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Abstract 

Molecular dynamics simulation with a modified embedded atom potential was used to study 

transport properties and the Stokes-Einstein relation of a glass-forming Cu33.3Zr66.7 metallic 

melt. Upon cooling, at high temperatures, the self-diffusion coefficients of the two species 

evolve nearly parallel, whereas they diverge below 1600K. The viscosity as function of 

temperature is calculated from the Green-Kubo equation. The critical temperature of mode 

coupling theory, Tc, is found as 1030K, both, from the transport properties and the 

α-relaxation time. It is found that the Stokes-Einstein relation between viscosity and 

diffusivity breaks down at around 1600K, far above Tc and even above the melting 

temperature. The temperature dependence of the effective diameter in the Stokes-Einstein 

relation correlates closely with the first derivative of the ratio of the self-diffusion coefficients 

of the two components. We propose that the onset of Stokes-Einstein relation breakdown 

could be predicted quantitatively by the divergence behavior of diffusion coefficients, and the 

breakdown of Stokes-Einstein relation is ascribed to the sudden increase of the dynamics 

heterogeneity.  

PACS number(s): 66.20.Cy, 66.10.cg, 02.70.Ns 
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I. INTRODUCTION 

Transport properties, such as the shear viscosity and the diffusion coefficients, of liquid 

metals, especially in the metastable undercooled regime, are kinetic key parameters that 

determine the crystal nucleation and growth in metallic melts. They also play a very important 

role in studying the liquid-to-glass transition in a glass forming system, which is still an open 

question up to now. According to the free volume theory, 1 the free volume of liquids can be 

derived from the transport properties of the liquid. The free volume of liquids correlates with 

that of glassy alloys, which determines the strength and ductility of metallic glasses. 2 Thus, 

transport properties of liquids could reveal valuable information about mechanical properties 

of metallic glasses and, therefore, have attracted extensive research interest. 3-7  

 In simple liquids, the self-diffusion coefficient is often related to the shear viscosity by the 

Stokes-Einstein (SE) relation 8, 9 

dc
TkD B

πη
= ,                               (1) 

where kB is the Boltzmann constant, d the effective diameter of the particle, and c a constant 

that depends on the boundary conditions. It is 3 for “stick” boundary condition and 2 for 

“slip” boundary condition.  

For some molecular liquids 10 and metallic glass forming systems, 11-13 the SE relation 

holds quite well at temperatures above the critical temperature Tc of the mode coupling theory 

(MCT) 14 and breaks down at temperatures below. According to MCT, Tc characterizes a 

change in the dynamics of the liquid from ergodic liquid-like flow to non-ergodic solid-like 

hopping. Therefore, a breakdown of the SE relation around Tc seems quite reasonable. 

However, some experiments indicate that the SE relation may already break down at 
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temperatures far above Tc. 15-17 Noticeably, Meyer et al. found that in a Zr-Ti-Cu-Ni-Be melt 

the mobility of Ni and Ti atoms remains decoupled from viscous flow far above the mode 

coupling Tc and the liquidus temperature, TL. 16 This implies that Tc is not necessarily the 

temperature that determines the breakdown of the SE relation. The temperature Ts, marking 

the onset of the breakdown of the SE relation, might be different. Clearly, Ts is determined by 

the dynamics of the liquid. Its relation to TL, Tc and Tg, , however, is not clear. Why the SE 

relation can break down far above the mode coupling Tc and even above the liquidus 

temperature, and how empirically to predict Ts are still open questions. An investigation of 

these questions is not only meaningful for the understanding of the change in the dynamics at  

the liquid-to-glass transition, but also informative for experimentalists since they often 

approximate the self-diffusion coefficient via the SE relation from the viscosity, or vice versa.  

Molecular dynamics simulation allows an insight into the dynamics on an atomic level. 

The breakdown of the SE relation was addressed by several calculations simulating real and 

model liquids. A breakdown of the SE relation was observed in systems as diverse as liquids 

of hard 18 and soft spheres, 19 binary Lennard-Jones fluids, 20, 21 water 22 and silica melts. 23 

These simulations have, so far, not lead to a unique, accepted picture.     

To elucidate the relation between the viscosity and the self-diffusion coefficients, we 

must determine both properties accurately. In experiment the determination of transport 

properties in the metastable undercooled regime is rather challenging, because any contact of 

the metallic melt with the container wall immediately induces crystallization of the melt. 24 

This is the reason why experimental studies of viscosity and self-diffusion coefficients are 

normally confined to the normal liquid regime or to the viscous “undercooled” regime 
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between Tg and the recrystallization temperature of the glass, Tx. The convection inside the 

sample in terrestrial measurements is another problem. 25 In this work, we will use molecular 

dynamics simulation to investigate the temperature dependence of the viscosity and 

self-diffusion coefficients, as well as their relationship.  

In Meyer’s work, 16 the breakdown of the SE relation occurs in a Zr-based system. We 

study a Cu33.3Zr66.7 binary alloy, which is also a Zr-based system. To our best knowledge, the 

transport properties in the context of the SE relation of this alloy have not been reported 

previously. We hope that we can elucidate the mechanism for the breakdown of SE relation 

far above Tc and even the liquidus temperature based on the simulated transport properties, 

and propose an empirical way to predict the onset for this breakdown, which could also be 

applied to other systems. 

There are several molecular dynamics studies of liquid and amorphous CuZr in various 

compositions, using different interaction models. Using a Lennard-Jones type interaction, 

plasticity was studied. 26 The structure and diffusion in Cu60Zr40 was studied using a 

Finnis-Sinclair interaction. 27 A tight binding based description was used in a study of 

amorphisation. 28 Kim and Lee developed a modified embedded atom model and gave a few 

results for Cu50Zr50. 29 Cheng et al. developed an embedded atom model and studied the 

structure basis of the mechanical properties of CuxZr100-x (x=46 to 65). 30  

We simulate the CuZr system using a modified embedded atom model (MEAM) 

developed earlier. It has been used extensively in studies of the atomistics of diffusion. The 

typical chain-like structure of the diffusional motion, seen earlier in the glassy state, 31 was 

also found in the undercooled melt. 32 The observation of atomic jumps over nearest neighbor 
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distances coupled with the, often observed, time evolution of a secondary peak in the 

autocorrelation function led to the assumption of two distinct mechanisms, jumps over 

typically nearest neighbor distances and a more flow-like motion. 33 A detailed study of the 

atomic jump lengths showed that there is no typical jump length and that the long range jumps 

are just special cases of the collective jumps. 34 The evolution of the side maximum in the 

autocorrelation function is not due to the jump process but results from the prolonged waiting 

time between jumps at preferred sites. 35 This is an effect of the dynamic heterogeneity, 

implying faster atoms moving in a slower surrounding.  

Recently Mendelev and coworkers developed another Finnis-Sinclair type potential for 

CuZr. 36 They had used previously a slightly different version to study diffusion. 37 An 

accurate assessment of the relative merits of this model compared to our MEAM is not 

possible. The predicted positions of the nearest neighbor peaks of the pair correlation 

functions differ by about 5%. Our MEAM gives 0.303, 0.244 and 0.3nm, for ZrZr, CuCu and 

ZrCu, respectively. The corresponding values for the EAM2 interaction are 0.321, 0.258 and 

0.28nm. Reported experimental values are 0.318, 0.253 and 0.277nm, 38 0.316, 0.257 and 

0.284nm 39 and 0.316, 0.253 and 0.280 nm. 40 The ZrZr and CuCu values are fairly close to 

the experimental values for the mono-atomic melts. At T=1373K the position of the first peak 

is at 0.250nm for Cu 41 and at T=2000 at 0.312nm for Zr. 42 These slight discrepancies indicate 

limitations of the model description which, however, are not sufficient to severely affect the 

results of this investigation.                                                                 

The organization of the rest of the paper is as follows. In the next section, we describe 

the system studied and the applied simulation methods. The results of the simulation are given 
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in Sect. III. Self-diffusion coefficients, viscosity, auto-correlation functions and heterogeneity 

are presented and discussed. Based on the simulated data, the breakdown of the 

Stokes-Einstein relation is shown. An empirical way to predict the breakdown of the SE 

relation is proposed, and the mechanism for the breakdown of SE relation is analyzed by the 

non-Gaussianity parameter. In Sect. IV the results are discussed in the context of our previous 

and that of other groups. We end with a summary in Sect V.  

II. SIMULATION DETAILS 

The molecular dynamics simulations are performed for systems of 1000~8000 atoms 

with periodic boundary conditions in three directions. The velocity Verlet algorithm is 

adopted to solve the equation of motion at constant temperature T and constant pressure P, 

and with a time step of 2.5fs. The pressure is kept zero using the Parrinello-Rahman algorithm 

43 with a volume mass of ZrmN ⋅ , where N is the number of particles and mZr is the atomic 

mass of Zr, and an additional damping term to prevent oscillations. The temperature T was 

controlled by a Nose-Hoover thermostat. 44 

Three independent samples are prepared by a quench from liquid Cu33.3 Zr66.7 at 2500K to 

1200K, in steps of 100K and with a rate of 1×1012K/s.  Within the covered temperature range 

the system is in the equilibrium state. At each temperature step, the samples are aged for 2.5ns. 

This procedure followed our previous work. 45 In the temperature range relevant for the 

present investigation no aging effects are expected. 46 The measurements are taken during 

times ranging from 5ns at temperatures above 2000K, 15ns for temperatures below 1400K, 

and 10ns for the intermediate temperatures. The radial distribution functions at the beginning 

of the measurements, gr1, and the end, gr2, are calculated. The condition gr1=gr2 is always 
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ensured. During the whole time needed to gain the necessary statistics no change of the 

structure of the liquid is observed. 

A. Atomic interaction potential 

The atomic interaction in the Cu33.3Zr66.7 alloy is described by a modified-embedded-atom 

method (MEAM), 47 which can be viewed as the original embedded atom method (EAM) plus 

the additional angular correction. In the original EAM, the total energy of the system is 

described by a pair potential ijϕ and an embedding energy )( 0ρF which accounts for the 

additional many body effects due to the electronic density: 

∑∑
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,0 )()( ρϕ ,                         (2) 

where ijr is the distance between atom i and j, and i,0ρ  is the electronic density of atom i, 

which is given by a superposition of radial functions f(r)  
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To account for covalency, there is an additional angular correction in this work for Zr as apex 

atom, and the density takes the form  
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where jikΘ is the angle between jir and kir , and f3(r) is the radial function in the angular 

correction term. An exponential plus additional term is used for both f(r) and f3(r). The 

parameters were fitted to reproduce the experimental values of Cu, Zr and CuZr2 crystals. The 

universal energy-volume relation of Rose et al. 48 was used to determine the anharmonic 
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contributions, not sampled in the crystal but of essential importance in the disordered glassy 

state. We get lattice parameters a=0.363, a=0.323 and c=0.516, and a=0.338 and c=10.35nm 

(experimental values 49 a=0.362, a=0.323 and c=0.515, and a=0.322 and c=11.18nm) for Cu, 

Zr and CuZr2 respectively. The CuZr2 lattice is slightly distorted. The atomic volume, 

however, is only 2% too large. The sublimation and vacancy formation energies for Cu and Zr 

crystals agree with experiment. The enthalpies of fusion per atom relative to the monoatomic 

crystals are reproduced for the CuZr and CuZr2 crystals within a few percent. Additionally the 

phonon dispersion curves and elastic constants of the mono-atomic lattices were used. In the 

case of Cu, excellent agreement was achieved. In Zr we get an overall agreement with 

experiment but some phonons deviate up to 30%, similar to other work. 50, 51 The detailed 

form and the parameters are given in our previous work. 45 For more details on the fitting 

procedure see Ref. 52. 

B. Self-diffusion coefficient calculation 

The self-diffusion coefficients D are calculated for Cu and Zr from the long time evolution of 

the respective mean-square displacements (MSD) , 53  

[ ]∑
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by the standard expression 
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where the bracket denotes the ensemble average and the sum is over all atoms of Cu and Zr, 

respectively.                                                                             

Since the present study is concerned with temperatures well above the glass transition, no 
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problems with aging effects or long time plateaus in the MSD are encountered.
                         

C. Viscosity calculation 

The shear viscosity of a liquid is related to the fluctuations of the off-diagonal elements of the 

stress tensor. According to the Green-Kubo equation, 53 η  can be calculated from an 

equilibrium simulation by a time integral over the stress auto-correlation function η(t)  

∫
∝+
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)( dttηη ,                                (7) 

with  
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where V is the volume of the system, T the temperature, kB the Boltzmann’s 

constant, and xyσ  is the component of the stress in xy direction, which can be 

computed from the velocities and the viral 

∑∑∑
> ∂

∂
−=

i ij ij

y
ij

x
ij

ij

ji

i

y
i

x
ii

xy

r
rr

r

r
vvm

)(ϕ
σ                         (9)  

Isotropy of the liquid implies equality of all shears. In finite systems this is slightly violated 

and one averages over the different shears, indicated by the brackets in Eq. (8). For the 

calculation of the stress auto-correlation function η(t), we utilize the method of 

overlapping-time-interval correlation averages suggested by Rapaport. 54 There are three 

quantities in this averaging method, namely, the duration of the MD simulation, tD, the time 

window over which the stress autocorrelation function is computed, tw, and the time interval 

between the start of successive windows, ts. The number of time origins is related to these 

three quantities by 
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where the bracket means the nearest integer value.   

D. Incoherent intermediate scattering function 

 The transition from a simple liquid through undercooling to a glass is also seen in the 

incoherent intermediate scattering function  

[ ]{ }
AnnnA rtriqtq

∈
−=Φ )0()(exp),(  .                     (11) 

The double brackets indicate averaging over all atoms of type A (Cu or Zr) and over starting 

times t0 . 

III. SIMULATION RESULTS 

A. Mean square displacement (MSD) and diffusion coefficient 

 The calculated MSDs of Cu and Zr in liquid Cu33.3Zr66.7 at temperatures ranging from 

T=1200K to T=2400 are shown in Fig. 1. As usual, we observe three different regimes in the 

MSDs. For short times the MSDs are proportional to t2, which is typical for vibration and 

ballistic motion of particles. For long times the diffusive regime is reached, MSD t∝ . At 

intermediate times a transient regime appears, i.e., plateau, between the ballistic and diffusive 

regimes when the liquid is cooled to below 1600K. With the decrease of the temperature, the 

plateau becomes more pronounced.  

We evaluate the self-diffusion coefficients for Cu, DCu , and Zr, DZr, from the slope of the 

MSDs in the long-range diffusive regime. The results, averaged over the three samples, are 

presented in a double-logarithmic plot in Fig. 2, where the red solid symbols represent DCu 

and the blue solid ones DZr. The self-diffusion coefficients for the two species converted from 
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the viscosity via the Stokes-Einstein relation are also plotted in Fig.2, denoted by red and blue 

open symbols. We will come back to this later. 

 According to mode coupling theory (MCT), the temperature dependence of DA is given by  

γ)()( 0 c
MCT

A TTDTD −= .                          (12)      

Fitting the averaged self-diffusion coefficients of Cu and Zr to the above expression, we find, 

common to both components, Tc=1025K, and γ =1.52 and 1.93 for Cu and Zr, respectively. 

The MCT critical temperature Tc and the exponent γZr are compatible with the earlier work 45, 

whereas γCu lies between the value γCu=1.34 derived from the diffusion coefficient and 

γCu=1.57 derived from the intermediate scattering function. These values depend somewhat on 

the temperature range used in the fitting, and are, therefore, not exact. The different γ values 

for Cu and Zr indicate that the system should be described by a two-component-MCT. 

Weysser et al. have shown that even for a simple system of polydisperse quasi-hard spheres 

with Brownian dynamics the description by an effective monodisperse system breaks down in 

the q→0 limit. 55 

  In many cases, for example in liquid Ni-Zr alloy 56 and a binary Lennard-Jones system, 57 

the self-diffusion coefficients for the two species vary in parallel with changing temperature. 

In contrast, the diffusion coefficients for two species in the Cu33.3Zr66.7 melt diverge. To 

analyze this divergence of the diffusion coefficients in more detail, we calculate DCu / DZr and 

its first derivative dTDDd ZrCu /)/( . The results are illustrated in Fig. 3. Clearly, at 

temperatures above T∼1700K, DCu/DZr increases as temperature decreases with a small 

constant rate of 3.4×10-4 / K. We refer to this regime as “near-parallel regime”, where 

diffusion coefficients for two species run nearly parallel to each other. This behavior is 
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expected when the two species merely differ in their respective effective diameter, d in Eq. (1). 

At temperatures below 1600K, dTDDd ZrCu /)/(  changes almost linearly with temperature. In 

this regime the slope is around 50 times larger than that in the near-parallel regime. The 

difference between the diffusion coefficients for the two species increases rapidly and the 

divergence becomes more and more pronounced with decreasing temperature.  

B. Incoherent intermediate scattering function Fs (q, t) 

  In Fig. 4, we present the incoherent intermediate scattering functions ),( tqFs
α  for the two 

components as a function of time. The wave numbers used for the two plots correspond to the 

location of the first maximum in the structure factor for Cu and Zr, respectively (q=2.66Å-1 

for Cu, and q =2.55 Å-1 for Zr 46).  At short times, ),( tqFs
α  shows a Gaussian-type 

dependence on time, consistent with the ballistic motion of the particles in Fig. 1. At high 

temperatures, ),( tqFs
α  decays to zero on a picosecond time scale. At low temperatures, a 

small shoulder appears, which corresponds to the so-called β-regime, due to the cage effect, 

and to the corresponding plateau in the MSD. The decay from the end of the initial decay due 

to ballistic motion of the particle at high temperatures or from the end of the β-regime is 

called α-relaxation.  

In the late α-relaxation regime ),( tqFs
α  can be well approximated by a Kohlrausch 

–Williams –Watts (KWW) function  
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with an exponent qβ <1 and fq<1.  

Depending on the temperature, we use ),( tqFs
α for times longer than 0.2∼1.5ps to fit the 
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KWW stretched exponential function. In the considered temperature range β is independent of 

temperature, Cu
qβ  = 0.697±0.039, and Zr

qβ = 0.82± 0.028.  The increase of the α-relaxation 

time with decreasing temperature is depicted in Fig.5. Mode coupling theory predicts that the 

α-relaxation time is related to Tc by  

γττ −−= )()( 0 cTTT                            (14) 

Data regression shows that the parameters of Tc=1025K, γCu=2.21, and γZr=2.39 could fit the 

data for temperatures below 2000K quite well. This value of Tc is the same as derived above 

from the self-diffusion coefficients. The exponents γ, however, are considerably higher than 

the ones derived from the diffusion coefficients.  

  If diffusion and α-relaxation are two expressions of the same process the product of 

self-diffusion coefficients and α-relaxation time should be constant, independent of 

temperature. Fig. 6 shows the product, Dτα, against temperature.  At high temperatures Dτα 

is almost a constant for both Cu and Zr. Below 1700K it increases rapidly. The relaxation 

slows down more rapidly than the diffusion. At 1200K the product of the α-relaxation time 

and self-diffusion coefficient is about a factor of 2, for Zr, or 3, for Cu, higher than at high 

temperatures. Thus, when the temperature decreases to below 1700K, the self-diffusion 

coefficients decouple from the α-relaxation time.  

C. Shear viscosity 

  The stress auto-correlation functions (SACF) of Cu33.3Zr66.7 have been evaluated according 

to Eq. (8). The normalized SACFs, <η(t)/ η(0)>, are shown in Fig. 7 for temperatures ranging 

from 2400K down to 1200K. The SACF decays rapidly towards zero as the correlation time 

increases. For longer times, e. g. longer than 2.0 ps for 2400K or 0.15 ns for 1200K, the 
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normalized SACF oscillates weakly around zero. We cut off the contribution of the SACF to 

the viscosity at that time step where the slowest normalized SACF of the three samples drops 

to below 8×10-4. Another significant feature of the SACFs evolves at temperatures below 

1600K, namely a bump in the correlation time-range of 0.3 ps to 0.4 ps. This bump is the 

effect of the boson peak vibrations, present in all glasses and still observable in undercooled 

liquids. The bump becomes more and more pronounced with a further decrease of 

temperature. In the intermediate scattering function, Fig. 4, the corresponding bump can be 

seen at the lowest temperatures.  

In the viscosity calculation we choose the times tD, tw and ts, according to two principles. 

First, the viscosity must approach its asymptotic value when the integration time reaches tw. 

For this, tw should be long enough to capture the decay of autocorrelation function in its 

entirety but not so long that noise is added to the correlation signal when the noise of 

correlation function approaches its intrinsic value. 58 Secondly, each independent off-diagonal 

stress tensor provides an independent estimate of the shear viscosity. Because in real fluids the 

shear viscosity is isotropic, these three independent estimates of the viscosity must converge 

to one single value. To monitor the convergence of the viscosity we introduce, following Ref. 

57, an error ξ : 

3
)()()(1 222

aveyzavexzavexy

ave

ηηηηηη
η

ξ
−+−+−

= ,                (15) 

where ηave is the arithmetic mean of the three independently determined viscosity estimates 

ηxy, ηxz and ηyz. According to the abovementioned two principles, tw ranges in our simulation 

from 3ps to 150ps depending on temperatures. Taking tD=5-15ns and ts=10fs, we have a total 

of 5×105 -1.5×106 time origins. 
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The viscosities of Cu33.3Zr66.7 at 1800K calculated from the three off-diagonal stress 

tensors and the error ξ are presented in Fig. 8. It can be seen that the viscosity from each 

off-diagonal stress tensor shows an asymptotic behavior. The convergence of these three 

estimates of the shear viscosity is very good; the convergence error is less than 2% when the 

correlation time attains tw. At the other temperatures the behavior is similar. The convergence 

errors at different temperatures are shown in Fig. 9. At temperatures above 1300K, ξ is less 

than 5%, and there seems to be no correlation between temperature and convergence error. At 

the lowest covered temperature 1200K the convergence error of 6.3% is still acceptable.  

The viscosities from the three independent samples used in this work should converge to 

one single value for each temperature. To check this point, we present in Fig. 10 the 

viscosities  for the three samples (A, B and C) separately. These results are consistent with 

each other, and their difference is less than 4%. This again confirms the good convergence of 

the viscosity calculation in our work.  

The temperature dependence of the calculated viscosities for the three samples is given in Fig. 

11. The averaged viscosity can be fitted by the MCT power law (blue line)  

γηη −−= )()( 0 c
MCT TTt .                             (16) 

For the viscosity the MCT power law only holds at temperatures below 1900K, which is 

consistent with MCT and similar to the case of α-relaxation time. The fit gives Tc=1042K, 

and γ =1.88. Tc is not far from the value gained from the self-diffusion coefficients and 

α-relaxation times (Tc = 1025K).  The value of γ  is very close to that derived from DZr 

(γ=1.93), but deviates strongly from the values derived from DCu (γ=1.52), and the 

α-relaxation times (γ=2.21 for Cu, and 2.39 for Zr). 
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The temperature dependence of the viscosity can also be fitted by a Vogel-Fulcher – 

Tammann (VFT) law 59-61 (red line in Fig. 11)  

⎟⎟
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⎞
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⎝

⎛
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0 exp)(
TT

Bt VFTηη .                             (17) 

The VFT law can describe the temperature dependence of the viscosity quite well in the 

whole simulated temperature range. Data regression gives B=2258K, and T0=767K.  

D. Size effect 

In order to check for a possible size effect of the MD calculations, we did some tests for a 

system of 8000 atoms at several temperatures. The initial configuration is obtained by 

doubling one configuration of 1000 atoms in each dimension. The new configuration is run 

for 5 ns to equilibrate, and subsequently for 10ns to obtain the needed statistics. The 

normalized stress tensor autocorrelation functions for two system sizes at 1800K are 

presented in Fig. 12. The insert gives an enlargement of the curves from 1ps to 10ps. Clearly, 

the results for the two sizes of system are in excellent agreement. The dependence of the 

integrated shear viscosity on correlation time is illustrated in Fig. 13 for the two systems sizes. 

The viscosity gained from the 1000-atom-system agrees within 0.5% with the one gained 

from the larger system. There is no apparent improvement in the viscosity calculation as the 

system size increases. Therefore, we can say that there is no obvious size effect in our 

viscosity calculation, and the 1000-atom-system gives reasonable results. To improve the 

accuracy of the viscosity calculation, the length of the MD run is more important than the 

system size. This agrees with earlier results for a Lennard-Jones system. 20 There also no 

obvious size effect in the calculation of self-diffusion coefficients was reported.     
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E. Stokes-Einstein relation 

From the Stokes-Einstein relation (Eq. 1) with “slip” boundary condition, the effective 

diameter for the particle, dSE, can be written as 

D
Tkd B

SE πη2
=  .                              (18) 

As long as dSE is a constant, independent of temperature, the SE relation is deemed to hold, 

otherwise, the SE relation has broken down. Besides the Stoke-Einstein diameters for the two 

components, we define an average diameter corresponding to the average diffusion coefficient, 

given by 111
. 667.0333.0 −−− += ZrCuaver DDD . Fig. 14 depicts the temperature dependence of the 

effective diameters for DCu, DZr, and Daver.. Apparently, for these three diffusion coefficients, 

the effective diameter dSE fluctuates around a value d0 at temperatures above T*. d0 = 0.306nm 

for Zr, d0 = 0.205nm for Cu, and d0 = 0.276nm for the average. However, the dSE start to 

deviate from their respective d0 at a temperature of T*~1600K for Zr and the average, and 

T*~1900K for Cu. The self-diffusion coefficients for the two species, Dd0, SE, derived from the 

viscosity via the SE relation with d0 as the effective diameter are shown in Fig.2. As expected 

at temperatures above T* the Dd0,SE agree well with their counterparts calculated from the 

MSD, whereas they deviate increasingly when the temperature drops below T*.  

To relate the effective diameters to the nearest neighbor structure, we calculate the partial 

radial correlation functions of Cu33.3Zr66.7 at different temperatures, see Fig.15. The first 

nearest neighbor distance of Zr-Zr is d1
Zr=3.03Ǻ, and that of Cu-Cu is d1

Cu =2.44 Ǻ, both 

nearly independent of temperature. The effective diameter for Zr approximated from the SE 

relation using slip boundary condition, d0
Zr, agrees well with the nearest neighbor distance of 

the Zr-Zr pairs, d1
Zr. For copper, d0

Cu is 16% less than d1
Cu . 
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  From self-diffusion, viscosity, and α-relaxation time, we found a MCT Tc around 1030K. 

This Tc is far below the temperature T*, where the SE relation breaks down for Zr as well as 

for Cu. This means that in the Zr66.7Cu33.3 binary melt the SE relation does not hold even at 

temperatures far above Tc. The temperature T* is even higher than the simulated melting 

temperature TL=1478K, which is calculated following a procedure described in the 

APPENDIX. This finding is contrary to experimental indications that the SE relation holds at 

temperatures above the mode coupling Tc but breaks down at temperatures below Tc. 10-13 

However, the behavior of SE relation described in this work is quite similar to the 

experimental findings of Zr-Ti-Cu-Ni-Be melt. 16 In that work, the mobility of Ni and Ti 

atoms remains decoupled from viscous flow even above the liquidus temperature. This 

indicates that the breakdown temperature is material dependent and not simply determined by 

a single component mean field picture.                                                        

It has been suggested that the breakdown of the SE relation is related to a changeover from 

flow motion to more hopping like motion. 17 Such a changeover would most likely affect the 

diffusivities of the two constituents differently. To test this we calculated the ratio DCu /DZr 

and show in Fig. 14 the temperature derivative d(DCu / DZr)/dT . It shows a similar 

temperature dependence as for the SE-radius of Zr. A larger d(DCu / DZr)/dT means a more 

rapid change of DCu / DZr with temperature, and a more rapid increase of the divergence of the 

two diffusion coefficients. It does not, however, explain the drop of the SE-diameter of Cu at 

even higher temperatures. We will come back to this point further down.   

We test the universality of this argument by reproducing the data of the viscosity and the 

self-diffusion coefficient from the MD simulation of Bordat et al. 17 for a binary 
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Lennard-Jones system. In that work the SE relation breaks down at a temperature around 1.2, 

which is far above the MCT critical temperature Tc=0.435.  In Fig. 16, we present the 

calculated values of )2/( ηπDT  for the two species, 12 / DD , and its first derivative 

dTDDd /)/( 12  based on the published data. Obviously, the first derivative of D2/D1 changes its 

temperature behavior at around a temperature of 1.2, which is exactly the temperature of the 

breakdown of the SE relation. Therefore, a “near-parallel” to “non-parallel” transition also 

occurs in the self-diffusion coefficients of the L-J liquid, and this transition in the diffusion 

mechanism is accompanied by the breakdown of SE relation. The hypothesis that the 

divergence behavior of diffusion coefficients is related to the breakdown of SE relation and 

that d(D2/D1)/dT can predict the onset of the breakdown is confirmed . 

F. Dynamic Heterogeneity 

The breakdown of the SE-relation has often been linked to the evolution of the dynamic 

heterogeneity (DH), one of the characteristics of the glassy state. DH means that at any given 

time some atoms are more mobile than the average, but in the long time average equal 

mobility is restored. One of the standard measures of the DH is the non-Gaussianity parameter, 

α2(t), 62 
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where <⋅⋅⋅> denotes the average over all atoms of one species, and over start times t0, Δr2(t) 

and Δr4(t) are the mean square and quartic displacements, respectively. 

In a completely isotropic system α2(t)=0 for vibrations and diffusion. In the other limit where 

a single atom is mobile and all others immobile α2(t)= ∞ for t= ∞. Generally, α2(t) starts at 
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zero and increases in the ps range to values of the order of 0.1 due to anisotropies in vibration 

or short distance ballistic-like motion. It then increases t∝  towards a maximum and 

finally decays approximately t/1∝ . 63 The t increase has been explained by the 

collectivity of motion. With decreasing temperature the maximum value of α2(t) increases and 

is reached later. 

   The α2(t) for Cu and Zr for different temperatures are illustrated in Fig. 17. They agree 

with the ones reported earlier, mainly at low temperatures. 45 Their behavior is similar to the 

one observed in other liquids. 63, 64 At high temperatures, as expected, α2(t) reaches a weak 

maximum on a ps timescale. As the temperature is lowered the DH of the melt becomes more 

and more pronounced, and the maximal non-Gaussianity parameter, α2(MAX), is reached 

later and later.  At T=1200K, α2(t) grows for about 20ps and its maximal value is increased 

by an order of magnitude  To show the temperature dependence of dynamics heterogeneity 

more clearly, the α2(MAX) at different temperatures for the two species and their first 

derivatives with respect to temperature, dα2(MAX)/dT, are reported in Fig. 18. The 

temperature dependence of dα2(MAX)/dT shows the same trend as d(DCu/DZr)/dT, and as the 

effective diameter of the SE relation, dSE. At temperatures above 1800K, dα2(MAX)/dT is 

nearly constant, whereas it decreases linearly at temperatures below 1500K. From the 

intersection of the linear approximations in the two regimes of dα2(MAX)/dT the transition 

temperature is found at about 1600K. This temperature equals the one found for the change in 

slope of the temperature derivative of the ratio of the self-diffusion coefficients of the two 

species, see Fig.14. Below this temperature the DH of the liquid increases upon cooling with a 

much enhanced rate. Therefore, it is reasonable to say that the change of self-diffusion 
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coefficient ratio is accompanied by a sudden increase of the dynamic heterogeneity. And it is 

this sudden increase of the dynamic heterogeneity which results in the breakdown of the SE 

relation. 

IV. DISCUSSION 

The simulated CuZr2 melt shows the typical features of glass forming systems when they are 

quenched from the simple liquid to the undercooled liquid state. The viscosity, α-relaxation 

time and diffusion coefficients can be fitted by the MCT with a single critical temperature Tc. 

The different values of γ for Cu and Zr indicate the limitations of a simple one-component 

MCT for our system. At the same time the atomic dynamics of Cu and Zr differ significantly. 

At T=1200K the diffusivity of Cu is four times that of Zr. This higher mobility transpires in 

several other properties such as the breakdown of the SE relation. The slower majority species 

Zr is considered to be the structure forming one. We expect, therefore, that some of the 

differences between the dynamics of Cu and Zr will depend strongly on the composition and 

might disappear for systems with a larger Cu concentration. Our results reflect in part typical 

features of metallic melts, mainly seen in the Zr results, but also some more system specific 

ones, seen in the differences of the results for Cu and Zr.  

Concentrating on Zr we see a clear correlation between the onset of the rapid increase in 

dynamic heterogeneity and the breakdown of the SE relation. Such a correlation has been 

seen in simulations of several other materials and the DH was given as the reason for the 

breakdown. 18,19,21,65 If some atoms move fast they will give a large contribution to diffusion 

whereas viscosity is strongly influenced by the slow atoms. A simulation for high density hard 

sphere fluids has shown that the slow particles obey the SE relation. 18 We have seen the 
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correlation in the non-Gaussianity parameter α2 which is dominated by the fast moving atoms. 

It would be interesting to test whether such a correlation can also be found in the alternate 

non-Gaussianity parameter γ, 66, 67 which is dominated by the slow atoms.  

It has been suggested that the breakdown of the SE relation is due to a change in the nature of 

the atomic motion. Bordat et al. 17 ascribe the breakdown of the SE relation to the transition 

of flow motion to hopping motion when the system becomes aware of the underlying energy 

landscape. In particular hopping between sites, where the particles are localized for some time, 

is taken as an indication. In this work we find that the onset of the breakdown of the SE 

relation can be determined from the ratio of the diffusion coefficients of the two components, 

hinting towards a change in mechanism affecting the two components differently. Earlier we 

related the time dependence of the DH to the collectivity of the jump process in glasses and 

undercooled liquids. 63 Experiments and simulations have shown that diffusion in both the 

glass and the undercooled liquid is collective 7. From the isotope effect of the diffusion 

coefficient in mono-atomic and binary Lennard-Jones liquids it has been shown that this 

collectivity grows far above the MCT critical temperature Tc. 68, 69 A study of the pressure 

dependence of the diffusion in the binary Lennard-Jones liquid has shown that the activation 

volume drops already at twice Tc from the value in the hot liquid Vact =0.6Ω (Ω=atomic 

volume) to the much lower value of Vact =0.3Ω which is an indication of correlated jump 

motion. 57 A detailed analysis of the atom motion in the present system has shown that there is 

no preferred jump length and the contribution of jumps over a nearest neighbor distance to the 

diffusion of Zr is small even at 1400K. 45 The distribution of jump lengths was found to be 

independent of temperature; the jump probability followed an Arrhenius law. These 
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simulation results indicate that there is indeed a change in the nature of the atomic motion 

already at temperatures far above Tc . 

Affouard et al.. 21 ascribe the violation of the SE relation to a decoupling between the A and B 

particles in a binary generalized Lennard-Jones system. They observe different SE 

breakdowns at different temperatures for the two components. A collective jump process, 

however, involves both species. The chain (or string) of jumping atoms involves them both, 

perhaps with a probability somewhat deviating from their concentrations. On the other hand, 

we also observe different breakdown temperatures for Zr and Cu in our system. A key to these 

different temperatures for Cu and Zr can be seen in the respective time evolutions of the van 

Hove pair correlation functions 35 and in particular in the time evolution of the self hole, i.e. 

the probability that the site of a given atom is taken by a different atom. In the long time limit, 

the self hole is filled with Cu and Zr atoms according to their concentration, independent of 

whether it starts as a Zr or Cu site. The site of a Zr atom is filled by another Zr atom 

approximately following a simple exponential law, as expected for normal diffusion. In 

contrast, the site of a Cu atom is filled first with an enhanced probability by another Cu atom, 

before the filling probability drops to the statistical average. This leads to the seemingly 

paradoxical result that the correlation function of the faster particle decays more slowly. This 

effect can be explained by the relative rigidity of the Zr-matrix enhanced by the dynamic 

heterogeneity in combination with the correlation between neighboring Cu atoms. This 

replacement of a Cu atom by another Cu atom contributes to tracer diffusion but has little 

effect on viscosity, since the surrounding need not change. An onset of this is already visible 

at T=2000K. It can explain the deviation from the SE relation for Cu diffusion at higher 
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temperatures than for Zr. We want to stress that this effect will be strongly concentration- and 

material-dependent. We do not expect that this latter effect occurs also in Cu rich CuZr melts. 

V. SUMMARY 

Using a modified embedded atom potential we calculated by molecular dynamics the shear 

viscosity, the intermediate scattering function, the tracer self-diffusion coefficients and the 

non-Gaussianity parameter of a Cu33.3Zr66.7 melt at temperatures from 1200K to 2500K. The 

shear viscosity is calculated from a Green Kubo relation. No system size dependence is 

observed. The diffusion coefficients are evaluated from the long time limits of the mean 

square displacements.  Plotted against temperature, the self-diffusion coefficients of the two 

components diverge away from each other, whereas e. g. for binary Lennard-Jones melts they 

evolve nearly in parallel with temperature. Both the diffusion coefficients and the 

intermediate scattering functions can be fitted by MCT with a common critical temperature Tc 

~ 1030K, in agreement with earlier work. The Stokes-Einstein relation between viscosity and 

diffusion coefficient starts to be strongly violated already at T~1600K, which is far above the 

MCT critical temperature and above the melting temperature. At the same temperature the 

dynamic heterogeneity starts to increase rapidly. At about the same temperature there is also a 

change of slope in the temperature derivative of the ratio of the two diffusion coefficients, d/dt 

(DCu/DZr) . We relate the breakdown of the SE-relation to the dynamic heterogeneity which in 

turn is connected to a change in atomic motion.  

For the diffusion of the minority component Cu the SE-relation breaks down at even higher 

temperatures. This additional effect can be traced to the much higher mobility which allows 

the replacement of a Cu atom, which has moved away, by another Cu atom before the 
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surrounding Zr-dominated matrix has changed its structure too much. This effect should be 

absent in the Cu rich CuZr melt, but should be observable for other small minority 

components in melts. 

The breakdown of the SE relation even at temperatures above the melting temperature 

indicates that it should be used only with great caution to approximate the viscosity from the 

self-diffusion coefficients or vice versa. 
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APPENDIX 

Here we provide the simulation details of predicting the melting temperature for CuZr2 with 

our MEAM potential. 

For the prediction of the melting temperature, we use a coexisting structure of crystal and 

liquid. During the simulation, we use a NPT ensemble with the external pressure kept at zero 

using the Parrinello-Rahman algorithm. At the beginning, a CuZr2 crystal of 1800 atoms with 

stable lattice structure is equilibrated for 1ns at 600K. The liquid phase is then generated by 

heating the well equilibrated solid phase to 2000K and equilibrating for 1ns. The two 

subsystems are merged together by joining them in the z-axis direction. Finally, the whole 
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system with a total number of 3600 atoms is allowed to evolve for 7.5ns (3,000,000 time steps) 

at given temperatures. The equilibrium melting temperature, TL, is estimated from the change 

of the growth direction in the coexisting solid and liquid structure. At temperatures above TL, 

the liquid phase will grow on the expense of the solid phase and vice versa at temperatures 

below TL.  

Fig. 19 presents the simulated potential energy per atom, Epot, at its homogeneous end state at 

different temperatures when starting with a coexisting structure of solid and liquid. For the 

temperature dependence of the potential energy, there is an abrupt change between 1475K and 

1482K. The change of the potential energy with time at these two temperatures is illustrated in 

Fig.20. Clearly, the coexisting structure crystallizes at 1475K but melts at 1482K. Therefore, 

the melting temperature of CuZr2 lies between these two temperatures. We approximate TL as 

TL
simu.=1478.5±3.5K, which is close to the experimental value, TL

exp. =1310K, the deviation 

being around 12.8%. 
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Figure Captions 

 

FIG. 1. Log-log plot of the mean square displacements of Cu and Zr in liquid Cu33.3Zr66.7 at 

temperatures between 1200K and 2400K 
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FIG. 2. Self-diffusion coefficients of Cu (red) and Zr (blue) in liquid Cu33.3Zr66.7 against 

temperature. (Solid symbols: D calculated from the MSD, open symbols: D derived from the 

viscosity via the SE relation, lines: fit with the MCT expression). TL indicates the calculated 

melting temperature 

FIG. 3. DCu/DZr of liquid Cu33.3Zr66.7 and its first temperature derivative versus temperature for 

the three samples .  

FIG. 4. Incoherent intermediate scattering function for Cu and Zr in liquid Cu33.3Zr66.7 at 

different temperatures (From left to right, the temperature changes from 2500K to 1200K with 

a step of 100K) 

FIG. 5. α-relaxation time versus (T-Tc) for Cu and Zr in liquid Cu33.3Zr66.7  (symbols: this 

simulation, lines: fit with the MCT expression). 

FIG. 6. Product of self-diffusion coefficient and α-relaxation time, Dτα, for Cu and Zr in 

liquid Cu33.3Zr66.7 against temperature (symbols: this simulation, lines: guide to the eye). 

FIG. 7. Normalized stress autocorrelation function of liquid Cu33.3Zr66.7 at different 

temperatures 

FIG. 8. Viscosities, calculated from three independent off-diagonal stress tensors, and 

convergence error of liquid Cu33.3Zr66.7 at 1800K versus integration time 

FIG. 9. Convergence errors of the viscosity calculation at different temperatures 

FIG. 10. Viscosity of liquid Cu33.3Zr66.7 at 1800K from three independent samples of 1000 

atoms each and one sample of 8000 atoms. 

FIG. 11. Viscosity of liquid Cu33.3Zr66.7 against temperature (symbols: this simulation, red line: 

fit with the VFT expression, blue line: fit with the MCT expression). 
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FIG. 12. Normalized stress tensor autocorrelation function at 1800K for samples of 1000 (blue 

line) and 8000 (red line) atoms. 

FIG. 13. Viscosity of liquid Cu33.3Zr66.7 at 1800K for samples of 1000 (blue line) and 8000 

(red line) atoms. 

FIG. 14. Effective SE diameters dSE, calculated from DCu, DZr, and Daver., and d(DCu/DZr)/dT.  

FIG. 15. Pair correlation functions for Cu-Cu and Zr-Zr at different temperatures 

FIG. 16. Effective diameters of the two species, ratio of their self-diffusion coefficients D2/D1, 

and its first derivative for a binary Lennard-Jones system, reproduced from Ref. 17. The 

effective diameter has the unit of  σ1 , d(D2/D1)/dT has the unit of kB/ε1, where kB is the 

Boltzmann’s constant, σ1 and ε1 are the length and energy parameter for the first component. 

FIG.17. Non-Gaussian parameters for Cu and Zr in liquid Cu33.3Zr66.7 at different temperatures 

(from low to top, the temperature changes from 2500K to 1200K with a step of 100K) 

FIG. 18. Maximum of the non-Gaussianity parameter α2(MAX) and its first derivative for Cu 

and Zr liquid Cu33.3Zr66.7 against temperature  

FIG. 19. Potential energy of the coexisting structure at different temperatures. 

FIG. 20. Variation of potential energy for the coexisting structure during simulation at two 

different temperatures. 
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FIG. 1. Log-log plot of the mean square displacements of Cu and Zr in liquid Cu33.3Zr66.7 at 

temperatures between 1200K and 2400K 
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 FIG. 2. Self-diffusion coefficients of Cu (red) and Zr (blue) in liquid Cu33.3Zr66.7 against 

temperature. (Solid symbols: D calculated from the MSD, open symbols: D derived from the 

viscosity via the SE relation, lines: fit with the MCT expression). TL indicates the calculated 

melting 
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FIG. 3. DCu/DZr of liquid Cu33.3Zr66.7 and its first temperature derivative versus temperature for 
the three samples. 
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FIG. 4. Incoherent intermediate scattering function for Cu and Zr in liquid Cu33.3Zr66.7 at 

different temperatures (From left to right, the temperature changes from 2500K to 1200K with 

a step of 100K) 
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FIG. 5. α-relaxation time versus (T-Tc) for Cu and Zr in liquid Cu33.3Zr66.7  (symbols: this 

simulation, lines: fit with the MCT expression). 
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FIG. 6. Product of self-diffusion coefficient and α-relaxation time, Dτα, for Cu and Zr in 

liquid Cu33.3Zr66.7 against temperature (symbols: this simulation, lines: guide to the eye). 
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FIG. 7. Normalized stress autocorrelation function of liquid Cu33.3Zr66.7 at different 

temperatures 
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FIG. 8. Viscosities, calculated from three independent off-diagonal stress tensors, and 

convergence error of liquid Cu33.3Zr66.7 at 1800K versus integration time 
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FIG. 9. Convergence errors of the viscosity calculation at different temperatures 
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FIG. 10. Viscosity of liquid Cu33.3Zr66.7 at 1800K from three independent samples of 1000 

atoms each and one sample of 8000 atoms. 
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FIG. 11. Viscosity of liquid Cu33.3Zr66.7 against temperature (symbols: this simulation, red line: 

fit with the VFT expression, blue line: fit with the MCT expression). 
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FIG. 12. Normalized stress tensor autocorrelation function at 1800K for samples of 1000 (blue 

line) and 8000 (red line) atoms. 
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FIG. 13. Viscosity of liquid Cu33.3Zr66.7 at 1800K for samples of 1000 (blue line) and 8000 

(red line) atoms. 
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FIG. 14. Effective SE diameters dSE, calculated from DCu, DZr, and Daver., and d(DCu/DZr)/dT. 
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FIG. 15. Pair correlation functions for Cu-Cu and Zr-Zr at different temperatures 
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FIG. 16. Effective diameters of the two species, ratio of their self-diffusion coefficients D2/D1, 
and its first derivative for a binary Lennard-Jones system, reproduced from Ref. 17. The 
effective diameter has the unit of  σ1 , d(D2/D1)/dT has the unit of kB/ε1, where kB is the 
Boltzmann’s constant, σ1 and ε1 are the length and energy parameter for the first component. 
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FIG.17. Non-Gaussian parameters for Cu and Zr in liquid Cu33.3Zr66.7 at different temperatures 

(from low to top, the temperature changes from 2500K to 1200K with a step of 100K) 
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FIG. 18. Maximum of the non-Gaussianity parameter α2(MAX) and its first derivative for Cu 

and Zr liquid Cu33.3Zr66.7 against temperature 
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FIG. 19. Potential energy of the coexisting structure at different temperatures. 
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FIG. 20. Variation of potential energy for the coexisting structure during simulation at two 
different temperatures. 
 
 


