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We consider a simple model for an SNS Josephson junction in which the “normal metal” is
a section of a filling-factor ν = 2 integer quantum-Hall edge. We provide analytic expressions
for the current/phase relations to all orders in the coupling between the superconductor and the
quantum Hall edge modes, and for all temperatures. Our conclusions are consistent with the earlier
perturbative study by Ma and Zyuzin [Europhysics Letters 21 941-945 (1993)]: The Josephson
current is independent of the distance between the superconducting leads, and the upper bound on
the maximum Josephson current is inversely proportional to the perimeter of the Hall device.
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I. INTRODUCTION

The zero-voltage Josephson current in a supercondictor/normal-metal/superconductor (SNS) junction1 arises from
Andreev scattering2 at the SN and NS interfaces. In the ideal case, an electron incident on one superconductor
from the normal metal will be reflected back into the normal metal as a hole, and this hole, on striking the second
superconductor, will be reflected back towards the first superconductor as an electron. When the relative phase of
the order parameters is such that constructive interference occurs, the back-and-forth process continues ad infinitum

and transfers two electrons from superconductor to superconductor in each cycle3–7. A round trip takes time 2W/vF ,
where vF is the Fermi velocity and W the separation between the superconductors. The current will therefore be
evF /W for each open transverse channel. In practice, the probability of Andreev reflection is less than unity8,9 and
the motion in the metal may be diffusive, but evF /W per channel remains an upper bound on the critical current.
An interesting question arises as to what happens when the “normal” metal consists of the chiral fermions at the

edge of a quantum Hall (QH) bar10. In this case the holes move in the same direction as the electrons, so conventional
Andreev retro-reflection is impossible. A two-electron charge transfer requires a (phase coherent) passage around the
entire perimeter of the Hall bar, and this lengthy excursion suggests that the small “W” of the conventional junction
be replaced by the much larger perimeter L of the Hall bar. A perturbative study of a S-QH-S system in11 supports
this conclusion and estimates that the maximum Josephson current will be very small — in the order of 1 nA for
mm scale devices. In view of ongoing experiments on quantum-Hall Josephson junctions, however, it seems worth
revisiting the problem to see if devices might be engineered to provide larger critical currents.
In this paper we introduce a model of an S-QH-S junction that is simple enough that it can be studied non-

perturbatively. We obtain analytic expressions for the Josephson current/phase relation to all orders in the S-QH
coupling, and at all temperatures. Despite our greater control over the model, the key conclusions of the perturbative
studies in11 (see also12) are unchanged: at filling fraction ν = 2 an upper bound for the critical Josephson current
is given by 2evd/L where vd is the edge-mode drift velocity and L is the perimeter of the Hall device. Further, the
temperature scale at which the Jospehson current is washed out by thermal effects is set by the edge-mode level
spacing En+1 − En = 2π~vd/L. Thus, if we wish to see Josephson-junction physics in quantum Hall devices, we
should construct the junctions by coupling superconducting probes to meso-scale Hall-dots.
In section two we introduce the model and solve the associated Bogoliubov-de Gennes equation. In section three we

introduce an analytic regularization scheme to handle the otherwise ill defined sums that appear in the current/phase
relation. In section four we demonstrate that our regularization scheme is consistent with conventional perturbation
theory at both zero and non-zero temperature. We finish with a brief discussion of effects that we have not taken into
account, and that may or may not be significant.



2

1

I I

Θ Θ2
2

1 1

FIG. 1: A Hall bar with superconducting probes passing a current I through the edge modes. The circled numbers label the
regions (1) “outside the leads,” and (2) “between the leads.”
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FIG. 2: The wavefunction for an electron in a 2DEG is confined in the vertical direction, but there is some amplitude for
the vertically oscillating electron to touch the superconductor. As a slowly-drifting Landau-level wavepacket passes under the
superconducting lead, there will be many opportunities for Andreev reflection to turn the electron into a hole.

II. THE MODEL

We consider a ν = 2 quantum-Hall edge (two spins therefore) in interaction with superconducting (SC) leads (figure
1). We model the system by a linear-dispersion edge-mode hamiltonian

H =

∮

{

−ivdψ†
↑(∂x − ieA)ψ↑ − ivdψ

†
↓(∂x − ieA)ψ↓

+|∆(x)|eiθ(x)ψ†
↑ψ

†
↓ + |∆(x)|e−iθ(x)ψ↓ψ↑

}

dx. (1)

Here vd is the edge-mode drift velocity that is proportional to the gradient of the confining potential. The terms with
∆(x) are non-zero only where the edge state lies under the superconducting leads. They account for the Andreev
coupling arising from the two-dimensional electron gas (2DEG) wavefunctions reaching up to touch the superconductor
as they drift under the electrodes. (See figure 2.) In contrast to the usual proximity effect, the topological protection
of the QH edge modes means that this interaction cannot open a gap — but it may, for example, convert a charge-(e)
right-going spin-up electron into a charge-(−e) right-going spin-up hole, and in the process transfer a spin-singlet pair
of charge-(e) electrons from the Hall bar to the superconductor where they merge with the S-wave condensate.
We have not included Zeeman-energy term to spilt the energy between the spin up and spin down edge modes. Such

a term adds only a multiple of the identity matrix to the BdG operator, and so has no effect on the subsequent analysis.
Further, we assume that the energy scales of relevance are smaller than the energy gap of the superconducting leads.
We therefore regard the parameters |∆| as being externally imposed, and not to depend the energy of the Hall-bar
electrons, or on the temperature.
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We can rewrite H in the BdG form

H =

∫

dx

{

(

ψ†
↑, ψ↓

)

[

−ivd(∂x − ieA) |∆(x)|eiθ(x)
|∆(x)|e−iθ(x) −ivd(∂x + ieA)

](

ψ↑

ψ†
↓

)}

+ const. (2)

Here we have used an integration by parts together with the anticommutation property of the Fermi fields to write
∫

{ψ†
↓(−ivd(∂x − ieA))ψ↓}dx =

∫

{ψ↓(−ivd(∂x + ieA))ψ†
↓}dx+ const. (3)

This rewriting is essentially a charge-conjugation transformation that makes manifest the particle-hole symmetry of
the linearized edge spectrum. In particular, it reveals that the charge-(−e) spin-up holes created by ψ↓ move in

the same direction as the charge-(e) spin-up electrons created by ψ†
↑. The “constant” contains the truly constant

ground-state energy of the spin down electrons, but also the term −vde
∫

δ(0)A(x) dx that subtracts a background
electric charge. This charge gets discarded as we switch to the charge-conjugate picture in which charge-(−e) holes
occupy the states that are not occupied by electrons. Keeping track of the “constant” restores the physical charge
when needed.
The vector potential A acts as a chemical potential and controls the location of the Fermi energy. In much of

our discussion we will assume that when ∆ = 0 the Fermi energy lies midway between two edge-mode energy levels.
This assumption is for illustrative purposes only. Indeed the detailed current/phase relation will depend sensitively
on the exact location of the Fermi energy relative to the edge modes because varying θ can make a level cross the
Fermi energy, change its occupation, and cause a jump in the Josephson current. The sensitivity will manifest itself
as Bohm-Aharonov oscillations in the Josephson current as a function of the magnetic flux through the Hall bar11.
For our mid-spaced EF we can make a gauge transformation to set A → 0 at the expense of changing periodic

boundary conditions to antiperiodic ones, and simultaneously redefining θ(x). We assume that we have done this.
The Bogoliubov-deGennes (BdG) equation for the eigenmodes is therefore

[

−ivd
∂

∂x
+ |∆(x)|eiσ3θ(x)σ1

](

u
v

)

= E

(

u
v

)

. (4)

Equation (4) has a path-ordered exponential solution
(

u(x)
v(x)

)

= eiEx/vd P exp

{

−i
∫ x

0

K(ξ) dξ

}(

u(0)
v(0)

)

, (5)

where K(x) = |∆(x)|eiσ3θ(x)σ1/vd is a hermitian matrix. Note that, in distinction to the usual BdG case, we did
not double the number of degrees of freedom when we constructed the BdG operator, so all the BdG eigenmodes are
needed.
Only a part Ω (the union of the two regions under the SC electrodes) of the perimeter of the Hall bar is in contact

with the superconductor, and we set

U = Pexp

{

−i
∫

Ω

K(ξ) dξ

}

∈ SU(2). (6)

As the perimeter of the Hall bar forms a closed loop, it was reasonable to impose periodic boundary conditions, but
recall that these were changed to antiperiodic boundary conditions by the gauge transformation that removed A(x).
The eigenmodes of the BdG operator Hamiltonian are therefore determined from the eigenvalues of U by requiring
that

(

un
vn

)

= −eiEnL/vdU

(

un
vn

)

. (7)

Here L is the length of the Hall-bar perimeter. Now the eigenvalues of U will be of the form e±iφ and so the energy
eigenvalues are given by the requirement that (EnL/vd)± φ = π(2n+ 1), or

En =
vd
L

(π(2n+ 1)∓ φ) . (8)

Note that if (u, v)T is an eigenvector of U with eigenvalue eiφ then −iσ2(u∗, v∗) = (−v∗, u∗) is an eigenvector of
U with eigenvalue e−iφ. Consequently if (un(x), vn(x))

T is an eigenfunction of the BdG operator corresponding to
eigenvalue En, then (−v∗n(x), u∗n(x))T is an eigenfunction corresponding to energy −En. These facts follow from

(iσ2)σi(−iσ2) = −σ∗
i =⇒ (iσ2)U

∗(−iσ2) = U, (9)
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FIG. 3: The spherical triangle that relates the eigen-phase φ to the order-parameter phase difference θ = θ2 − θ1.

and give rise to the usual antilinear S-wave BdG particle-hole symmetry “C” with C2 = −Id. This symmetry must
be distinguished from the approximate particle-hole symmetry arising from our linearization of the quantum Hall
edge-mode spectrum.
If the phase of the order parameter is constant in segments Ω1,2 (the superconducting leads) then U = U2U1 where

Ua =

[

cosDa −ieiθa sinDa

−ie−iθa sinDa cosDa

]

, a = 1, 2. (10)

Here Da = |∆|wa/vd where wa is the width of lead a. The eigenvalues of U are e±iφ, and, by taking the trace of U ,
we see that φ is given by the spherical cosine rule:

cosφ = cosD1 cosD2 − cos θ sinD1 sinD2. (11)

The spherical triangle (see figure 3) arises because the matrices U1 and U2 are the spinor representations of successive
SO(3) rotations through angles 2D1 and 2D2 about axes separated by the angle θ. It is shown in13 that such rotations
can be combined through the use of mirrors that form the geodesic sides of the triangle.
From now on we understand by “φ”, the solution of (11) that lies in the range 0 ≤ φ ≤ π, and by the vector (u, v)T

the corresponding eigenvector of U . We similarly take “En” to mean the combination

En =
vd
L

(2π(n+ 1/2)− φ) . (12)

Now we make the Bogoliubov transformation

(

ψ↑(x)

ψ†
↓(x)

)

=
∞
∑

n=−∞

{

bn↑

(

un(x)
vn(x)

)

+ b†n↓

(

−v∗n(x)
u∗n(x)

)}

. (13)

In order not to over-count, we ensure that the modes are those that, after passing the superconductor, take the form
(un(x), vn(x)) = ei(Enx/vd+φ)(u, v), and (−v∗n(x), u∗n(x)) = e−i(Enx/vd+φ)(−v∗, u∗). The Fermionic anticommutation
relations coupled with the BdG eigenfunction completeness relations then require that

{bn↓, bm↓} = {bn↑, bm↑} = {bn↓, bm↑} = {b†n↓, b
†
m↑} = 0, (14)

and

{b†n↓, bm↓} = {b†n↑, bm↑} = δnm. (15)

The Bogoliubov transformation simplifies H to

H =

∞
∑

n=−∞

En(b
†
n↑bn↑ − bn↓b

†
n↓) + const, (16)

the “constant” being the same one that was introduced earlier. It is not really a constant as it depends on the
gauge field A, but it is independent of θ(x). Recall that the A dependence accounts for the total charge of the
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spin-down Fermi sea that was discarded when we made the particle-hole interchange for this spin component. The
minimum-energy state is defined by the properties

bn↑|0〉 = 0, En > 0,

b†n↑|0〉 = 0, En < 0,

bn↓|0〉 = 0, En > 0,

b†n↓|0〉 = 0, En < 0. (17)

Using these, we compute the ground state energy to be

Eground =
∑

En<0

En −
∑

En>0

En. (18)

The quantity Eground is formally divergent, but the physics resides entirely in the variation of Eground with the phase
difference θ = θ2 − θ1. Now as we vary θ all En move in the same direction. The energy dependence on θ largely
cancels between the two sums. In order to extract the small, but non-zero, residuum we will have to regulate the
sums in a controlled manner. This we do in the next section.

III. COMPUTING THE CURRENT

Given a Dirac-like spectrum of energy levels −∞ < En < ∞, the associated ground-state charge and current can
often be expressed in terms of the spectral asymmetry14. This quantity is defined15,16 to be the regulated sum

η = lim
s→0

{

−
∞
∑

n=−∞

sgn(En)e
−s|En|

}

. (19)

For energies of our form, En = α(2π(n+1/2)−φ), (where α = vd/L) a direct calculation shows that for −π < φ < π,
we have

{

−
∞
∑

n=−∞

sgn(En)e
−s|En|

}

= −φ
π
− 1

6π

(

φ3 − φπ2
)

(αs)2 +O(s4). (20)

Thus

η(φ) = −φ
π
, −π < φ < π, (21)

and extends with 2π periodicity in φ, (see figure 4).
We may similarly define and compute an analytically-regulated version of the ground-state energy (18):

(Eground)reg = lim
s→0

{

−
∞
∑

n=−∞

sgn(En)Ene
−s|En| +

1

παs2

}

= α

(

φ2

2π
− π

6

)

, −π < φ < π.

This quantity also extends periodically outside the range −π < φ < π — see figure 5. The subtraction needed for the
existence of the limit is independent of φ, and the constant −απ/6 is the same as would be obtained by zeta-function
regularization17. Let us also compute

(

dEground

dφ

)

reg

def
= lim

s→0

{

−
∞
∑

n=−∞

sgn(En)

(

dEn

dφ

)

e−s|En|

}

= lim
s→0

{

α

∞
∑

n=−∞

sgn(En)e
−s|En|

}

= α
φ

π
,

and observe that the regulated energy possesses the comforting property that

d

dφ
(Eground)reg =

(

dEground

dφ

)

reg

. (22)



6

-6 -4 -2 2 4 6
Φ

-1.0

-0.5

0.5

1.0
ΗHΦL

FIG. 4: A plot of η(φ) showing the 2π periodicity.
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FIG. 5: A plot of α−1(Eground(φ))reg showing the 2π periodicity

We will relate these energy derivatives to the ground-state expectation value of the divergence of the current operator.
The current operator is

j(x)= − δH

δA(x)
. (23)

If we include the contribution from the A dependent “constant” when taking the functional derivative, then the
ground state current is

〈j(x)〉 = evd〈0|ψ†
↑(x)ψ↑(x) + ψ†

↓(x)ψ↓(x)|0〉

= 2evd

(

∑

En<0

|un(x)|2 +
∑

En>0

|vn(x)|2
)

. (24)

If we ignore the “constant,” the current becomes

〈j(x)〉 = evd〈0|ψ†
↑(x)ψ↑(x)− ψ↓(x)ψ

†
↓(x)|0〉

= evd
∑

En<0

(

|un(x)|2 − |vn(x)|2
)

− evd
∑

En>0

(

|un(x)|2 − |vn(x)|2
)

. (25)

These two currents differ only by the subtraction of
∑

n(|un(x)|2 + |vn(x)|2) in the second case. This divergent sum
is “δ(0)” and independent of x by eigenvector completeness. When it comes to computing the current flowing in and
out at the leads we can use either expression therefore. The second expression is the most convenient, and so we
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define

〈j(x)〉reg = lim
s→0

{

−evd
∞
∑

n=−∞

sgn(En)
(

|un(x)|2 − |vn(x)|2
)

e−s|En|

}

. (26)

In our simple model |un|2(x) and |vn|2(x) are independent of n, but do depend on whether x lies between the
superconducting leads or not. This means that the edge-current differs in the two regions, and the difference is due
to the Josephson current flowing in and out via the SC leads. We could compute |un|2 and |vn|2 in the two regions
by diagonalizing the matrix U , but it is simpler, and more revealing, to relate the difference in the currents to the
variation of the ground state energy with θ.
To do this we observe that

[

eiχ/2 0
0 e−iχ/2

] [

−ivd(∂x − ieA) |∆|eiθ
|∆|e−iθ −ivd(∂x + ieA)

] [

e−iχ/2 0
0 e+iχ/2

]

=

[

−ivd(∂x − i(eA+ χ′/2)) |∆|ei(θ+χ)

|∆|e−i(θ+χ) −ivd(∂x + i(eA+ χ′/2))

]

.

As the similarity transformation does not change the eigenvalues of the BdG operator, we see that

En[θ, A] = En[θ + χ, eA+ χ′/2]. (27)

The effect on the energy eigenvalue of changing θ(x) → θ(x)+δθ(x) is therefore identical to changing eA→ eA−(δθ)′/2.
By first-order perturbation theory we compute the latter effect to give

δEn = 〈n|δH |n〉

= −vd
∫

dx
(

|un(x)|2 − |vn(x)|2
)

δA

=
1

2
vd

∫

dx(|un(x)|2 − |vn(x)|2)
∂

∂x
δθ(x)

= −1

2
vd

∫

dx

{

∂

∂x

(

|un(x)|2 − |vn(x)|2
)

}

δθ(x). (28)

Now, on combining this last result with equations (22) and (25), we find that

δ(Eground)reg = − 1

2e

∫

〈∇ · j〉regδθ(x) dx

=
1

2e
IJosephson(δθ2 − δθ1). (29)

Thus we see that the general result

IJosephson =

(

2e

~

)

dEground

dθ
(30)

is consistent with our regularization scheme.
From

Eground =
vd
L

(

φ2

2π
− π

6

)

, 0 ≤ φ ≤ π. (31)

we have

IJosephson = 2e
d

dθ
(Eground)reg = 2e

d

dφ
(Eground)reg

dφ

dθ
(32)

Figures 6,7,8 show how theses ingredients assemble to give the current/phase relation.
To gain further insight, consider the case of “perfect coupling,” where sinDa = 1 and φ = ±(θ2 − θ1 + π). In this

case

U =

[

0 −ieiθ2
−ie−iθ2 0

] [

0 −ieiθ1
−ie−iθ1 0

]

=

[

−ei(θ2−θ1) 0
0 −e−i(θ2−θ1)

]

, (33)
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FIG. 6: A plot of the eigen-phase φ against θ for the case D1 = D2 = π/2− .2. We are enforcing the condition 0 ≤ φ ≤ π that
is required by our Bogoliubov transformation.

1 2 3 4 5 6
Θ

-1.0

-0.5

0.5

1.0
dΦ�dΘ

FIG. 7: A plot of dφ/dθ for D1 = D2 = π/2− .2

and so φ = (θ2 − θ1) + π. In the absence of relaxation, each 2π turn of θ would put another particle into both the
spin-up and spin down sea. In equilibrium however, the state ceases to be occupied as soon at its energy becomes
positive. This change in occupation leads to a jump in the Josephson current as the state crosses the Fermi energy and
its contribution is lost. The maximum possible current occurs just before or after the jump, and has Imax = ±2evd/L.
For vd ∼ 106m/s and a perimeter of about 1mm we get an upper bound on the Josephson current of about 1 nA.
This is consistent with the estimate of Ma and Zyuzin11.
A physical picture for this upper bound is as follows: At the phase difference corresponding to the “jump,” we have

a spin-up/spin-down pair of levels lying exactly at the Fermi energy. At perfect coupling, the extreme equilibrium
currents correspond to two possible cases: i) between the leads both zero-energy levels are empty whilst outside they
are occupied, ii) between the leads both zero-energy levels are occupied and outside they are empty. Levels in the
Dirac sea that are not at the Fermi energy cannot be left empty by a passage under a lead, as this would lead to the
energy being different in different regions and this is not possible in an energy eigenstate. Only the topmost energy
level can contribute to the equilibrium Josephson current therefore, and this is the reason why the Josephson current
is so small. To estimate its magnitude we note that in case (i), in each passage round the perimeter of the Hall bar,
a pair of electrons passes from the Hall bar to the first lead and is returned to the Hall bar from the second lead. In
case (ii) in each orbit a pair of electron passes from the first lead to the Hall bar, and is collected from the Hall bar
at the second lead. This physical picture shows that the two possible Josephson currents are equal and opposite and
have magnitude |Imax| = 2evd/L. (Because it is easy to get confused by Bogoliubov transformations, we provide, in
Appendix A, a more detailed description of what happens to the particle content of the many-body eigenstates as
they pass under the superconducting leads.)
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FIG. 8: A plot of IJosephson/(2evd/L) against θ for D1 = D2 = π/2 − .2. Observe how the discontinuities combine to give
a smooth result. As D1,2 approach “perfect coupling” at D1 = D2 = π/2, the drops at θ = 0, 2π steepen, and become
level-crossing discontinuities.

IV. COMPARISON WITH PERTURBATION THEORY

The analytic regularization method used in the computations in the previous sections is standard in relativistic
field theory14, but is perhaps less familiar in superconducting applications. As a check on its validity it is worthwhile
(and non-trivial) to compare our all-orders in D1 and D2 calculation with conventional perturbation theory.
In the weak-coupling regime, where D1 and D2 are small, the spherical cosine rule reduces to

φ2 = D2
1 +D2

2 + 2D1D2 cos θ +O(D3). (34)

In this limit the ground-state energy and zero-temperature and Josephson current become

Eground(θ) =
vd
L

1

2π
(D2

1 +D2
2 + 2D1D2 cos θ), (35)

and hence

IJosephson = −2evd
πL

D1D2 sin θ. (36)

We begin by verifying that (35) is correctly reproduced by the perturbation expansion.
The Euclidean chiral propagator for zero temperature and anti-periodic spatial boundary conditions is

〈0|Tψ†
a(z1)ψb(z2)|0〉 = δabG(z1 − z2) =

1

2iL

δab
sin[π(z1 − z2)/L]

(37)

where a, b =↑, ↓ and z = x+ ivdτ . The change in the ∆ = 0 ground-state energy due to the interaction

Hint =

∫

|∆(x)|
(

eiθ(x)ψ†
↑(x)ψ

†
↓(x) + e−iθ(x)ψ↓(x)ψ↑(x)

)

dx (38)

occurs at second order in |∆|, and is

δEground = −
∫

dx1

∫

dx2

∫ ∞

−∞

dτ |∆(x1)||∆(x2)|eθ(x1)e−iθ(x2)〈0|Tψ†
↑(z1)ψ

†
↓(z1)ψ↓(z2)ψ↑(z2)|0〉. (39)

Here τ = τ2 − τ1 is the Euclidean time interval between z2 and z1. Now

〈0|Tψ†
↑(z1)ψ

†
↓(z1)ψ↓(z2)ψ↑(z2)|0〉 = [G(z1 − z2)]

2 (40)

by Wick’s theorem, and

1

4L2

∫ ∞

−∞

1

(sin[π(x1 − x2 + ivdτ)/L])2
dτ =

(

1

2πLvd

)

(41)
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is independent of the separation x1 − x2 unless x1 − x2 = 0 (mod L). The perturbation integral has four contributing
regions: i) both x1 and x2 in lead 1, ii) both x1 and x2 in lead 2, iii) x1 in lead 1, x2 in lead 2, iv) x1 in lead 2, x2 in
lead 1. Recalling that Da = |∆|wa/vd, these combine to give

δEground = v2d(D
2
1 +D2

2 + 2D1D2 cos θ)
1

2πLvd

=
vd
2πL

(D2
1 +D2

2 + 2D1D2 cos θ). (42)

This expression coincides with the weak coupling limit of the all-orders calculation.
We can extend the comparison to non-zero temperature. At temperature T = β−1, the Josephson current can be

written as

IJosephson =

(

2e

~

)

dF

dθ
(43)

where F is the free energy. For a general spectral shift φ, we use standard methods to write down the partition
function

Z = exp {−βF [φ, β]}

= exp

{

−βvd
L

(

φ2

2π
− π

6

)} ∞
∏

N=1

(1 + wq2n−1)2(1 + w−1q2n−1)2

= (η(q))−2

[

∞
∑

n=−∞

exp

{

− vdβ

2πL

1

2
(2πn+ φ)

2

}

]2

, (44)

where q = exp{−πβvd/L}, w = exp{−βvdφ/L}, and

η(q) = q1/12
∞
∏

n=1

(1− q2n)

is the Dedekind eta function. We used the Jacobi triple-product formula to pass from the second line to the third.
The sum in the expression for Z is squared because there are two independent Fermi seas (spin up and spin down)
and their contributions to the partition function are symmetric under the interchange of φ with −φ. By using the
Poisson summation formula, we can rewrite the partition function as

exp {−βF [φ, β]} = (η(q))−2 L

vdβ

[

∞
∑

n=−∞

exp

{

−1

2

2πL

vdβ
n2 + inφ

}

]2

= (η(q))−2 L

vdβ
[θ3(φ/2π|iL/vdβ)]2 (45)

Thus the free energy is given by

F [φ, β] = c− 2

β
ln θ3(φ/2π|iL/vdβ). (46)

where c does not depend on φ. For small spectral shifts φ, we can Taylor expand

F [φ, β] = c− 1

β
φ2

d2

dφ2
ln θ3(φ/2π|L/vdβ) +O(φ4). (47)

We would now like to compare the expression (47) with that obtained by perturbation theory. At finite temperature
the chiral propagator becomes

〈0|Tψ†
a(z)ψb(0)|0〉 → G(z) =

1

2πiL

θ′(0|ivdβ/L)
θ(z/L|ivdβ/L)

θ3(z/L|ivdβ/L)
θ3(0|ivdβ/L)

. (48)

Here we are using the theta function definitions from18, in which

θ(z|τ) =

∞
∑

m=−∞

exp
{

iπτ(m+ 1/2)2 + 2πi(m+ 1/2)(z + 1/2)
}

,

θ3(z|τ) =

∞
∑

m=−∞

exp
{

iπτm2 + 2πimz
}

. (49)
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FIG. 9: A plot of the effect of temperature on the perturbative Josephson current.. The horizontal axis is temperature in units
of ~vd/L. We see an effect as soon as the temperature becomes comparable with the 2π~vd/L level spacing of the edge energy
states.

Thus θ(z|τ) is odd under z ↔ −z, while θ3(z|τ) is even. These properties were the ingredients used to assemble (48),
which is specified uniquely by requiring the propagator to be analytic, doubly anti-periodic

G(z + L) = −G(z), G(z + ivdβ) = −G(z), (50)

and for small z to obey

G(z) ∼ 1

2πi

1

z
. (51)

It is this last property that makes it a Green function.
In terms of G(z) we now have

δEground = −
∫

dx1

∫

dx2

∫ β

0

dτ |∆(x1)||∆(x2)|eθ(x1)e−iθ(x2)[G(x1 − x2 + ivdτ)]
2. (52)

The xa integrals are the same as before, and, although it is little more complicated, the integral over τ can still be
evaluated in closed form. We begin by observing that [2πiG(z)]2 is analytic, has a double pole 1/z2 at the origin, is
doubly periodic with periods ω1 = L and ω2 = ivdβ, and (from the θ3(z|τ) in the numerator) has a double zero at
z = 1

2 (ω1 + ω2). These properties are sufficient to show that

[2πiG(z)]2 = ℘(z |ω1, ω2)− e3, (53)

where ℘(z |ω1, ω2) is the Weierstrass elliptic function, and

e3 ≡ ℘({ω1 + ω2}/2 |ω1, ω1). (54)

The Weierstrass zeta function is defined so that

d

dz
ζ(z |ω1, ω2) = −℘(z |ω1, ω2), (55)

together with initial condition

lim
z→0

{

ζ(z)− 1

z

}

= 0. (56)

We may therefore evaluate the τ integral in terms of tabulated functions:
∫ a+ω2

a

[2πiG(z)]2dz = −ζ(a+ ω2) + ζ(a) − ω2e3

= −2η2 − ω2e3,

=
1

ω2

d2

dz2
ln θ3(z| − ω1/ω2)

∣

∣

∣

∣

z=0

. (57)
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Here 2η2 ≡ ζ(a+ ω2)− ζ(a) = 2ζ(ω2/2) is independent of a. The quantities in the second line of (57) are available in
MathematicaTM, and we use them to plot IJosephson(T )/IJosephson(0) in Figure 9.
It takes a little more work to obtain the logarithmic derivative appearing in the last line of (57), and so we relegate

its derivation to Appendix B. Accepting that the claim is correct, and putting in the dimensionful constants, we
confirm that our all-orders evaluation of the free energy coincides with the perturbation theory calculation in the
weak coupling regime .

V. DISCUSSION

We have shown that the maximum possible Josephson current for a pair of spin-up/spin-down QH edge states is
rather small for typical Hall bar geometries. The bound is small because the relevant length and energy scales are set
by the perimeter of the Hall device rather than the separation of the superconducting probes. Also, unlike a typical
Josephson device, there is only one conduction channel per pair of edge modes. This last observation means that
nothing is to be gained by making the superconducting leads overlay deeper into the Hall bar.
It may seem strange that we have so far discussed quantum Hall physics with no mention of the magnetic field

that is necessary for its existence. The field, however, has only a few consequences for our discussion. Obviously
the superconducting leads must be constructed of materials that remain superconducting in a field of few Tesla
at temperatures of about 1K, but this is not hard to achieve. The leads must also be narrow enough that the
order-parameter phase does not vary widely within the part of the lead that is actively coupled to the 2DEG. A
subtle point in this regard affects the claim that the Josephson current is independent of the separation of the
leads. The phase difference θ that we have equated to θ2 − θ1 should be understood as the gauge invariant quantity
θ = θ2 − θ1 − 2e

∫ x2

x1

Adx. Now a quantum of magnetic flux lies between each of the edge-state energy levels and if

the effective “θ” is not to vary with the energy level index n, only a small fraction of this flux should pass between
the leads. The leads should not be spaced apart by more than a small fraction of the perimeter. A more subtle effect
is that of pair breaking in the leads due to the magnetic field20. Pair breaking will alter the Andreev-scattering phase
matching between the normal and superconducting electrons, and being field dependent may complicate the pattern
of Bohm-Aharonov oscillations.
Something that we have not considered here, and that may well allow for larger currents, is “edge

reconstruction”21–23. A reconstructed edge, with its alternating strips of compressible and incompressible 2DEG
can allow many more levels to lie exactly at the fermi energy and so have their occupation number changed without
a change in energy. These levels have zero drift velocity, however, so it unlikely that they contribute significantly to
the Josephson current.

VI. ACKNOWLEDGEMENTS

We thank Tony Leggett for interesting us the problem, and also Jim Eckstein and Stephanie Law Toner for explaining
their work on QHE superconductor interfaces. The contribution of MS to this project was supported by the National
Science Foundation under grant DMR 09-03291. The work of YL was supported by the US Department of Energy,
Division of Materials Sciences, under award DE-FG02-07ER46453, admistered through the Frederick Seitz Materials
Research Laboratory at the University of Illinois.

VII. APPENDIX A

The maximum possible Josephson current occurs when we have both perfect coupling (sinD1 = sinD2 = 1) and
cos θ = 1. In this special case we have

U1 = U2 =

[

0 −i
−i 0

]

, U = U2U1 = −
[

1 0
0 1

]

. (58)

The Bogoliubov mode-expansion (13) then becomes

(

ψ↑(x)

ψ†
↓(x)

)

=

∞
∑

n=−∞

{

bn↑
1√
L

(

1
0

)

e2πinx/L + b†n↓
1√
L

(

0
1

)

e−2πinx/L

}

(59)
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for x in region (1), and
(

ψ↑(x)

ψ†
↓(x)

)

=

∞
∑

n=−∞

{

bn↑
1√
L

(

0
−i

)

e2πinx/L + b†n↓
1√
L

(

−i
0

)

e−2πinx/L

}

(60)

for x in region (2). (The numbering of the regions refers to figure 1.)

In these mode-expansions, the operators bn↑ and b†n↓ annihilate or create quasiparticles with energy |En| =

2πvd|n|/L. We compare these expansions with the free-particle plane wave expansion
(

ψ↑(x)

ψ†
↓(x)

)

=

∞
∑

n=−∞

{

an↑
1√
L

(

1
0

)

e2πinx/L + a†n↓
1√
L

(

0
1

)

e−2πinx/L

}

, (61)

where the operators an↑ and a†n↓ annihilate and create electrons. We see that we can identify

bn↑ = an↑, b†n↑ = a†n↑

bn↓ = an↓, b†n↓ = a†n↓ (62)

in region (1), and

bn↑ = ia†−n↓, b†n↑ = −ia−n↓

bn↓ = −ia†n↓, b†n↓ = +ia−n↑ (63)

in region (2). We now use these identifications to examine what happens to the particle content of the many-body
eigenstates as they drift under the superconducting leads.

We first note a minimum-energy eigenstate must be annihilated by bn↑ and bn↓ for n > 0, and by b†n↑ and b†n↓ for

n < 0. Let us define the eigenstate |0〉 by requiring that it is killed by all these operators, and also by b0↓ and b0↑.
Then the states

|0〉, b†0↑|0〉, b†0↓|0〉, b†0↓b
†
0↑|0〉, (64)

all have the same energy, making the ground state four-fold degenerate.
With the operator identifications established above, we find that

|0〉 =
−1
∏

n=−∞

(a†n↓a
†
n↑)|empty〉 (65)

when x lies in region (1), but in region (2), where b0↑ and b0↓ are identified with a†0↓ and a†0↑ respectively, we must
have

|0〉 ∝ a†0↓a
†
0↑

−1
∏

n=−∞

(a†n↓a
†
n↑)|empty〉, (66)

for it still to be annihilated by b0↑ and b0↓. We see that the occupation number of the energy levels for n < 0 are
unchanged, but |0〉 picks up a pair of n = 0 electrons from the superconducting lead as it passes under it. Similarly

the state b†0↓b
†
0↑|0〉 loses a pair from the n = 0 level.

The state b†0↑|0〉 is annihilated by a†0↑ and a0↓ in region (1), and these become respectively a0↓ and a†0↑ in region

(2). The particle content of this state is unaffected by its passage under the lead therefore. Similarly b†0↓|0〉 retains
its particle content.

Now consider an excited state, for example b†m↑b
†
0↑|0〉 with m > 0. This state has energy E = 2πvdm/L. In region

(1) it has particle content

a†m↑a
†
0↑

−1
∏

n=−∞

(a†n↓a
†
n↑)|empty〉, (67)

and so consists of a Dirac sea together with an electron in a positive energy level. In region (2) it becomes

a−m↓a
†
0↑

−1
∏

n=−∞

(a†n↓a
†
n↑)|empty〉, (68)

which consists of a Dirac sea which has lost an electron from a negative energy level. After passing the superconductor
therefore, the state has the same energy and spin, but the electron has become a hole.
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VIII. APPENDIX B

We wish to establish the third line of (57), which reads

∫ a+ω2

a

(℘(z|ω1, ω2)− e3)dz =
1

ω2

d2

dz2
ln θ3(z| − ω1/ω2)

∣

∣

∣

∣

z=0

. (69)

This result follows indirectly from the related integral

∫ a+ω1

a

{℘(z|ω1, ω2)− e3} dz = −2η1 − ω1e3

=
1

ω1

θ′′3 (0|ω2/ω1)

θ3(0|ω2/ω1)
,

=
1

ω1

d2

dz2
ln θ3(z|ω2/ω1)

∣

∣

∣

∣

z=0

. (70)

Here we require Im (ω2/ω1) > 0 for the theta functions to converge. To establish (70) we observe that second line
follows from the first by combining two standard formulæ:

e3 =
1

ω2
1

{

1

3

θ′′′(0|τ)
θ′(0|τ) − θ′′3 (0|τ)

θ3(0|τ)

}

, (71)

(18 Eq 5.2), and

2η1 = − 1

ω1

1

3

θ′′′(0|τ)
θ′(0|τ) , (72)

(19 §21.43.) Here τ = ω2/ω1 with Im τ > 0. The third line of (70) follows from the second because θ′3(0|τ) = 0.
To derive (69) however, we need the integral over the ω2 = ivdβ imaginary period, and not over the ω1 = L real

period. Because of the positivity condition on the imaginary part of τ , we cannot change the integration path by
merely interchanging ω1 ↔ ω2 in equation (70). We need to be more subtle. By changing (ω1, ω2) → (−ω2, ω1) in
(70), we obtain

− 1

ω2

d2

dz2
ln θ3(z| − ω1/ω2)

∣

∣

∣

∣

z=0

=

∫ a−ω2

a

{℘(z| − ω2, ω1)− e3} dz. (73)

This last equation is legitimate because Im (ω2/ω1) > 0 implies that Im (−ω1/ω2) > 0. We now manipulate

RHS = −
∫ a+ω2

a

{℘(z| − ω2, ω1)− e3} dz

= −
∫ a+ω2

a

{℘(z|ω1, ω2)− e3} dz, (74)

where the last line follows from the invariance of ℘(z|ω1, ω2) under modular transformations

(

ω′
1

ω′
2

)

=

(

a b
c d

)(

ω1

ω2

)

,

(

a b
c d

)

∈ SL(2,Z). (75)

From this we immediately deduce eq. (69).
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