band constitutes an additional channel for screening the polarization charge, and this
cooperates with the metallic carriers of the electrode. This, however, contrasts with the conclusions of Ref. 58, where
it was argued that charge leakage suppresses P by producing a ferroelectrically “dead” layer. These conclusions are
based on the assumption that the physically measurable P is the average polarization, 〈P 〉, taken over the whole
volume of the film. As the polarization is locally reduced near a pathological interface, charge spill-out indeed results
in a reduced 〈P 〉.
Is it justified, though, to assume that 〈P 〉 is the physically relevant quantity in the capacitor? Does 〈P 〉, in other

words, reflect what is experimentally measured? In an experiment one measures the time integral of the transient
current density, ∆j, that flows through the capacitor during the switching process. ∆j does not relate to 〈P 〉. Under
the hypothesis that at least a portion of the film remains insulating throughout switching, it rigorously follows from the
modern theory of polarization60 that ∆j = ∆D = 2|D|; D is the value of the (locally uniform) electric displacement
deep in the insulating region, indicated as D2 in Fig. 19. (We assume for simplicity that D = 0 in the paraelectric
reference state.) Therefore, observing that 〈P 〉 is reduced upon charge leakage does not reflect the true physical effect
of the pathological band alignment, which is an artificial enhancement of the spontaneous P via the reduction of the
depolarizing field illustrated above.
A large number of works61–64 have investigated the stability of PbTiO3-based capacitors, and it is impossible here

to discuss in detail whether and how the above band-alignment issues might have affected each of them (for instance,
regarding the polarization enhancements reported in Ref. 61). We limit ourselves to observe that, due to the large
spontaneous polarization of PbTiO3, the possible consequences of having a pathological ferroelectric state need to be
taken seriously into account in the analysis, as we showed for the example of SrRuO3 electrodes in Sec. V.

C. Transport properties in the tunneling regime

Ferroelectric capacitors have been explored as potential tunneling electroresistance devices,25 and many recent
calculations focused on the calculation of the conductance by means of first-principles methods. Metallicity and spill-
out of electrons is a serious potential issue in this context, as the calculated conductance can potentially be affected
by the presence of space charge in the system, in a way which is difficult to predict. The recent work of Velev et al.57

appears to be concerned by these issues, as it focuses on TiO2-terminated Pt/BaTiO3/Pt capacitors. Indeed, we find
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(see Sec. IVB 2) that this interface is problematic already in the centrosymmetric paraelectric case. While we have
not explored the ferroelectric regime in this system, based on the imperfect screening arguments of Sec. II (the lineup
depends linearly on P around the paraelectric reference phase) we expect the spill-out effect to become worse at least
at one of the two interfaces when the capacitor is polarized.
In fact, the metallicity of the ferroelectric film seems to be confirmed by the data presented by the authors: In

Fig. 2(a-b) of Ref. 57 the conduction band minimum (CBM) of the central BaTiO3 cell appears to be degenerate
or lower than the Fermi level, and in Fig. 1 of the same paper the atomic displacements of the ferroelectric phase
seems to be strongly asymmetric, consistent with our speculations. While we cannot draw a definitive conclusion (our
computational setup slightly differs from that of Ref. 57), our analysis highlights the crucial importance of the band
alignment issue, and the necessity of performing an adequate and convincing assessment of its impact on the results
(e.g. the conductance) in each case.

D. Interface magnetoelectric effects

Magnetoelectricity is one of the emerging topics in oxide research. Despite the intense efforts, one of the main
limiting factors still persists: bulk materials displaying a robust magnetoelectric effect are notoriously difficult to
find. To work around this problem, several researchers have been looking for alternative solutions by exploring
heterostructures and composite materials. An interface, due to its lower symmetry, might allow for physical response
properties that are absent in the parent compounds. A promising route to interfacial ME coupling that has been
proposed recently65 is mediated by charge. The polarization of the ferroelectric (or dielectric) lattice produces a
bound charge at the interface, that is screened by the carriers of the metal. If these carriers are spin-polarized, as in
a ferromagnet, there will be a net change in the magnetization.
It is easy to see that the band-alignment issues that we discuss in this work have direct and important implications for

the calculation of the carrier-mediated interface ME coefficient. In the pathological regime, the calculated (magnetic)
response will most likely be suppressed, as the spill-out charge, rather than the spin-polarized carriers in the electrode,
will screen the applied bias potential (or the ferroelectric polarization). This speculation is directly relevant for
interpreting the results of Yamauchi et al.66 on BaTiO3 films sandwiched between Co2MnSi (Heusler alloy) electrodes.
Depending on the termination, two qualitatively different behaviors were reported: the MnSi/TiO2 interface results
in a pathological band alignment and a strongly non-homogeneous local polarization profile; conversely, neither is
present in the capacitor with the other type of termination, which has symmetric Co/TiO2 interfaces. A very
small magnetoelectric response was reported for the MnSi/TiO2 case (contrary to the Co/TiO2 case), in qualitative
agreement with our arguments above.
Other recent studies,67,68 focusing on ME effects in thin Fe film deposited on ATiO3 (A=Ba,Pb,Sr), also reported

strongly non-uniform polarization profiles in the ferroelectric film (e.g. Fig. 3 of Ref. 68). This suggests that also the
ATiO3/Fe interface might be concerned by the band-alignment issues discussed in this work, with potential impact
on the physical observables. Our analysis tools should help clarify these issues in the above systems and in the
Fe/BaTiO3/Fe capacitors of Ref. 69.

E. Schottky barriers

Direct calculations of Schottky barriers at metal/ferroelectric interfaces are, among the many useful physical prop-
erties of these junctions, those that are most directly affected by the issues we discuss here. The consequence of
a pathological band alignment is that the estimated Schottky barrier is no longer a physically meaningful interface
property, but is influenced by macroscopic space-charge phenomena.
A rather comprehensive work on the SrTiO3/transition metal interface was recently reported in Ref. 70. Without

going into too detailed an analysis of the results, we limit ourselves to noting that many of the reported p-type SBH
for TiO2- or SrO-terminated interfaces are very close to, or sometimes well in excess of 1.8 eV. Considering that the
LDA/GGA fundamental gap of SrTiO3 is around 1.8 eV, the actual n-type SBH of the calculation (i.e. not the value
corrected with the experimental band gap) is close to zero or negative. Therefore, charge spill out is a concrete and
likely possibility for many of the investigated structures.
Note that, contrary to the case of oxide electrodes, ideal interfaces between SrTiO3 and simple metals tend to

have a smaller λeff .
23 This implies that the effects of the electrostatic re-equilibration described in Sec. II might be

somewhat less dramatic, and the values of the self-consistent φn closer to φ0n. This suggests that the trends and the
conclusions reported in Ref. 70 are likely to be robust with respect to the issues described in this work. However, a
more detailed analysis would be certainly interesting in order to assess their impact at the quantitative level.
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FIG. 20: LDOS of selected TiO2 layers in the electrostatically doped LaAlO3/SrTiO3 system. The insets are a blow up of the
regions indicated by the small squares. The energy scale of the insets is comprised between -0.25 eV and 0.25 eV.

F. Relationship to LaAlO3/SrTiO3

Many of the analysis tools developed in this work are not limited to ferroelectric capacitors, but can be readily
extended to other systems where free-charge doping of a band insulator plays a central role. An excellent example,
where the interpretation of the observed effects is still widely debated, is two dimensional conducting electron gas
(2DEG) that forms at the polar LaAlO3/SrTiO3 interface.71 A central problem is the determimation of the physical
effects governing the confinement and equilibrium distribution of the 2DEG. Some authors72 propose a mechanism
for the confinement of the gas based on the formation of metal induced gap states (MIGS) in the band gap of SrTiO3.
Other authors,73 however, explain the experimental observations in terms of a semiclassical Thomas-Fermi model
that is analogous to that described in Sec. II, and where the MIGS are completely absent. Answering the question of
whether the MIGS play an important role in this system involves a careful analysis of the local electronic properties,
and more specifically of the LDOS.72 In this sense, the methodology discussed in Sec. III A 3 appears ideally suited
to clarifying this issue.
We base our analysis on the calculations done in Ref. 34, with a 24-cell thick SrTiO3 slab and a 3-cell LaAlO3

overlayer. (This calculation was performed with a 12 × 12 Monkhorst-Pack sampling of the surface Brillouin zone,
and with a Gaussian smearing of 0.1 eV; full details of the computational parameters are reported in Ref. 34.) The
boundary conditions are set to DSTO=0, DLAO = −e/2S, and are equivalent to those of the symmetric superlattice
used by Janicka et al.72 In Fig. 20 we show the LDOS corresponding to the TiO2 layers number 15 (curve a), 10
(b) and 5 (c), where layer 1 is adjacent to the LAO interface. On top of each curve we superimpose the bulk TiO2

LDOS, that we align with the supercell LDOS by matching the semicore Ti(3s) peak at ∼ −57.5 eV. (As in earlier
works the O(2s) peak was used as a reference, we also show the O(2s)-derived feature, which is located at about -18
eV.) The matching is excellent in all cases, especially in the layers lying furthest from the interface where the effect of
the structural distortions and free charge are less pronounced. (Note that we performed the bulk calculation with a
k-point mesh that accurately matches the one used in the supercell calculation. Also, in the construction of the LDOS
curves we used the same Gaussian smearing function of width 0.1 eV, corresponding to the smearing used to relax
the self-consistent ground state of the supercell structure.) In the insets we show a blow-up of the conduction band
edge, which goes below the Fermi energy in agreement with the semiclassical arguments of Ref. 73 and of our Sec. II.
Clearly, our plots do not show any evidence for MIGS in the energy gap, contrary to the conclusions of Janicka et
al.72

To reconcile this discrepancy, we can speculate that the LDOS curves presented in Ref. 72 might have been con-
structed with a substantially larger smearing width than ours, and this might have precluded an accurate identification
of the band edges. We believe that the technique presented here (of superimposing an appropriately constructed bulk
LDOS on top of the supercell curves) provides a very practical means of minimizing systematic errors in the analysis
of the results.

VII. CONCLUSIONS

Due to its accuracy and efficiency, density functional theory has emerged as the method of choice for studying
ferroelectric oxides from first-principles. This predominance has been reinforced since the early 1990s by the many
successes achieved in the determination of the structural, energetic, piezoelectric, and dielectric properties at the bulk



30

level. In the last few years, those efforts have evolved to address the behaviour of the functional properties in thin
films and superlattices, including in same cases (for instance, in the study of ferroelectric capacitors) the presence of
metal/insulator interfaces.
For a reliable prediction of the functional properties of these devices, the atomic displacements, distortions of the

unit cell, the electronic structure and the band gap have to be accurately described simultaneously. However, the
proper DFT treatment of such interfaces is complicated by the so-called “band-gap problem”, which might produce a
pathological alignment between the Fermi level of the metal and the conduction band of the insulator, thus precluding
explicit DFT investigation of many systems of practical interest. In this work we provide useful guidelines to identify
such a pathological scenario in a calculation by examining its main physical consequences: (i) an inhomogeneous
polar distortion propagating into the bulk of the film, (ii) the film becoming partially or totally metallic due to a non-
vanishing free charge, and (iii) the local conduction band edge crossing the Fermi level. The above three effects are
intimately linked, and should be considered as potential artifacts of the aforementioned band-gap problem. Whenever
one of these “alarm flags” is raised in a calculation, the results should be examined with great caution.
A route to overcoming this limitation involves correcting the LDA/GGA bandgap while preserving the excellent

accuracy of these functionals in the prediction of ground-state properties. Traditional methods to increase the band
gap of insulators, like the inclusion of a Hubbard U term in the Hamiltonian, are not satisfactory in the case of a
ferroelectric capacitor with B-cation driven ferroelectricity. A more promising avenue has been recently opened by Bilc
et al.74 and Wahl and coworkers,75 using the so-called “hybrid” functionals that combine Hartree-Fock exchange and
DFT. In particular the B1-WC functional proposed in Ref. 74 has been shown to provide good structural, electronic
and ferroelectric properties as compared to experimental data for BaTiO3 and PbTiO3; verifying the accuracy of
B1-WC in interface studies will be an interesting subject for future research. Unfortunately, the price to pay for this
accuracy is the substantially higher computational cost of B1-WC compared to LDA/GGA.
In addition to the purely technical issues, our work also opens interesting avenues regarding fundamental physical

concepts. For example, ferroelectricity is usually understood within the modern theory of polarization, which is only
applicable in the absence of conduction electrons (i.e. in pure insulators at zero electronic temperature). It is an
important fundamental question, therefore, to assess whether our understanding of ferroelectrics in terms of bound
charges, polarization and macroscopic electrical quantities still applies (and to what extent) in a regime where a
sizable amount of space charge is present in the system. This issue is of crucial importance also for other systems, e.g.
electrostatically doped perovskites, which bear many analogies to the physical mechanisms discussed in this work.
The first-principles-based modeling approach proposed in Ref. 34 appears to be a promising route to further exploring
this interesting topic.
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Appendix A: Local polarization via Born effective charges

In this Appendix we discuss the approach, used in several parts in this manuscript and ubiquitously in the recent
literature, of associating the local value of the “effective” polarization (i.e. the induced P with respect to the
reference centrosymmetric configuration60) in capacitor heterostructures with an approximate formula, based on the
Born effective charges, Z∗. In particular, we provide formal justification for an improved formula, still based on the
Z∗, that we introduced in this work, and we already mentioned in Sec. III B 3.
Recall the definition of the approximate effective polarization in terms of the Born effective charges in a bulk solid,

PZ =
e

Ω

∑

α

Z∗
αRαz. (A1)
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ǫTOT ǫ∞ χTOT/χION

BaTiO3 -48.87 6.48 0.90

PbTiO3 -96.54 8.33 0.93

KNbO3 -34.92 6.27 0.87

TABLE III: Values of the susceptibilities χ and scaling factors χTOT/χION for the ferroelectric materials considered in this
work.

It is easy to verify that the layer-resolved expression PZ
j of Eq. (32) reduces to PZ in the case of a periodic crystal,

where PZ
j is a constant function of the layer index j. PZ does not reduce to the “correct” polarization P (D) at any

value of D, as it does not take into account the additional polarization of the electronic cloud due to the internal field
E(D) (recall that the Born effective charges are defined under the condition of zero macroscopic electric field.76)
Taking the Taylor expansion of the polarization as a function of D (we assume for simplicity that D, P and PZ all

vanish in the reference centrosymmetric structure), we can write

PZ(D) =
dPZ

dD
D + . . . =

dPZ

dE
dE
dD

D + . . . (A2)

For small values of D, we can truncate the previous expansion at the linear order term. Now, by definition

dPZ

dE = χION, (A3)

where χION is the lattice-mediated susceptibility, and

dE
dD

= (ǫ0ǫTOT)
−1, (A4)

where ǫTOT is the total dielectric constant of the insulator (relative to the vacuum permittivity ǫ0). Substituting Eq.
(A3) and Eq. (A4) into Eq. (A2)

PZ(D) ∼ D
χION

ǫ0ǫTOT

. (A5)

The same kind of arguments applied to the total polarization yield

P (D) ∼ D
χTOT

ǫ0ǫTOT

, (A6)

where χTOT is the sum of the lattice-mediated susceptibility, χION, and the purely electronic (frozen-ion) susceptibility,
χ∞. Note that χION is not bound to be positive. In a ferroelectric material, for example, the centrosymmetric reference
structure is unstable and therefore yields a negative χION (and hence ǫTOT), as discussed in Ref. 32. The present
derivation is general and encompasses those cases.
From the above considerations it immediately follows that an estimate of the total polarization, which is exact in

the linear limit, can be given as

P (D) ∼ χTOT

χION

PZ(D). (A7)

This is essentially Eq. (33). In practice, χION and χ∞ are calculated in the reference phase according to the standard
definitions,77

χION = ǫ0(ǫTOT − ǫ∞) =
ǫ0e

2

M0Ω

∑

m

(Z̃∗
m)2

ω2
m

, (A8)
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FIG. 21: Polarization P in a BaTiO3 film and PbTiO3 bulk as a function of the reduced electric displacement field d = DS.
Data are taken from Ref. 20 (see Section III.C.1) and Ref. 32.

where M0 is a unit mass, Z̃∗
m are the normal mode charges and ω2

m are the eigenvalues of the dynamical matrix, and

χ∞ = ǫ0(ǫ∞ − 1), ǫ−1
∞ = ǫ0

dE
dD

∣

∣

∣

fixed−ions
. (A9)

The values of these physical constants that are relevant for the results presented in this manuscript are reported in
Table III.
We proceed in the following to test this approximation on two representative bulk ferroelectric materials, PbTiO3

and BaTiO3. We take the relevant data (linear susceptibilities, Born charges and relaxed structures as a function of
D) from the calculations of Ref. 32 and Ref. 20. Note that the BaTiO3 calculation was performed at a fixed value
of the in-plane lattice parameter (indicated as “film” in the figure) while in the PbTiO3 calculation both a and c
parameters were relaxed for each value of D. The results are presented in Fig. 21. In both cases, the “bare” value PZ

is systematically overestimated compared to the Berry-phase polarization. With the correction described above, i.e.
by rescaling all values by the factor χTOT/χION, the approximate value of P accurately matches the Berry-phase one.
The accuracy is surprisingly good in BaTiO3, where the maximum deviation is of the order of 1%. In PbTiO3, for
large values of d the rescaled-Z∗ value of P presents significant deviations. Note that these deviations mostly concern
values of d that are larger than that of the ferroelectric ground state (d ∼ 0.74), and therefore are not of concern in
this manuscript. We ascribe these deviations to the field-induced structural transition that was described in Ref. 32.
In conclusion, this simple rescaling factor appears to be an effective way to obtain a relatively accurate value of the

local P in heterostructure calculations, based only on the local atomic positions and a few ingredients that can be
easily computed in the bulk reference structure. From the results of our tests, we expect the agreement to be best in
cases where the polarization is small (closer to the linear limit where the approximation becomes exact). Furthermore,
cases where the ferroelectric polarization can be represented in terms of a single “soft mode” such as BaTiO3 seem
to work better than cases, like PbTiO3, where significant mode mixing and non-trivial structural transitions occur at
higher D values.

Appendix B: Convolutions and energy smearing of the local density of states

1. Convolutions

Convolution is a mathematical operation on two functions f and g, producing a third function that is typically
viewed as a modified version of one of the original functions. For the purpose of the present notes, it is useful to think
of f as a data curve containing the relevant physical information, and g as a rapidly-decaying “smoothing” function
that produces a local weighted average of f . We define the convolution of f and g, f ∗ g, as the following integral
transform,

(f ∗ g)(x) =
∫ +∞

−∞

f(y)g(x− y)dy (B1)
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Convolutions have many properties, including commutativity and associativity. Furthermore, the Dirac delta can
be thought as the identity under the convoluton operation,

(f ∗ δ)(x) = f(x), (B2)

and under certain assumptions an inverse operation can also be defined. In other words, the set of invertible distri-
butions forms an abelian group under the convolution.
A particularly useful property holds in relationship to the Fourier transform,

F(f ∗ g) = k · F(f) · F(g) (B3)

where F(f) denotes the Fourier transform of f , and k is a constant that depends on the normalization convention for
the Fourier transform. Thus, in reciprocal space the convolution becomes a simple product. This naturally provides
an efficient convolution algorithm: the workload is reduced from O(N2) to O[N log(N)].

2. Local density of states

In this work we use [Eq. (22)] the following formula to compute the smeared local density of states (LDOS),

ρ̃(r, E) =
∑

nk

wk |ψnk(r)|2 g(E − Enk). (B4)

We shall see that this is indeed a convolution. We first get rid of the spatial cordinates. To this end, it is customary
to integrate the LDOS in real space over a given volume V ,

ρV (E) =
∑

nk

wkρnk(V )g(E − Enk), (B5)

where

ρnk(V ) =

∫

V

d3r |ψnk(r)|2 . (B6)

(Note that sometimes it might be more convenient to use a projected density of states, rather than a local density of
states. In such cases it is sufficient to replace the real-space integral in the above equation with an appropriate sum
over angular momentum components. The following discussion remains unchanged.) Now the LDOS is a function of
a single energy variable. If we write

fV (E) =
∑

nk

wkρnk(V )δ(E − Enk), (B7)

we can easily see that ρV = fV ∗ g. This leads to a simple reciprocal-space expression. We first define an energy
window, [Elow, Ehigh], that contains the entire eigenvalue spectrum Enk. We actually take a window which is slightly
larger, where this “slightly” depends on the decay properties of g,

Elow = min(Enk)− ǫ, Ehigh = max(Enk) + ǫ. (B8)

The width of this window is Ehigh − Elow = ∆E. We represent ρV (E) in reciprocal space as a discrete Fourier
transform,

ρV (E) =
∑

ω

eiωEρV (ω), (B9)

where ω = 2πn/∆E and n is an integer. By using Eq. (B3) we have

ρV (ω) = ∆E · fV (ω) · g(ω). (B10)

The Fourier transform of a Dirac delta centered in the origin is a constant. Eq. (B10) then decomposes the local
density of states into a structure factor,

fV (ω) =
1

∆E

∑

nk

wkρnk(V )e−iωEnk , (B11)

and a form factor g(ω). Obviously, this formulation is only convenient if the function g has a fast decay in both real
and reciprocal space, so that the sum in Eq. (B9) can be truncated. This is indeed the case for the most widely used
smoothing functions g, as we shall see in the following.
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FIG. 22: (a) Gaussian (σ = 0.15 eV) and Fermi-Dirac (σ = 0.075 eV) occupation functions. (b) Kernel of the occupation
functions as defined in the text. (c-d) Fourier transform of the smearing kernels g, assuming an energy window of [−1, 1].

3. Gaussian vs. Fermi-Dirac smearing

The Gaussian smearing (G) and the Fermi-Dirac (FD) smearing are by far the most popular choices for the
occupation function in first-principles calculations of metallic systems. If we define the occupation function f as the
integral of a “kernel” function g,

f(E) = 1−
∫ E

−∞

g(x)dx, (B12)

one can verify that the Gaussian or Fermi-Dirac occupation are, respectively, reproduced by the following choices of
g,

gG(x) =
1√
πσ

e−x2/σ2

, (B13)

gFD(x) =
σ−1

2 + ex/σ + e−x/σ
, (B14)

where σ is the smearing energy [these correspond to Eq. (23a) and Eq. (23b)]. It is easy to see that, by combining
Eq. (B13) or Eq. (B14) with Eq. (B12) one obtains the standard definitions of the occupation function (we assume
that the complementary error function, erfc, values 2 at −∞),

fG(x) = 1
2
erfc (x/σ), (B15)

fFD(x) = 1
ex/σ+1

. (B16)

It is useful to spell out the explicit formulas for the Fourier transforms of both smearing functions,

gG(ω) =
e−ω2σ2/4

∆E
, (B17)

gFD(ω) =
πωσ

∆E sinh(πωσ)
. (B18)

Note that the above formulas are normalized according to the conventions on the Fourier transforms that we used in
the previous section. The functions f and g defined above are shown in Fig. 22. Note that a different choice of σ was
used in the Fermi-Dirac and in the Gaussian case. A FD distribution is roughly equivalent to a G distribution with
a σ value that is twice as large.
In the main text and here we have assumed that it is a good idea to use the same g kernel in the calculation and

in the construction of the LDOS. We shall substantiate this point in the following Section.
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FIG. 23: Left: Fermi-Dirac occupation function, identical to that of Fig. 22(a) (solid curve); hypothetical orbital located at
an energy of 0.15 eV above the Fermi level (dashed line); the thermal occupation of this state yields a total charge of 0.119
electrons (red dot). Right: density of states corresponding to the single isolated orbital at an energy of 0.15 eV above the Fermi
level, smeared by using the gFD kernel of Fig. 22(b); the integral of the DOS up to the Fermi level (shaded area) yields the
exact same charge of 0.119 electrons.

4. On the optimal choice of g

In many cases, the specific choice of the g function to be used in Eq. (B4) is largely arbitrary. Typically, the goal is
to filter out the unphysical wiggles due to the discretization of the k-mesh, but at the same time to preserve the main
physical features, without blurring them out completely. This calls for a smearing function that is neither too sharp
nor too broad. Since a “slightly too broad” or a “slightly too sharp” smearing function usually does not influence the
physical conclusions, in many cases one has the freedom of choosing whatever yields the clearest visual aid to support
the discussion.
There are cases, however, where this choice is not just a matter of aesthetics, and using the “wrong” g function

can qualitatively and quantitatively influence the interpretation of the results. More specifically, the issue concerns
cases where the analysis of the LDOS (or DOS or PDOS) is used to detect and quantify the population of orbitals
that lie close in energy to the Fermi level. As we focus on charge spill-out phenomena that concern the conduction
band of a dielectric/ferroelectric film in contact with a metallic electrode, this is a central point of our work. The
problem is most easily appreciated by looking at the left panel of Fig. 23. There is a single orbital lying at an energy
of 0.15 eV above the Fermi level. As this orbital lies above the Fermi level, one might be tempted to think that
the orbital is empty, and that charge spill-out does not occur at all. However, calculations in metallic systems are
routinely performed by using an occupation function that is artificially broadened, in order to improve convergence of
the ground-state properties; in Fig. 23 we assume a Fermi-Dirac occupation with a fictitious electronic temperature
of 0.075 eV. It is easy to see that with such an occupation function, the orbital lying at 0.15 eV won’t be empty, but
will be “thermally” populated by tail of the Fermi-Dirac distribution. The final result is a charge transfer of 0.119
electrons into this orbital.
Now, is there a “right” way to construct the DOS curve, such that the above-mentioned charge transfer could be

qualitatively and quantitatively inferred from the DOS, without knowing any further detail of the calculation? The
answer is yes, and consists in constructing the DOS by using as broadening g function which is consistent with the
occupation function used by the code. In this case, this is gFD, with a σ identical to that used to calculate the
electronic ground state. To demonstrate this point, we plot in the right panel of Fig. 23 the DOS of this isolated
orbital at 0.15 eV, appropriately convoluted with gFD. Eq. (B12) guarantees that, by doing this, one recovers the
very intuitive result that the total amount of electron charge, Q, present in the volume V (over which the LDOS was
integrated) exactly corresponds to the integral of the DOS up to the Fermi level,

Q =

∫ EF

−∞

ρV (E)dE. (B19)

Then, a simple look at the DOS curve is sufficient to ascertain whether a significant transfer of charge has occurred
into a specific group of bands. As this rigorous sum rule can be very practical in the analysis of the results, we
encourage a systematic use of the “internally consistent” LDOS construction described above.
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