
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Overcoming the spin-multiplicity limit of entropy by means
of lattice degrees of freedom: A minimal model

T. Mukherjee, S. Michalski, R. Skomski, D. J. Sellmyer, and Ch. Binek
Phys. Rev. B 83, 214413 — Published 13 June 2011

DOI: 10.1103/PhysRevB.83.214413

http://dx.doi.org/10.1103/PhysRevB.83.214413


Overcoming the spin-multiplicity limit of entropy by means of 

lattice degrees of freedom: a minimalist model  

T. Mukherjee, S. Michalski, R. Skomski, D.J. Sellmyer, and Ch. Binek* 

Department of Physics & Astronomy and Nebraska Center for Materials and Nanoscience, 

University of Nebraska, Lincoln, NE, 68588-0111 
 

*cbinek2@unlnotes.unl.edu 

 

The discovery of the giant magnetocaloric effect with isothermal field-induced entropy change 

beyond the spin-multiplicity limit gave rise to some indistinctness in the literature regarding the 

applicability of fundamental thermodynamics in data analysis. Those misleading interpretations 

concerning for instance the rigorousness of phenomenological thermodynamics are clarified 

here. Specifically, it is shown that the Maxwell relation incorporates contributions from the spin 

degrees of freedom and potential lattice degrees of freedom into the isothermal entropy change. 

A minimalist model involving pairs of exchange coupled, mobile Ising spins is investigated. It is 

explicitly shown that lattice degrees of freedom can be activated via applied magnetic fields and 

the integrated Maxwell relation contains this lattice contribution. A simple and intuitive analytic 

expression for the isothermal entropy change in the presence of field-activated lattice degrees of 

freedom is provided.  

 

  



Introduction 

The quest for advanced magnetocaloric materials has intensified in recent years due to their 

important role in future energy-efficient and environmentally friendly refrigeration 

technologies. 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 . An appreciable magnetocaloric effect (MCE) with sizeable 

isothermal entropy change and adiabatic temperature change in moderate applied magnetic fields 

requires new magnetic materials with tailored magnetocaloric properties. This search defines one 

of the today's materials science frontiers11,12,13,14. Most of the present research activities focus on 

the giant MCE found in bulk rare earth alloys15,16,17,18,19,20,21,22. Recently, even nanotechnological 

approaches have been exploited to tailor microscopic magnetic parameters such as exchange and 

anisotropy for advanced magnetocaloric materials design23,24,25,26,27. However, recent discoveries 

of a giant MCE, which permit overcoming the magnetic limit28,29,30 for the isothermal entropy 

change, make it evident that optimization of magnetic interactions alone will not suffice for 

ultimate optimization of the MCE. Sparked by this insight, an even more intensified but perhaps 

somewhat unfocused search for new giant MCE materials can be observed in recent years. 

Despite the growing quantity of publications and growth of insight it seems clear that some 

fundamental aspects of thermodynamics and statistical mechanics appear to be overlooked by 

some in the literature, leading to statements such as "… the colossal MCE was obtained from 

magnetic measurements using Maxwell’s relation, which only reflects changes in magnetic 

entropy."31 More commonly, many authors refer to the isothermal entropy change, which is the 

entropy change at constant temperature, T, induced by a change of the magnetic field, as 

magnetic entropy change32,33,34,35,36. This nomenclature can be very misleading and appears to be 

subliminally interpreted by others, not explicitly referenced here, as a contribution to the entropy 

change which exclusively originates from spin degrees of freedom. This interpretation is in 



general wrong and can only be applied in the absence of magnetoelastic interactions. We argue 

here that the use of MSΔ  should be avoided, the index, M, should be suppressed, and the term 

isothermal entropy change should be used instead. In contrast to certain statements in the 

literature it is not a matter of debate whether the integrated Maxwell relation contains all of the 

field-induced isothermal entropy change for systems in a homogeneous phase. If the Maxwell 

relation is applicable, meaning the second order mixed derivatives of the Gibbs free energy are 

mathematically well defined and identical, the isothermal entropy change obtained from 

integration of the magnetization derivative contains all possible field-induced contributions. 

Among our goals here is to convey this message following the tradition of manuscripts such as 

the work by Pecharsky et al. in Ref.(37) discussing fundamental aspects of the underlying 

thermodynamics of the MCE. 

In addition, there seems to be some confusion about the conditions allowing for contributions of 

lattice degrees of freedom to the isothermal entropy change. The vagueness often seen in 

discussions on this subject has the potential to confuse materials scientists searching for 

magnetocaloric materials which overcome the magnetic limit for the isothermal entropy change. 

The latter is determined by the logarithm of 2J+1, where J is the total atomic angular moment 

when a localized moment picture can be applied. One can anticipate that magnetic materials 

relying only on the limited J-multiplicity for isothermal entropy change will not be able to 

compete with the proposed electrocaloric materials.38 Here, quantization is not the limiting factor 

and large changing electric fields are much easier realized than changing magnetic fields. 

Therefore, competitive magnetocaloric materials need to make use of entropy contributions of 

non-magnetic degrees of freedom which still can be activated through magnetic fields.  



The objective of this work is twofold. First, we aim to reemphasize the rigorous nature of 

relations from phenomenological thermodynamics such as the Maxwell relation. Special 

emphasis is on the fact that the isothermal entropy change determined via Maxwell's relation is 

not limited to magnetic degrees of freedom. Second, we investigate a model system which we 

consider to be as simple as possible and as complex as necessary to show under which conditions 

lattice degrees of freedom can be activated and contribute to the magnetic field-induced 

isothermal entropy change. We finally bring these two points together and show explicitly that 

the integrated Maxwell relation contains this lattice contribution, if present, despite the fact that 

the field integral is taking place over the temperature derivative of the magnetization. It is the 

absence of elastic variables in the Maxwell relation which, in a naïve view, may appear 

counterintuitive and, hence, can lead to the wrong conclusion that field-dependent lattice effects 

are not included in this integral.  

Contributions to the isothermal entropy change which are not magnetic in origin can only exist if 

there is coupling between spin and elastic degrees of freedom giving rise to a free-energy 

coupling-term with a dependence on the magnetic field, H, such that the total Gibbs free energy, 

G, reads ( , )totalG T H ( , )spinG T H= ( ) ( , )lattice spin latticeG T G T H−+ + . It is the field dependent spin-

lattice contribution, ( , )spin latticeG T H− , which creates the possibility of overcoming the multiplicity 

limit max
JSΔ ( 0) ( )J JS H S H= = − → ∞ ( )ln 2 1nR J= + . The latter spin-multiplicity limit max

JSΔ  

originates from ( )( , ) : /J spin H
S T H G T= − ∂ ∂  and has therefore no contribution from the lattice 

degrees of freedom, because the regular term latticeG  has no field dependence. We show explicitly 

in a minimalist microscopic model that a term of the form ( , )spin latticeG T H−  contributing to the 



isothermal entropy change requires non-linear spin-lattice coupling. Evidently, magnetocaloric 

materials can only take advantage of lattice degrees of freedom if non-linear coupling is sizable.  

We use our minimalistic Hamilton function to calculate the Gibbs free energy and from that the 

isothermal entropy change showing the possibility of overcoming max
JSΔ . Moreover, we calculate 

the magnetization, M(T,H), and show for the latter that in fact the numerically integrated 

Maxwell relation can generate an isothermal entropy change ( )ln 2 1S nR JΔ > +  which of course 

is identical with the analytically derived SΔ  using the free-energy expression. This explicit proof 

given by our specific model may retrospectively appear redundant because one may argue that 

there is no need to reconsider established thermodynamics. However, the existing tendency to 

reason on the basis of models and microscopic considerations together with a general propensity 

to consider statistical physics superior to phenomenological thermodynamics is motivation 

enough for the explicit confirmation of the integrated Maxwell relation. The work outlined here 

serves as an explicit reminder that the Maxwell relation, when the prerequisites for its 

application are fulfilled, provides the complete isothermal entropy change and not just a 

"magnetic contribution" in case there is more. We hope that our considerations help to clarify 

some of the recent confusions such as those about Maxwell's relation in the framework of 

discussions of the lattice contributions to the isothermal entropy change.   

 

Minimalist Classical Model Hamiltonian 

We consider an ensemble of statistically independent constituents of pairs of interacting, mobile 

classical Ising spins. When neglecting the kinetic energy, the Hamiltonian of an individual Ising 

spin-pair reads 



( ) ( )2
2 1 1 2 1 2 1 2

1 ( , )
2

H D x x J x x hσ σ σ σ= − + − + . (1) 

Here, D is the curvature of the harmonic elastic energy, 1 2( , )J x x  is the exchange integral, 

1,2 1σ = ±  are the classical Ising spin variables, and h is an applied magnetic field where constants 

like the Bohr magneton, the g-factor and the vacuum permeability have been absorbed such that 

h is measured in units of energy. Eq.(1) is a minimalistic version of the 1-dimensional Ising 

model with mobile spins similar to the one discussed in the appendix of Ref.(39). We allow for 

an additional Zeeman term and enable non-linear spin-lattice interaction via the general 

dependence of the exchange integral on x1,2 quantifying the deviations from the equilibrium 

positions of the atoms 1 and 2. We make the assumption of an exponential dependence of the 

exchange integral on the spatial separation of the two spins which reads40 

( ) ( )2 1 /
1 2 0, x x aJ x x J e− −= , (2) 

where a determines the length scale on which the exchange interaction decays. We restrict our 

consideration to the case of small deviations from the equilibrium positions such that 

( )2 1 /x x a−  becomes a small parameter. We use the latter to expand Eq.(2) up to first order and 

second order, respectively. Substituting this expansions into Eq.(1) leaves us with two 

systematically progressing approximations Hα and Hβ of our minimalistic model Hamiltonian 

( )

( )

2
0 1 2 1 2

2
2

0 1 2 1 22

1 1
2

1 1
2 2

yH Dy J h
a

y yH Dy J h
a a

α

β

σ σ σ σ

σ σ σ σ

⎡ ⎤= + − − +⎢ ⎥⎣ ⎦
⎡ ⎤

= + − + − +⎢ ⎥
⎣ ⎦

, (3) 

where 2 1y x x= −  is proportional to the normal coordinate of the vibrational motion.  

Next we evaluate the canonical partition function and from that the Gibbs free energy per spin 

pair for Hα and Hβ, respectively. We integrate out the classical variable 0 /y a≤ ≤ ∞  and take 



into account the spin products { } { }1 2 1, 1, 1,1σ σ = − −  and spin sums { } { }1 2 2,0,0, 2σ σ+ = − of the 

4 spin configurations. As a result we obtain for Hα in the limit of small exchange energy in 

comparison with the elastic and the thermal energy kBT. This limit justifies neglecting quantum 

considerations including the kinetic energy term in the Hamiltonian and leads to 

( )
( )0242

0
0 2 2( , ) 2 ln 1 2 ln

2 2
B B

h Jh
k T k T B

B B
J k TG T h h J k T e e k T
a D a Dα

π
+⎛ ⎞

⎜ ⎟= + − − + + −
⎜ ⎟
⎝ ⎠

. (4) 

We are interested in the isothermal entropy change ( ) ( ), 0 ,S S T h S T hΔ = = − → ∞ . Therefore, 

only the term 
( )024

ln 1 2B B

h Jh
k T k T

BG k T e eα

+⎛ ⎞
⎜ ⎟= − + +
⎜ ⎟
⎝ ⎠

of Eq. (4) which depends on h and T needs to be 

considered. It is straightforward to show from the temperature derivative of Gα  and intuitively 

that asymptotically for 0Bk T J>> the maximum isothermal entropy change becomes SαΔ

( ) ( ), 0 ,S T h S T hα α= = − → ∞ ln 4Bk= . This is in accordance with max 2 ln 2BS kΔ =  obtained 

from the limiting expression given by the logarithm of the spin-multiplicity of a quantum 

mechanical spin 1/2 system where 2 such spins are involved in our model Hamiltonian. 

Evidently, the spin-lattice coupling in linear approximation has no effect on the isothermal 

entropy change induced by a magnetic field in the classical limit. In fact the term Gα , which 

completely determines the isothermal entropy change, does not depend on the parameter a which 

controls the spin-lattice coupling. A model Hamiltonian of the form Hα is therefore not able to 

create an entropy contribution which originates from non-magnetic degrees of freedom. 

The situation changes when considering Hβ. Again we restrict ourselves to the limiting case 

where the elastic energy is large in comparison to the exchange energy and temperatures are 

sufficiently high. Then the Gibbs free energy Gβ reads 



( )
( ) ( )

( )
( )

( ) ( )
2 2 2

0 0 0 0 0
2 2 2

0 0 0

4 3 4 4
2 2 2

0 2 2
0 0

2( , ) 2 ln
2

BB B B

J h J a D h J J Jh
k Ta D J k T k T a D J k T a D JB B

B
k T k TG T h h J k T e e e

a D J a D Jβ
π π

+ − +
− +

− + +
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= + − + +⎜ ⎟⎜ ⎟− + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

.(5) 

It is straightforward to show that in the limit of large a Eq.(5) reduces to Eq.(4) up to an 

irrelevant field and temperature independent constant. In contrast to Eq.(4) we see that the non-

linear Hamiltonian Hβ generates terms in the free energy, which depend on the magnetic field, 

temperature, and exchange as well as the elastic constant D. Next we show that this is the 

ingredient allowing for ( )ln 2 1BS k JΔ > +  via a magnetic field-activation of non-magnetic 

degrees of freedom through non-linear spin-lattice coupling. 

From ( )/
h

S G Tβ= − ∂ ∂ we calculate ( ) ( )( , ) , 0 ,S T h S T h S T hβ β βΔ = = −  in the limit 0Bk T J>>   

which simplifies in the limit ( ) ( ) ( ), , 0 ,S T h S T h S T hβ β βΔ → ∞ = = − → ∞  into the intuitive 

approximate expression 

( ) 0
2, ln 4

2
B

B
k JS T h k
a DβΔ → ∞ = +  (6) 

showing that the conventional limit determined by the logarithm of the spin-multiplicity is 

exceeded by the term 0
22

Bk J
a D

 which allows for an intuitive interpretation.  

Clearly, in the absence of spin-spin exchange such as paramagnetic materials, entropy 

originating from elastic degrees of freedom cannot be harnessed. Likewise, a sensitive 

dependence of the exchange on the spatial spin separation expressed in accordance with Eq.(2) 

through a small characteristic exponential decay length a increases spin-lattice coupling and 

enhances the impact of the lattice degree of freedom on the entropy change. Finally, if the elastic 

energy 2a D is large in comparison with Bk T , there is no significant thermal excitation of the 



elastic degree of freedom and, hence, no significant contribution from the latter to the isothermal 

entropy change.  

 

Comparison between integrated Maxwell relation and entropy of the model Hamiltonian  

Next we calculate the magnetization ( )( , ) /
T

M G T h hβ= − ∂ ∂  and use the resulting M vs. h 

isotherms for numerical integration of the Maxwell relation, 
h T

M S
T h

∂ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
. The latter 

provides the isothermal entropy change ΔS as a function of h. The result from the Maxwell 

relation is then compared with the analytically calculated isothermal entropy change determined 

directly from ( )/
h

S G Tβ= − ∂ ∂ . This comparison provides explicit confirmation that the 

Maxwell relation includes the lattice degrees of freedom.  

Specifically, we calculate the magnetic moment per spin pair for the set of parameters a=0.7, 

0.1oJ = and D=1. These values fulfill the constraint 2
oa D J>>  under which we performed the 

classical calculation of the Gibbs free energy based on the Hamiltonian Hβ . In addition we limit 

our investigation to a temperature region such that kBT is large in comparison with elastic and 

exchange energies such that our classical consideration becomes meaningful.  

Figure 1 shows a representative set of isotherms M vs. h for 4 100T≤ ≤  in temperature steps 

of 2TΔ = . The complete data set used for the entropy calculation via Maxwell’s relation 

involves the isotherms for3 100T≤ ≤  in steps of 0.01TΔ = .  

Figure 2 shows the entropy calculated via the integrated Maxwell relation (magenta open 

circles) using the magnetization data selectively displayed in Figure 1. The black solid lines in 

Figure 2 show the isothermal entropy change ( , )S T hβΔ  calculated analytically from 



( )/
h

S G Tβ= − ∂ ∂ . For clarity ( , )S T hβΔ  curves are displayed in field step of 2hΔ = . The perfect 

coincidence of circles with the lines implies that the Maxwell relation contains the entropy 

contributions of both the spin degrees of freedom as well as the lattice degrees of freedom. There 

is, within numerical uncertainties, no difference between the result from the integrated Maxwell 

relation and ( , )S T hβΔ  calculated analytically from ( )/
h

S G Tβ= − ∂ ∂ . 

The lower dotted blue line in Figure 2 represents the value of max
JSΔ  which for 1/ 2J =  reads 

max / 2ln 2 1.38J
BS kΔ = = . The upper dotted red line shows the maximum isothermal entropy 

change achievable in our model with magnetoelastic coupling using the microscopic parameters 

above. This limit is clearly above the magnetic limit max / 2ln 2J
BS kΔ =  indicating explicitly that 

lattice degrees of freedom can contribute to the isothermal field-induced entropy change as they 

do in real systems in the case of the giant MCE. The validity of our simple approximate Eq.(6) is 

also prominently evident in this figure. A calculation of the limiting approximate expression 

( ),S T hβΔ → ∞ = 0
2 ln 4

2
B

B
k J k
a D

+ yields ( ), 1.488 BS T h kβΔ → ∞ =  which is in excellent 

agreement with our numerically calculated value of ( ),S T hβΔ → ∞ = 1.494kB.  

The inset of Fig. 2 shows a semi-logarithmic plot of 
0

1( ) ( )
T

B

Area T S T dT
k

′ ′= − Δ∫  evaluated 

through numerical integrations of the / BS k−Δ  vs. T data for h=30. An area sum rule is known to 

hold such that 0lim ( ) /s BT
Area T VM H kμ

→∞
= Δ  where VMs is the saturation magnetic moment and 

HΔ  is the magnetic field change which induces the isothermal entropy change.29
  In accordance 

with the area sum rule, our numerically calculated function Area(T) shows an asymptotic 

approach of the limiting value 0 sVM Hμ Δ  which is given by the saturation value ( )1 2 60hσ σ+ =  



in the reduced variables of our model with h=30 and σ1,2=1. The fact that the sum rule applies is 

further evidence that the Maxwell relation includes all contributions to the entropy change, 

including those originating from elastic degrees of freedom.  

Summary 

We have clarified the misleading interpretation of what is sometimes called in the literature 

magnetic entropy change. The magnetic field-induced isothermal entropy change can in fact 

contain lattice contributions other than just spin degrees of freedom. In addition we 

reemphasized that those contributions are fully contained in the Maxwell relation if the latter is 

applicable. We used a minimalistic model of Ising spin pairs and made it as complex as 

necessary to show that the activation of lattice degrees of freedom requires non-linear 

magnetoelastic coupling. Moreover, we showed explicitly that lattice degrees of freedom can 

help to overcome the spin-multiplicity limit of entropy as it does in the giant magnetocaloric 

effect. Here, however, we show the impact of elastic coupling on the magnetocaloric effect 

already in the absence of magnetic long range order.  
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Figure captions 

Fig. 1: Representative isotherms M vs. h for 0 30h≤ ≤  calculated with a=0.7, 0.1oJ = and D=1 

for 4 100T≤ ≤  displayed in steps 2TΔ = .  

 



Fig. 2.(color online): Entropy ( , )S T hβΔ (black solid lines) versus T calculated from Gibbs free 

energy derivatives for a=0.7, 0.1oJ = and D=1 displayed at constant magnetic fields 

2 30h≤ ≤  in field steps 2hΔ = . Open circles (magenta) show entropy calculated via 

Maxwell relation using magnetization data such as the isotherms shown in Fig.1. The 

lower dotted blue line represents the maximum entropy limit based of spin-multiplicity 

only. The upper dotted red line shows the maximum isothermal entropy change which 

includes the magnetoelastic contribution using the microscopic parameters a=0.7, 

0.1oJ = and D=1. The inset shows the result of the temperature dependent area 

determined from numerical integration of the -ΔS vs T curve for h=30. The dashed 

horizontal line marks its theoretical limiting value of 60. 
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