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Propagation non-uniqueness in three-dimensional (3D) coherent diffractive imaging (CDI) arises
from the fact that an ensemble of solutions, related by propagation, gives an identical far-field
diffraction intensity. Tight support constraint and tight allowed phase range behave similarly in
constraining the solution of phase retrieval process, thus removing this non-uniqueness in simple
cases, but not for strong phase objects. For CDI in Bragg geometry, we introduce a two-step
phasing procedure for reconstructing heavily-strained samples, which balances the need to define
both support and phase constraints.
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Coherent Diffractive Imaging (CDI) has made major
advances in the past few years [1–4] and has become one
of the most exciting applications of the new Free-Electron
Laser X-ray sources [5, 6]. The method relies on the abil-
ity to determine retrospectively the unknown phases of a
measured diffraction pattern [7] and thereby invert those
data by Fourier transformation. This is a mathemati-
cally overdetermined problem so long as the diffraction
pattern is oversampled with respect to its highest spatial
frequency [8]. This situation occurs naturally for small,
isolated samples where the method is found to work well,
with many published examples [9–14]. Most of these ex-
amples have 2D or 3D diffraction patterns. Bates showed
in 1982 [15] that the 1D Fourier amplitude inversion prob-
lem was prone to non-uniqueness corresponding to fac-
torisation of the amplitude function. Non-uniqueness of
the 2D and 3D cases was declared to be pathologically
rare [16].

The CDI method with Bragg geometry [17] provides a
powerful non-destructive tool for 3D imaging strain fields
of crystals on the nanometer length scale. In this method,
the measured x-ray diffraction pattern surrounding a
Bragg peak of a strained crystal can be decomposed into
symmetric and antisymmetric parts. To a good approx-
imation, the symmetric part can be considered to come
from the shape of the crystal, while the antisymmetric
part arises from a real-space phase identified with a pro-
jection of the lattice distortions onto the Bragg peak di-
rection about which the diffraction pattern is measured
[17].

In this letter, we demonstrate that CDI of strong phase
objects is naturally prone to non-uniqueness, even in the
2D and 3D cases. We have found empirically, both here
and quite generally in other examples, that diffraction
patterns of objects with real-space phase ranges exceed-
ing π are difficult to invert and tend to display density
“gaps” in the resulting images where the phase appar-
ently goes out of range. We illustrate this with examples
of diffraction patterns of Silicon-on-Insulator (SOI) wire
structures in which phase wrapping occurs at sample de-

fects. We have discovered a new phasing procedure which
solves the problem by substituting the real-space phase
constraint with a tight real-space support constraint. We
can see how it works by first understanding the origin of
the non-uniqueness for strong-phase objects.
The general 3D CDI problem considers the sample to

be t(r) = ρ(r)eiφ(r), a real-space density/phase function
of position r whose spatial extent is confined to a well-
defined support volume r ∈ S. The classical CDI ex-
periment measures the magnitude of the amplitude of
the Fourier transform of t(r) as the far-field Fraunhofer
diffraction pattern, A(q). Inversion of these data is usu-
ally found to be possible if the diffraction pattern is suf-
ficiently oversampled [8]. The usual inversion methods
involve algorithms that cycle between real and recipro-
cal space, asserting an estimate of S and the measured
|A(q)| respectively [18]. These are found to work reliably,
so long as the phase of the sample is not too strong (typ-
ically |φ(r)| ≤ π

2 in practice), and appear to give unique
3D solutions in simple cases.
We refer to the particular kind of non-uniqueness con-

sidered here as propagation non-uniqueness. We are ig-
noring other known sources of non-uniqueness, including
the trivial symmetries of the Fourier transform and the
factorization problem referred to above [15]. Propagation
non-uniqueness is most easily understood in the 2D case,
involving free-space propagation between planes. Here
we can think of t(r) as the complex amplitude of the
electromagnetic wave exiting from the sample, spanned
by a 2D transverse position vector r and illuminated by a
plane wave of wave vector k along the optical axis. A(q)
is the resulting Fourier transform, whose magnitude is
detected in the far field. At any distance d beyond the
sample, the wavefront will have evolved by classical wave
propagation to

t′(r′) =

∫

t(r)e−ik(r−r
′)2/2ddr, (1)

where r′ is the 2D position within the new plane. When
this same wave continues to propagate all the way to
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the detector, it becomes A(q) again in the far-field (ex-
cept for a phase offset). It is clear from this argument
that both t(r) and t′(r′) have the same Fourier trans-
form modulus |A(q)|, hence the inversion of |A(q)| is
non-unique.

The 3D generalization of Eq. 1 is mathematically sim-
ple, but no longer easy to visualize as mere selection of
the focal plane. A general set of non-unique objects can
be obtained by propagating different distances d in the
x, y or z directions (or in between). These objects are
all indistinguishable in CDI.

To see why CDI works at all, we need to examine the
properties of the set of propagated non-unique structures
generated by Eq. 1, which all have the same Fourier
transform. For example, if t(r) is a real box function,
t′(r′) is the familiar Fresnel integral, resembling an out-
of-focus image of the box but with strongly phased fringes
at the edges. If t(r) is a real Gaussian, t′(r′) is also a
wider Gaussian but with quadratically curved phase with
φ(r′) = k(r′)2/2d. The general behavior of real objects
under Eq. 1 is: 1) they become broader (out of focus) and
2) the phase becomes stronger. It is clear from this why
real objects are easy to solve when their phase can be con-
strained to a narrow or zero range. A tight support is also
effective because it excludes the spread-out, propagated
versions of the object [19]. For objects with relatively
small phase variation range, adding a phase constraint
to the standard HIO algorithm significantly increases the
reconstruction efficiency, but only with a phase range up
to Φ = [−π/2, π/2] [20]. This phase-constrained hybrid
input-output (PCHIO) algorithm can be expressed as:

g(n+1)(r) =

{

pmg(n)(r), r ∈ S and φ(r) ∈ Φ,

pmg(n)(r)− βg(n)(r), otherwise,
(2)

where g(n) is the current iteration output, pm is the
Fourier modulus constraint projection, β is the feed-
back constant, S and Φ denote the support region and
the phase constraint range. A typical [−π/2, π/2] phase
range gives robust reconstructions with loose box sup-
ports for weakly strained samples [2, 20, 21].

A numerical experiment was carried out to understand
why the phase constraint is efficient to give reliable re-
constructions even with loose support. Similar to the one
used by Spence et. al. [19], the simulated system con-
sists of two planes separated along propagation direction
by 100 µm (Fig. 1(a)). Letter A and B are on the up-
stream plane, and have quadratic phase structure within
the range [0, π/6]. Letter C is located on the downstream
plane with [0, π/3] quadratic phase. Far-field diffraction
pattern was calculated from the exit wave at the down-
stream plane (Fig. 1(b)). Reconstructed images show
that the upstream plane comes into focus when either a
tight support (Fig. 1(c)) or a tight allowed phase range
(Fig. 1(e)) is applied, while Letter C is out of focus. The
downstream plane is selected when the support or phase
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FIG. 1: Simulated reconstruction of a compound complex
object located in two distinct planes with 9 keV x-rays (λ =
0.138 nm). (a) Letters A and B are in the same plane and con-
tain quadratic phase structure within the range [0, π/6]. Let-
ter C is located 100 µm downstream with [0, π/3] quadratic
phase. (b) The simulated exit wave magnitude at Letter C
plane. (c)(d) Tight supports with no phase constraint se-
lect which plane comes into focus in the CDI reconstructed
image, as found by Spence et. al.[19]. (e)(f) A constraint
on the allowed phase range also defines the focal plane with
loose supports. The support and allowed phase range for each
reconstruction condition are shown schematically as insets.

range match that plane (Fig. 1(d)(f)). This simulation
shows that a unique solution can be determined by either
a tight support or a tight allowed phase range and that
the propagation non-uniqueness can be removed either
way.

For strong phase objects, however, we no longer have
the luxury of selecting a focal plane to break the non-
uniqueness. We can use a tight support constraint to find
the solution with the smallest width. But it might not be
correct, since propagation by Eq. 1, or the more general
version in 3D, can sometimes make the object smaller, as
is the case for a Fresnel Zone Plate, for example. Without
further real-space information, the solution is just limited
to a range of possibilities, interconnected by generalized
3D propagation. Fortunately, we often do have real-space
information about the sample which can be applied to
pick the “correct” solution from the ensemble. In general
this might require the incorporation of some real-space
model to guide the solution; for example, the phase could
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be limited to a range ≤ π at each position within the
sample, but centered around a model-determined value.
In this paper, we illustrate a new method in which a
tight support is generated first, then applied with relaxed
phase range.
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FIG. 2: (a)(b) 3% iso-surface of the diffraction pattern from
a SOI wire section viewing along x and z directions. (c) A
typical central frame of diffraction pattern from the same SOI
wire.

We chose lithographed SOI patterns for our test sam-
ples because SOI has the potential for producing high
performance semiconductor devices [22], and it offers the
opportunity for strain engineering to enhance electron
mobility [23]. We used SOI wafers with (001) silicon
top layer, 700 nm thick, wafer-bonded to a (111) sili-
con substrate. The designed pattern was “wires” of 15
µm length and widths varying from 500 nm to 1500 nm,
sculptured using electron-beam lithography followed by
reactive ion etching. The CDI experiment was performed
at Advanced Photon Source beamline 34-ID-C, Argonne
National Laboratory. A 9 keV coherent x-ray beam was
selected by a silicon (111) double crystal monochromator
and slits. The coherent x-ray beam was focused to about
2 µm using Kirkpatrick-Baez mirrors. 3D diffraction pat-
terns surrounding (111) Bragg peaks were measured by
rotating the sample and thus the entire diffraction pat-
tern across a charge-coupled-device (CCD) detector slice
by slice. The sample was rotated by 0.6 degree with 100
angular steps. The CCD detector with 22.5 µm pixel size
was placed 1.5 m away from the specimen. The measured
diffraction patterns were subsequently inverted using the
PCHIO iterative phase retrieval algorithm in Eq. 2 to ob-
tain real space images [18, 20]. The cropped data array
that was used for reconstruction gives a voxel resolution
of 38× 27× 60 nm.
By searching around the sample, a section of SOI wire

containing a strong phase defect was identified by its
asymmetric diffraction pattern as shown in Fig. 2 (a)(b).
Fig. 2 (c) shows a typical central frame of diffraction
data from this SOI wire. Since the imaged wires are
longer than the x-ray illumination size, the length of
phased SOI sections is determined by the focal size of
the x-ray beam which is about 2 µm. We found that the
image magnitude is unable to be determined at the posi-
tions where the phase variations are beyond the defined

range [−π/2, π/2] in PCHIO, leading to missing density
especially at the places where the real-space phase varies
strongly (Fig. 3 (a)–(d)), which is physically unreason-
able. By locally removing this [−π/2, π/2] phase con-
straint or increasing the allowed phase range to [−π, π],
the missing sections were found to fill in, but the over-
all boundaries of the obtained structures became coarse,
and their cross-section shape differed from the expected
wedged profile caused by an undercutting effect of the
etching process. This is apparently because the loose
support and lack of phase constraint are insufficient to
resolve the propagation uniqueness, as illustrated in our
tests. Applying the “shrink-wrap” method [24] directly
did not produce decent reconstructions either.

We noticed that although the PCHIO algorithm could
not retrieve the entire structure, it gave well defined
boundaries for those sections with relatively small phase
variations (Fig. 3 (b)). A refined support was generated
from this reconstruction using the same method as in
“shrink-wrap” [24] by blurring the image with a Gaussian
function and setting a magnitude threshold. The blur-
ring width and threshold were adjusted to obtain a tight-
fitting support with the desired wedged shape and con-
tinuous over the full length of the wire. To increase the
confidence of the refined support, preliminary reconstruc-
tions were run 10 times with individual random starts.
These 10 images obtained were classified into two groups:
one with the regular orientation and the other with the
enantiomorphous orientation. The images in the second
group were then spatially flipped in 3D and complex-
conjugated. The orientation-corrected images were then
shifted and aligned with each other [27]. We averaged all
10 images together and applied shrink wrap to produce
a refined tight support. Individual random starts give
consistent phased images using this support.

We then ran regular HIO without phase constraint
and with this refined support. The resulting images had
smooth boundaries, and continuous density at the loca-
tions with severe phase changes as shown in Fig. 3 (e-h).
This physically reasonable finding of solid wire-shaped
images with a localized phase jump, attributed to a pla-
nar lattice defect such as a slip plane, confirms that we
have successfully resolved the propagation uniqueness in
this example. The result compares favorably with re-
cently developed algorithms enforcing a uniformity con-
straint [25] or utilizing compressive sensing theory [26].

To investigate the influence of incident x-ray beam
on the phase structure, different sections of the same
SOI wire were measured in sequence under the same
experimental condition. We found that this 2π phase
wrapping only happens at some locations of the wire,
while other sections give smooth and continuous magni-
tude structure with moderate phase variation range less
than [−π/2, π/2]. This implies that the phase structures
mainly come from the SOI wires. Completely factorizing
the x-ray beam profile out of the reconstructed image
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FIG. 3: The SEM image of a 1200 nm SOI wire shows a wedged cross-section due to undercutting in the etching process. 9%
iso-surface renderings of reconstructed magnitudes (a)-(c) and phase (d) of a 900 nm SOI wire section with a box support and
the PC-HIO algorithm with [−π/2, π/2] phase range averaged from aligned 10 reconstructions. 9% iso-surface renderings of
reconstructed magnitudes (e)-(g) and phase (h), reconstructed with our method from the same data set with a support refined
from previous reconstruction and no phase constraint.

requires ptychographic approaches [4].
In our investigations of CDI phase retrieval of com-

plex objects, we have found it necessary to employ a
significant phase constraint or else a closely matching
support to avoid propagation non-uniqueness. Our sim-
ulation in Fig. 1 confirms that such a phase constraint
works as efficiently as a tight support constraint. This re-
sult explains both why propagation uniqueness problems
have not emerged before for weak-phase objects and why
strong phase objects have proved so difficult to invert.
We have demonstrated a new two-step phasing proce-
dure which first reconstructs the shape of an object using
a finite phase constraint and loose support, then refines
a tight support from the pre-reconstructed image with
which the final reconstruction using standard HIO algo-
rithm can be performed. This method balances the dif-
ficulties of determining accurate support and phase con-
straints. It should greatly extend the capability of Bragg
CDI for the previously difficult case of highly strained
crystals.
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