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It is known that the parity of reflection amplitude can either be even or odd under the mirror operation. Up to

now, all the parities of reflection amplitude in the one-mode energy region are even under the mirror operation.

In this paper, we give an example of odd parity for Andreev reflection (AR) in a three-terminal graphene-

supercondutor hybrid systems. We found that the parity is even for the Andreev retroreflection (ARR) and odd

for specular Andreev reflection (SAR). We attribute this remarkable phenomenon to the distinct topology of

the band structure of graphene and the specular Andreev reflection involving two energy bands with different

parity symmetry. As a result of odd parity of SAR, the SAR probability of a four-terminal system with two

superconducting leads (two reflection interfaces) can be zero even when the system is asymmetric due to the

quantum interference of two ARs.

PACS numbers: 72.80.Vp, 74.45.+c, 73.40.-c, 74.25.F-

I. INTRODUCTION

Since the experimental realization of graphene1, it has

become an exciting arena for theoretical and technological

investigations.2 A number of new phenomena have been pre-

dicted and verified experimentally. For instance, in the pres-

ence of magnetic field, it exhibits a distinctive half-integer

quantum Hall effect.1 Its quasi-particles obey the Dirac-like

equation and have relativistic-like behaviors.2 Due to the rel-

ativistic effect, the Klein tunneling occurs where an incident

electron in graphene can pass through a potential barrier with

probability one,3 which induces the focusing of electron flow

in a graphene p-n junction.4,5 Besides, the well-separated val-

leys in zigzag edged nanoribbon can lead to the valley valve

effect.6

Since good contacts between superconducting leads and

graphene have been realized experimentally,7 the transport

study through graphene based normal-metal-superconductor

(GNS) heterojunction becomes feasible. In the presence of

a normal metal (graphene)-superconducting interface, an in-

coming electron converts into a hole and a cooper pair is

formed that enters the superconductor. Due to the relativis-

tic nature of the electron in graphene, the electron-hole con-

version can either be intraband (within conduction or va-

lence band) or interband (between conduction and valence

bands). When the electron-hole conversion is intraband, it

corresponds to the usual Andreev reflection (AR)8 or Andreev

retroreflection (ARR) because the reflected hole is along the

incident direction. This ARR occurs for both relativistic and

non-relativistic electrons. When the electron-hole conversion

is interband, the reflected hole is along specular direction and

a specular Andreev reflection (SAR) takes place,9 which can

lead to novel phenomena as we will discuss below.

It is known that the parity is a fundamental quantity in

physics and reflection is a general physical phenomenon in

nature. In this paper, we discuss the parity of reflection am-

plitude for graphene in contact with superconductor leads. In

general, the parity of a reflection amplitude can be either even

or odd when the system is under mirror operation. However,

for all previous known reflection events, the reflection ampli-

tudes in the one-mode energy region have even parity under

the mirror operation. It is yet to find an odd-parity reflec-

tion event. In this paper, we found, for the first time, that

the SAR amplitude has an odd parity under the mirror opera-

tion for zigzag graphene ribbons with even number of chains.

This means that the phases of SAR amplitude for a graphene-

superconductor hybrid system and its mirror system differ by

π. We attribute this phenomenon to the unique band struc-

ture of the graphene. Obviously this phase difference does

not affect any observable quantities for each system. When

two systems couple together, however, this π phase manifest

through quantum interference between two SARs. So this π

phase shift has important consequences for a four terminal

device with two superconducting leads (see Fig.2(a)). When

two superconducting leads are symmetrically attached to the

device, the quantum interference of the left and right SAR

leads to a destructive or constructive interference depending

on whether the phase difference of superconducting leads is

zero or π. Importantly, when two superconducting leads are

asymmetrically attached to the device, the same interference

pattern occurs provided that the Dirac point E0 is in line with

the condensate of superconducting lead. The quantum inter-

ference between pairs of the AR can be tuned by shifting the

Dirac point, the asymmetry of the two superconducting leads,

as well as the phase between two superconducting leads. Due

to the odd parity of SAR, the interference pattern for SAR is

phase contrasted to that of ARR where the parity is even.
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FIG. 1: (Color online) Panel (a): zigzag ribbons with even number

of chains (gray honeycomb) attached by a superconducting lead on

the left and right (orange honey comb), respectively. For SAR the

incoming electrons (red arrow) are scattered by the GNS junction

(green solid line) as holes (blue arrow). The corresponding wave

functions at sublattice “A” (solid circle) and “B” (hollow circle) for

the lowest subband in conduction band (bottom) and the highest sub-

band in valence band (top) are shown schematically. Panel (b): AR

probability from terminal-1 to terminal-1 R11A and to terminal-3 R13A

vs. Dirac point E0 . Panels (c) and (d): AR phase Φ
i,ii

11
(c) and Φ

i,ii

13
(d)

of two systems in panel (a) and their phase different Φi
11(13)

− Φii
11(13)

vs. E0 .

II. THEORY AND NUMERICAL RESULTS

Before doing numerical calculation, we first prove that

the phases of SAR amplitude of two systems (i) and (ii) in

Fig.1(a) differ by π, i.e., the parity of SAR is odd under mirror

operation. Note that for graphene systems electrons in va-

lence and conduction band are usually referred as electrons

and holes, respectively. In the presence of superconducting

lead the reference point of electrons and holes is the Fermi

level in the superconducting lead. In the following, we will

refer electrons (holes) as electrons above (below) Fermi level

in superconducting lead. Denote ψ+c (ψ+v ) the wavefunction of

electrons in conduction (valence) band moving in +y direction

and ψ−c (ψ−v ) in -y direction in the zigzag graphene nanoribbon

lead. It was known that under reflection P̂ : x → −x, ψ±c is

symmetric while ψ±v is anti-symmetric if the energy of elec-

tron is in the first transmission channel10[see Fig.1(a)], i.e.,

P̂ψ±c (x, y) = ψ±c (−x, y)

P̂ψ±v (x, y) = −ψ±v (−x, y). (1)

which is one of the unique features of zigzag edge nanorib-

bons with even number of chains. Assuming the incident elec-

tron from the terminal-1, the wavefunctions for SAR ψ1,3 in

zigzag nanoribbon lead 1 or 3 of the system (i) can be written

as

ψ
(i)

1
= ψ+e + r11ψ

−
e + r11Aψ

−
h

ψ
(i)

3
= t13ψ

+

e + r13Aψ
+

h (2)

where r11 is the normal reflection amplitude, t13 is the trans-

mission amplitude, r11A and r13A are the Andreev reflection

amplitudes with the reflected hole to the terminal-1 and 3, re-

spectively. Similarly the wavefunctions for the system (ii) are

given by

ψ
(ii)

1
= ψ+e + r̄11ψ

−
e + r̄11Aψ

−
h

ψ
(ii)

3
= t̄13ψ

+

e + r̄13Aψ
+

h (3)

Since the system (i) is related to (ii) by the reflection operator

P̂, we have ψ
(i)
α = P̂ψ

(ii)
α with α = 1, 3. Note that for SAR,

the electron is in the conduction band while the hole is in the

valence band, i.e., ψe = ψc and ψh = ψv. From this relation

together with Eqs.(1), (2), and (3), we obtain

r11A = −r̄11A, r13A = −r̄13A

r11 = r̄11, t13 = t̄13 (4)

Note that the origin of this π phase shift (odd parity) is the

interband conversion from the electron to the hole. Therefore

the π phase shift does not occur for ARR since it involves

only intraband conversion. Now we verify this statement nu-

merically using a tight-binding model (see below for detailed

description of the model and numerical procedure). The nu-

merical results of AR probability R11A(13A) = |r11A(13A)|2 for

two systems are shown in Fig.1(b). As expected the AR prob-

ability are exactly the same for two systems. However, the

phase of AR amplitudes r11A(13A) denoted as Φ
i,ii

11(13)
are differ-

ent. It is shown in Fig.1(c) and Fig.1(d) that ARR amplitudes

(|E0| > |EF |, with |EF | = 0.5) are the same for two systems

in Fig.1(a) while the SAR amplitudes (|E0| < |EF |) have a π

phase shift. It confirms the odd parity for interband electron-

hole conversion, which comes from the distinct topology of

the band structure of graphene.

To see the consequence of the odd parity of SAR, we exam-

ine a symmetric four-terminal device with two superconduct-

ing leads depicted in Fig.2(a) (by setting asymmetry δN = 0

and phase difference δφ = 0). For this system, two beams

from terminal-1 has a π phase shift due to odd parity of SAR

and interferes destructively at terminal-3 giving rise to a van-

ishing SAR coefficient. However, we can arrive the same

conclusion using symmetry argument as follows. Since the

system is symmetric with respect to x = 0, we must have

r13A = r̄13A when the reflection operation along x-direction is

applied. While from Eq.(4), r13A = −r̄13A. So the AR proba-

bility R13A = |r13A|2 for SAR can also be zero from symmetry

point of view.11 Therefore we conclude that the symmetric

device can not be used to test the odd parity of SAR. In the

following, we demonstrate that due to the π phase shift the de-

structive interference still occurs in a four-probe devices with

two superconducting leads attached asymmetrically and hence

can be used to test the odd parity of SAR.

For this purpose, we consider an asymmetric four-terminal

device consisting of a zigzag graphene ribbon with two super-

conducting leads as shown in Fig.2(a). The Hamiltonian of

the graphene is12 H0 =
∑

i ǫia
†
i
ai −
∑
<ij> ta

†
i
aj. Here ai and a

†
i

are the annihilation and creation operators at site i, ǫi is the on-

site energy which can be controlled experimentally by the gate

voltage1, and the hopping constant t = 2.75eV represents the

nearest carbon bond energy. The pair potential (energy gap)
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FIG. 2: (Color online) Panel (a): sketch of AR interferometer in

which the zigzag ribbon is asymmetrically attached by two super-

conductor lead-2 and 4. Electrons in terminal-1 can be Andreev re-

flected into terminal-3 by either top or bottom GNS junction (hor-

izontal green lines). Panel(b) and (c): the contour plot of R13A vs

Dirac point E0 and asymmetry δN. The phase difference of two su-

perconductor leads δϕ is zero in panel (b) and π in panel (c). The

other parameters: Fermi energy E f = 0.8, number of chains in zigzag

ribbon N = 40 corresponding to width 60a, the width of supercon-

ductor lead WS = 10b, where b =
√

3a.

of superconducting terminal-β with β = 2, 4 is ∆̃β = ∆βe
iϕβ

with ∆2 = ∆4 = ∆ ≃ 1meV . In numerical calculations,11 we

fix Fermi energy EF and tune the Dirac point E0. We have

used ∆ as the energy unit.

Now we study the interference between two ARs from GNS

junctions as shown in Fig.2(a) in which two superconduct-

ing leads 2 and 4 are asymmetrically attached to the zigzag

nanoribbon. The horizontal distance δN between two GNS

junctions measures the asymmetry of two GNS junctions. The

scattering process can be qualitatively understood as follows.

For simplicity, we assume φ2 = φ4 for the moment. As shown

schematically in Fig.2(a), for SAR the particle-like electrons

in terminal-1 split into two beams and are scattered separately

by two GNS junctions (green horizontal lines) as holes that

finally recombine at terminal-3. We examine the total phase

accumulated for each beam that involves the following three

processes. Before reaching the first GNS junction (denoted by

the left vertical green line) two beams of electrons propagate

with the same momentum kx. After reaching the second GNS

junction (denoted by the right vertical green line) two beams

of holes also propagate with the same momentum k′x. Obvi-

ously phases accumulated in the above two processes for both

beams are the same. Between them two beams propagate with

different momenta kx and k′x. Hence the phase difference be-

tween two beams is φ = (kx − k′x)δx with δx = bδN, where

b =
√

3a and a the lattice constant. This phase difference can

be tuned by varying the Dirac point E0 or the asymmetry δN

giving rise to a complicated interference pattern (see Fig.2).

In particular, this phase difference can be zero if (kx − k′x) = 0
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FIG. 3: (Color online) Panel (a): With fixed Fermi level EF = 0.8,

total AR probability R13A vs Dirac point E0 for different asymmetry

δN. In the main panel δϕ = 0, and while δϕ = π in the inset. Panel

(b): R13A vs asymmetry δN with E0 = 0.3t for different width W from

10×3a to 38×3a with the interval 2×3a along the black arrow. Inset

panel: the hollow signs are the period P obtained from the main panel

and the solid red circles are the period P from the energy band with

the expression P = 2π/(kx − k′x). The other parameters: δϕ = 0,

EF = 0.8.

(i.e.,E0 = 0) or δN = 0. In general, the total phase difference

is φ = (kx − k′x)δx + φ2 − φ4.

Interference pattern of AR probability R13A for system de-

picted in Fig.2(a) with pair potential phase difference of two

superconductors δϕ = 0 and π (δϕ ≡ ϕ2 − ϕ4) are then plotted

in Fig.2(b) and (c), respectively. For Fig.2(b) following obser-

vations are in order: (1) For the geometrically symmetric sys-

tem (δN = 0), the interference is always destructive with zero

R13A as long as |E0| < |EF |.11 Clearly this is due to the π phase

shift depicted in Fig.1(d) and is consistent with the band se-

lection rule.10 (2) When Dirac point E0 is in line with the con-

densate energy of the superconductor, i.e., when E0 = 0, R13A

is again zero no matter what value δN assumes. This means

that there is a completely destructive interference between two

beams scattered by two GNS junctions attached asymmetri-

cally to the graphene nano-ribbon. This behavior can be un-

derstood as follows. When E0 = 0 the incoming electron and

reflected hole have the same propagating momentum kx and

thus path 1 and 2 in Fig.2(a) experience the same quantum

phase kxδx except at the superconducting leads. Hence the to-

tal phase difference is only due to the π phase shift between

two SARs. (3) R13A is an even function of Dirac point E0 be-

cause of the electron-hole symmetry in graphene. Due to the

geometric symmetry, R13A is also an even function of asym-

metry δN. (4) For nonzero EF , the closer the Dirac point E0

to EF , the more rapidly R13A oscillates as we vary δN. This
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FIG. 4: (Color online) The interference pattern of AR from terminal-

1 to terminal-1. The phase difference of two superconductor leads is

zero in panel (a) and π in panel (b). The other parameters are same

to Fig.2. except for EF = 0.2.

is because the difference of propagating momentum kx − k′x
increases monotonically as E0 approaches to EF . (5) When

E0 is in the vicinity of EF , R13A can reach 0.9 which is much

larger than that when |E0| > |EF |. This is because when EF

is very close to E0, the edge states of zigzag ribbon begin to

contribute, then electron is easier to be scattered by two GNS

junctions located also at edges of zigzag ribbon. Considering

the pseudo-spin conservation, large R13A is always found in

the region of |E0| < |EF |, i.e., the SAR region. (6) There is

an overall fine oscillation with a period of δN = 3b. Similar

behavior was also found in zigzag ribbons with a p-n junction

where the conductance is determined by the relative displace-

ment δ along the p-n junction.13 In Fig.2(c) with the supercon-

ducting phase difference δϕ = π, we see that the interference

pattern is contrary to δϕ = 0 [Fig.2(b)] where the constructive

interference becomes destructive and vice versa.

To further analyze the interference pattern, we plot in

Fig.3(a) the total R13A vs Dirac point E0 for different asym-

metry δN with the phase difference between two supercon-

ducting leads δϕ = 0 [main panel of Fig.3(a)] or δφ = π [inset

of Fig.3(a)]. Clearly the interference (oscillatory) pattern oc-

curs only for asymmetric systems (δN , 0) with oscillation

frequency proportional to δN. When pair potential phase dif-

ference δϕ = π is introduced, the interference pattern reverses,

and R13A with δN = 0 becomes the envelop function of R13A

for all nonzero δN. In Fig.3(b) we plot R13A vs δN for differ-

ent widths W of nanoribbon. It is shown clearly that R13A is

a periodic function of δN with larger periodicity for larger W.

In the inset of Fig.3(b) we plot this period versus the width for

different E0. The period P is obtained in two ways: (1). from

the expression P = 2π/(kx − k′x) where the momenta kx and k′x
can be obtained from the band structure for a given E0 (black

symbols). (2). directly from main panel of Fig.3(b) (red solid

circle). From the inset, it clearly shows that two periods are

exactly the same giving strong evidence that the interference

pattern of AR probability are indeed from two reflected hole

beams.

Finally, the interference pattern of AR probability R11A is

FIG. 5: (Color online) The schematic plot of partially unzipped CNT.

also studied (Fig.4). We found that only ARR probability R11A

(|E0| > EF = 0.2∆) exhibits interference pattern. We note that

since there is no π phase shift involved in ARR, when δN = 0

reflected electrons through two GNS junctions interfere con-

structively when δϕ = 0 and destructively when δϕ = π which

is in contrast to SAR in Fig.2. In fact, interference patterns of

SAR and ARR are always phase contrast not only for δN = 0

but also for all other δN.

To test the odd parity of SAR experimentally, it relies on

the fabrication of high quality zigzag graphene nanoribbons.

It has been achieved by several laboratories using different

methods last year including the method to unzip the carbon

nanotube (CNT),14 the anisotropic etching by thermally acti-

vated nickel nanoparticles,15 and use chemical method16 and

reconstruction of the edge17 to make zigzag graphene nanorib-

bons. In view of the above experimental breakthrough, we ex-

pect that the setup to test our predicted phenomenon can be

realized experimentally.

To reduce the experimental challenge, we have considered

an unzipped CNT device, i.e., (n,n) CNT-zigzag graphene-

(n,n) CNT, obtained by unzipping a few unit cells in the cen-

tral part of an armchair CNT which has been achieved exper-

imentally (see Fig.5).14 For this system, the wavefunction in

the armchair CNT has the same symmetry as that of the zigzag

graphene ribbon. Following the same procedure leading to

Eq.(4), we have shown that the unzipped CNT in contact with

a superconducting lead has the odd parity under mirror oper-

ation. Similar conclusions drawn from GNS can be obtained

for unzipped CNT with two superconducting leads.

III. CONCLUSION

In conclusion, up to now, the parity of reflection ampli-

tude was found to be even under the mirror operation. Here

we have provided an example of odd parity for the reflec-

tion amplitude, the SAR amplitude in the zigzag graphene-

superconductor hybrid system. This odd parity is due to the

combination of unique band structure of the graphene and the

electron-hole conversion involving two energy bands with dif-

ferent parity symmetry. The signature of odd parity of SAR
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can be found from the quantum constructive interference in a

four terminal system with two superconducting leads attached

asymmetrically. Furthermore, the interference pattern due to

odd parity of SAR is phase contrasted to that of ARR where

the parity is even.
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