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We study matrix element fluctuations of the two-body screened Coulomb interaction and of the
one-body surface charge potential in ballistic quantum dots, comparing behavior in actual chaotic
billiards with analytic results previously obtained in a normalized random wave model. We find
that the matrix element variances in actual chaotic billiards typically exceed by a factor of 3 or
4 the predictions of the random wave model, for dot sizes commonly used in experiments. We
discuss dynamical effects that are responsible for this enhancement. These dynamical effects have
an even more striking effect on the covariance, which changes sign when compared with random
wave predictions. In billiards that do not display hard chaos, an even larger enhancement of matrix
element fluctuations is possible. These enhanced fluctuations have implications for peak spacing
statistics and spectral scrambling for quantum dots in the Coulomb blockade regime.
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I. INTRODUCTION

The statistical fluctuations of single-particle energies
and wave functions of dots whose single-particle dynam-
ics are chaotic may be well approximated by random ma-
trix theory (RMT).1 The mesoscopic fluctuations of the
conductance through open dots that are strongly coupled
to leads are then successfully described by RMT.2 In the
opposite limit of an almost-isolated dot, the charge is
quantized and electron-electron interactions modify the
mesoscopic fluctuations of the conductance. Many of the
analytical tools used to describe such isolated interacting
systems are discussed in the recent review by Ullmo.3

The randomness of the single-particle wave functions
induces randomness into the interaction matrix elements
when the latter are expressed in the basis of the former.
These matrix elements can be decomposed into an av-
erage and a fluctuating part. The average part of the
interaction, when combined with the one-body kinetic
energy and a confining potential, leads to the so-called
universal Hamiltonian.4,5 This universal Hamiltonian in-
cludes a charging energy term, an exchange interaction
term that is proportional to the square of the total spin of
the dot, and a Cooper-channel term (that is repulsive in
a quantum dot and does not lead to the BCS instability).
The fluctuating part of the interaction is suppressed by
the Thouless conductance gT , and in the limit gT → ∞,
the dot is completely described by the universal Hamil-
tonian.

The charging energy term leads to charge quantiza-
tion in a weakly coupled dot, and the conductance peak
height distributions in such a dot were derived in Ref. 6
using the RMT statistics of the single-particle wave func-
tions. Qualitative features of these peak height distri-
butions as well as the parametric peak height correla-
tion and the weak localization effect as a function of
magnetic field7,8 were confirmed in experiments.9–11 Re-
maining discrepancies between theory and experiments
regarding the temperature dependence of the width of

the peak spacing distribution12 and the peak height dis-
tributions13 at low temperatures were explained by the
inclusion of the exchange interaction term of the univer-
sal Hamiltonian.14,15

However, not all observed features of the peak spacing
distribution can be explained by the exchange interac-
tion alone. At low temperatures, the spacing is given
by the second-order difference of the ground-state en-
ergy versus particle number. When only charging energy
is present, the peak spacing distribution is expected to
be bimodal because of spin effects. The exchange in-
teraction (with realistic values of the exchange coupling
constant in quantum dots) reduces this bimodality but
cannot explain its absence in the experiments.12,16–18 It
is then necessary to consider the effect of the fluctuating
part of the interaction beyond the universal Hamiltonian.

In the Hartree-Fock-Koopmans approach (or alter-
natively, using a perturbation theory in the screened
Coulomb interaction), the peak spacing can be expressed
in terms of certain interaction matrix elements, and suffi-
ciently large fluctuations of such matrix elements19 might
explain the absence of bimodality in the peak spacing
distribution. It is therefore of interest to make accu-
rate estimates of interaction matrix element fluctuations
in chaotic dots. These fluctuations are determined by
single-particle wave function correlations. In a diffusive
dot, such correlations are well understood and lead to an
O(∆/gT ) standard deviation in the interaction matrix
elements,20,21 where ∆ is the mean single-particle level
spacing. Peak spacing fluctuations are also affected by
a one-body surface charge potential induced by the ac-
cumulation of charge on the surface of the finite dot.20

Matrix element fluctuations of the two-body interaction
and one-body surface charge potential are also important
for determining the statistical scrambling of the Hartree-
Fock energy levels and wave functions as electrons are
added to the dot.22,23

Wave function correlations and interaction matrix el-
ement fluctuations in a ballistic dot are less understood.
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In Ref. 24 we used a normalized random wave model (see
also Refs. 25–27) to obtain analytic expressions for inter-
action matrix element variances and covariances in the
regime of large Thouless conductance gT for a ballistic
two-dimensional dot. In such a dot, gT ∼ kL, where
k is the Fermi wave number and L is the linear size of
the dot (defined more precisely as the square root of the

dot’s area). Since kL ∼
√
N where N is the number

of electrons in the dot, the kL ≫ 1 limit in which the
random wave model is expected to hold is also the limit
of many electrons in the dot. In the present work, we
systematically investigate matrix element fluctuations in
real chaotic billiards, for 30 ≤ kL ≤ 70, corresponding
roughly to the parameter range relevant for experiments
(∼ 150 − 800 electrons in the dot). We show that fluc-
tuations can be significantly enhanced due to dynamical
effects, e.g., the variance may be enhanced by a factor
of 3 or 4. Such enhancement can help in explaining the
peak spacing distribution measured in the chaotic dots
of Ref. 12.

On the other hand, the typical fluctuations of matrix
elements in chaotic dots cannot explain the even broader
peak spacing distributions in the experiment of Ref. 18.
The small dots used in the latter experiment are probably
non-chaotic (top gates were used), and this has motivated
us to study fluctuations beyond the chaotic regime. We
show that a large (i.e., order of magnitude) enhancement
of the fluctuations is possible in non-chaotic billiards.

The outline of this paper is as follows. In Sec. II, we
introduce the modified quarter-stadium billiard as a con-
venient model for investigating matrix element fluctua-
tions in chaotic systems. In Sec. III we consider matrix
elements of the two-body screened Coulomb interaction,
and find strong enhancement of the fluctuations in com-
parison with random wave predictions. Semiclassical cor-
rections due to bounces from the dot’s boundaries lead to
an increase in the fluctuations, but do not correctly pre-
dict the scaling with kL in the experimentally relevant
range. Insight into the underlying mechanism of fluctu-
ation enhancement is obtained by studying a quantum
map model, which is described in the Appendix. An im-
portant conclusion is that the expansion in 1/kL, while
asymptotically correct, can be problematic in quantify-
ing matrix element fluctuation in the regime relevant to
experiments.

In Sec. IV we extend our investigation to one-body
matrix elements associated with the surface charge po-
tential, and find similar fluctuation enhancements. Going
beyond the variance, we examine the full matrix element
distributions in Sec. V, and observe deviations from a
Gaussian shape that are even stronger than the devi-
ations found in the random wave model.24 In Sec. VI
we study systems beyond the chaotic regime: billiards
dominated by marginally-stable bouncing-ball modes and
billiards with mixed dynamics (i.e., partly regular and
partly chaotic). Finally, in Sec. VII we briefly discuss
some implications of the present work for the quantita-
tive understanding of spectral scrambling and peak spac-

ing statistics for quantum dots in the Coulomb blockade
regime.

II. CHAOTIC BILLIARDS

Here we investigate how dynamical effects modify the
fluctuations of interaction matrix elements beyond our
findings in the random wave model.24 Here and in Sec-
tions III – V we treat exclusively geometries displaying
hard chaos. [Systems with stable or marginally stable
classical trajectories will be considered in Sec. VI.] To
this end, we will use a chaotic system shown in Fig. 1 – a
modified quarter-stadium billiard geometry,28 where the
quarter-circle has radiusR and the straight edge of length
aR has been replaced by a parabolic bump to eliminate
bouncing-ball modes. Algebraically, the billiard shape is
defined by

0 ≤ y/R ≤ 1 − s

(

1 − x2

a2R2

)

, 0 ≤ x/R ≤ a

0 ≤ y/R ≤
√

1 − (x/R− a)2 , a ≤ x/R ≤ a+ 1 , (1)

where R is the radius of the quarter-circle, and a and s
are free dimensionless parameters.

1

a

1-s

s

r1

r2

FIG. 1: A modified quarter-stadium geometry with parame-
ters a and s is used to illustrate dynamical effects on matrix
element fluctuations. In the figure, we set the quarter-circle
radius R = 1. The random wave contribution to the wave
function intensity correlator C(r1, r2) is schematically indi-
cated by a dashed line, and a typical dynamical contribution
by a dotted line.

We use a quarter-stadium instead of a full stadium
shape in order to remove symmetry effects. This system
has been verified numerically to be fully chaotic for the
range of parameters used. Variation of the bump size s al-
lows us to check the sensitivity of the results to details of
the billiard geometry while maintaining the chaotic char-
acter of the classical dynamics. Furthermore, by varying
the parameter a, we can control the degree of classical
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chaos. The degree of chaos can be characterized for ex-
ample by the Lyapunov exponent λ, defined as the rate of
divergence at long times of generic infinitesimally sepa-
rated trajectories, |r(t)−r

′(t)| ∼ |r−r
′|eλt as |r−r

′| → 0
and then t → ∞. For a = 1.00 and 0.1 ≤ s ≤ 0.2,
the exponent λ takes values 0.69 ≤ λTB ≤ 0.74 (here
TB = mL/h̄k is a typical time scale associated with one
bounce in the billiard). When a = 0.25, 0.55 ≤ λTB ≤
0.56 in the same range of s, indicating that the system is
somewhat less chaotic for the smaller value of a. Other
measures of the degree of chaoticity are possible and may
be more relevant to the problem of matrix element fluc-
tuations, as we will argue below. In particular, we may
consider the rate λ∗ of long-time decay of classical corre-

lations, f(q, p)f(q(t), p(t)) − f(q, p)
2 ∼ e−λ∗t as t → ∞,

where f(q, p) is a typical function defined over the clas-
sical phase space and the average is over an energy hy-
persurface.29 Numerically, we find 0.15 ≤ λ∗TB ≤ 0.20
for a = 1 and 0.095 ≤ λ∗TB ≤ 0.13 for a = 0.25, for
the same range of bump sizes s as above, again indicat-
ing a less rapid approach to ergodicity in the a = 0.25
geometry.

An important consideration in the investigation of dy-
namical systems, as opposed to random wave models,
is the presence of boundary conditions. Boundary con-
ditions lead to Friedel oscillations in the average wave
function intensity at distances O(1/k) from a billiard
boundary. The effect of such oscillations has recently
been considered in Refs. 25. The choice of boundary
conditions, e.g., Neumann or Dirichlet, will also be seen
to have significant effects on matrix element fluctuations,
particularly on the fluctuations of one-body matrix ele-
ments.

Numerical wave functions for several values of the
billiard parameters a, s and in various energy ranges
have been calculated using a variation of the plane wave
method.30 At each wave number k, a basis consisting of
plane waves supplemented by a set of Y0 Bessel functions
centered a fraction of a wavelength outside the boundary
is used; the size of the basis scales linearly with k. Singu-
lar value decomposition finds at each k the linear combi-
nation that minimizes the integrated squared deviation
along the boundary from the selected boundary condition
(Dirichlet or Neumann). Finally, minima of this devia-
tion as a function of k indicate the correct eigenvalues of
the system. Tests of the method include stability with
respect to changes in the basis size and comparison of
the resulting density of states with the Weyl formula.

Statistics are collected by averaging over an energy
window. A straightforward estimate shows that such av-
eraging is sufficient to give good results for matrix ele-
ment variances, i.e., the ratio of signal to statistical noise
grows with increasing kL. For all numerical results that
follow, we use energy windows of constant momentum
width ∆k L = 10, e.g., the data point kL = 30 uses all
wave functions within the window 25 ≤ kL ≤ 35. The
Weyl formula for the density of states in two dimensions
implies that the number of wave functions in such a win-

dow grows linearly with kL.

III. TWO-BODY MATRIX ELEMENTS

A. Fluctuation of diagonal matrix elements vαβ

We first study the variance of the diagonal two-body
interaction matrix elements vαβ ≡ vαβ;αβ , associated
with a pair of electrons in distinct orbitals α 6= β in-
teracting via the screened Coulomb force. Since the
screening length of the Coulomb interaction in large
2D quantum dots is much smaller than the dot size,
the interaction may be modeled as a contact interaction
v(r, r′) = ∆V δ(r − r

′), where V = L2 is the dot’s area,
and the single-particle mean level spacing ∆ serves to set
the energy scale.31,32 We then have

vαβ = ∆V

∫

V

dr |ψα(r)|2|ψβ(r)|2 , (2)

where the single-electron wave functions ψ obey the usual
normalization condition

∫

V
dr |ψ(r)|2 = 1. To leading

order in 1/gT ∼ 1/kL, the variance is then given by22,24:

δv2
αβ = ∆2V 2

∫

V

∫

V

dr dr′ C2(r, r′) +O

(

∆2

(kL)3

)

, (3)

where

C(r, r′) = |ψ(r)|2|ψ(r′)|2 − |ψ(r)|2 |ψ(r′)|2 (4)

is the intensity correlator of a single-electron wave func-
tion at points r and r

′. Assuming C(r, r′) is described
by the normalized random-wave model (i.e., the single-
electron wave functions are normalized as above with no
boundary conditions), one obtains

δv2
αβ = ∆2 3

π

(

2

β

)2
ln kL+ bg

(kL)2
+O

(

∆2

(kL)3

)

, (5)

where β = 1, 2 corresponds to the presence or absence
of time reversal invariance (i.e., the absence or presence
of an external magnetic field), while bg is a dimension-
less coefficient that depends weakly on the dot geome-
try.24 For a general dot shape, bg is obtained by eval-
uating numerically the integral in Eq. (3), using the
normalized random-wave intensity correlator C(r, r′) =
J2

0 (k|r−r
′|)− 1

V

∫

V
dra J

2
0 (k|r−ra|)− 1

V

∫

V
dra J

2
0 (k|ra−

r
′|) + 1

V 2

∫

V

∫

V
dradrb J

2
0 (k|ra − rb|).24 For geometries

considered in the present paper, bg ranges between −0.07
and −0.10, and its variation is of negligible practical im-
portance.

We now evaluate the variance of vαβ
versus kL us-

ing “exact” (numerically evaluated) real wave functions
in actual chaotic billiards. Typical results are shown in
Fig. 2, where we note the large enhancement of the bil-
liard results over the random wave model (dotted line).
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To understand this enhancement, we compare the ex-

act numerical results for δv2
αβ with the first term on the

right hand side of Eq. (3), in which C(r, r′) is taken to be
the single-wave-function correlator Cbill(r, r

′) calculated
numerically for the appropriate billiard system. The dis-
crepancy is immediately reduced to a ∼ 5 − 10% level,
which is comparable to the O((kL)−3) higher-order cor-
rection expected and observed in the random wave model.
Thus, the large enhancement of vαβ fluctuations over the
random wave prediction is not due to higher-order terms
in Eq. (3), but instead can be traced directly to a dynam-
ical enhancement in the intensity correlator Cbill(r, r

′)
over the random-wave correlator.
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FIG. 2: The variance of vαβ versus kL (on a log-linear scale)
for modified quarter-stadium billiards with Neumann bound-
ary conditions. The solid line is for a = 0.25, while the dashed
line is for a = 1.00. In both cases, the results are averaged
over two values of the bump size: s = 0.1 and 0.2. Dotted line:
analytic random wave prediction, Eq. (5), with bg = −0.10.
Inset: the numerical result for a = 0.25 with the leading log-
arithmic term of Eq. (5) subtracted (solid line) appears to
fall off as (kL)−1.15 (dashed line). The analytically expected
subleading behavior (kL)−2 is indicated by a dotted line for
comparison.

We next estimate the dynamical enhancement of the
intensity correlator (as compared with a random wave
model) in a semiclassical approach. The random wave
correlator Crw(r, r′) may be interpreted semiclassically
as arising from straight-line free propagation21 indicated
by the dashed line in Fig. 1. As discussed by Hortikar and
Srednicki33 and more recently by Urbina and Richter,34

additional contributions to the correlator can be asso-
ciated with trajectories that bounce off the boundary n
times on their way from r to r

′, such as the one indicated
by a dotted line in Fig. 1. To find these contributions,
we start from the dynamical correlator for wave function
amplitudes, which may be written as26

ψ∗(r)ψ(r′) =
G

∗
(r, r′, E) −G(r′, r, E)

2πi ρ(E)
. (6)

Here G is the retarded Green’s function G(r, r′, E) =
∑

α
ψ∗

α(r)ψα(r′)
E−Eα+iǫ smoothed on an energy scale much larger

than the level spacing ∆ and much smaller than the
Thouless energy kL∆, and ρ(E) is the density of states
ρ(E) =

∑

α δ(E − Eα), smoothed on the same energy
scale. Using Eqs. (4) and (6), the dynamical intensity
correlator is given by

Cbill(r, r
′) =

2

β
|G(r′, r, E)−G ∗

(r, r′, E)|2/4π2 ρ2(E) .(7)

Semiclassically, i.e., to leading order in 1/kL, the
smooth density of states is given by the Weyl formula
in two dimensions

ρ(E) = mL2/2πh̄2 , (8)

while the Green’s function to leading order in 1/kL is
given by the Gutzwiller formula35

G(r, r′, E) =
1

ih̄(2πih̄)1/2

∑

j

|Dj|1/2eiSj/h̄−iµjπ/2 . (9)

The sum in (9) is over classical trajectories j connecting
r to r

′ at energy E, Sj is the action along the trajectory
j, µj is the corresponding Maslov index, and Dj is a
classical focusing factor that scales as m2/pLj (where
p is the classical momentum and Lj is the trajectory
length). For the straight-line trajectory, |Dj | = m2/p|r−
r
′|. Inserting the semiclassical expressions (8) and (9)

into Eq. (6), we obtain

ψ∗(r)ψ(r′) =
1

V

[

J0(k|r − r
′|) + h(r, r′)(kL)−1/2

]

,

(10)
where the Bessel function arises from the straight-line
path, and h(r, r′) is a sum over all other trajectories:

h(r, r′) =

′
∑

j

hj(r, r
′)

=

′
∑

j

∣

∣

∣

∣

2pLDj

πm2

∣

∣

∣

∣

1

2

cos

(

Sj
h̄
− (2µj + 1)π

4

)

. (11)

For typical point pairs (r, r′) separated by a distance
of order L, the function h(r, r′) is order unity in kL,
and the contributions to the correlator from the straight
line path and from other paths are both O((kL)−1/2).
For pairs (r, r′) separated by a bouncing path of length
Lj/L ≤ ǫ ≪ 1, h(r, r′) ∼ ǫ−1/2. However, the fraction
of such pairs is O(ǫ3) and their contribution to the vari-
ance and other moments of matrix element distributions
is negligible.

The intensity correlator in the semiclassical approxi-
mation becomes

Csc(r, r
′) =

1

V 2

2

β

[

J2
0 (k|r − r

′|) + h2(r, r′)(kL)−1

+ 2J0(k|r − r
′|)h(r, r′)(kL)−1/2 ] , (12)
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where the first (random wave) term is associated with the
straight-line path, and the remaining terms constitute
semiclassical corrections.

Similarly to the random wave correlator,24,27,36

Csc(r, r
′) must be corrected to take into account indi-

vidual wave function normalization. (Since the numer-
ator and denominator in (6) are both evaluated in a
large-kL approximation, the resulting intensity correlator
Csc(r, r

′) in general violates wave function normalization
at O(1/kL).) In analogy with Refs. 36 and 24 we have,
to leading order in 1/kL,

C̃sc(r, r
′) = Csc(r, r

′) +
1

V 2

∫

V

∫

V

dradrb Csc(ra, rb)

− 1

V

∫

V

dra Csc(r, ra) − 1

V

∫

V

dra Csc(ra, r
′) . (13)

Substituting C̃sc for C in Eq. (3), we find

δv2
αβ=∆2 3

π

(

2

β

)2
(ln kL+ bg) + bsc

(kL)2
+O

(

∆2

(kL)3

)

,

(14)
where bsc is a classical constant that in practice must
be determined numerically by performing the integral in
Eq. (3). As noted above, the random wave and semi-
classical contributions to Csc(r, r

′) are of the same order
except for |r − r

′| ≪ L; it is these short-distance pairs
that result in a logarithmic enhancement of the random-
wave term.

We may easily estimate the dependence of bsc on the
degree of chaoticity of the dynamical system by invoking
a diagonal approximation, in which the intensity correla-
tor Csc(r, r

′) of Eq. (12) is averaged over classically small
regions surrounding r and r

′. Noting that Eq. (11) gives
h(r, r′) as a sum of oscillatory terms with quasi-random
phases, such averaging leads to

Cdg
sc (r, r′)=

1

V 2

2

β

[

J2
0 (k|r−r

′|)+ 1

kL

′
∑

j

h2
j(r, r

′)
]

. (15)

We note from Eq. (11) that after averaging over
wavelength-scale oscillations, h2

j(r, r
′)/L = pDj/πm

2,
which is proportional to the classical probability of trav-
eling from a neighborhood of r to a neighborhood of r′ via
path j.33,35 Thus,

∑′
j h

2
j(r, r

′) in Eq. (15) corresponds to
the total classical probability of traveling from a neigh-
borhood of r to a neighborhood of r

′ via paths j other
than the straight-line path. Naively, the average semi-
classical correction to the intensity correlator appears to
increase as we include longer trajectories. However, let
us organize the trajectories by number of bounces n or
by time t ∼ nTB, where TB is a typical time for one
bounce in the billiard. Trajectories at times t that are
significantly longer than the classical correlation decay
time λ−1

∗ contribute only a constant, independent of r

and r
′, to Cdg

sc (r, r′). This is because a classical cloud
of trajectories centered near r becomes approximately
equidistributed over the entire billiard when eλ∗t ≫ 1,

for any initial point r. Such position-independent contri-
butions to Cdg

sc (r, r′) get subtracted off in the normaliza-
tion procedure (13). Thus, the typical size of Csc(r, r

′)
is determined by trajectories j having no more than
nmax ≈ (λ∗TB)−1 bounces.

Furthermore, as a function of t, the number of clas-
sical trajectories typically grows as eλt, while the focus-
ing factor for each trajectory j falls off as |Dj| ∼ e−λt,
where λ is the Lyapunov exponent defined earlier. Thus,
all n-bounce trajectories combine to form a contribution
to Eq. (15) whose order is roughly n-independent for
n < nmax. Summing over n up to nmax, where nmax

is large, we find

Cdg
sc (r, r′) =

1

V 2

2

β

[

J2
0 (k|r − r

′|) +O
(nmax

kL

)]

. (16)

Going beyond the diagonal approximation is necessary to
evaluate properly the integral in Eq. (3), but the scaling
is unaffected (since the diagonal contribution

∑′
j h

2
j con-

sists of O(eλt) positive terms, whereas the off-diagonal
contribution

∑′
i6=j hihj consists of O(e2λt) entering with

random signs). Comparing Eqs. (3), (14), and (16), we
obtain an estimate for the coefficient bsc in Eq. (14) de-
scribing the semiclassical correction to the random wave
model

bsc ∼ n2
max ∼ (λ∗TB)

−2
. (17)

This estimate confirms our intuition that semiclassical
corrections to the random wave approximation become
increasingly important as we consider billiards with a
very long ergodic time λ−1

∗ .
Alternatively, the scaling (17) may be obtained by not-

ing that when classical correlations persist on a time scale
λ−1
∗ that is much longer than the one-bounce time TB,

then the effective dimensionless Thouless conductance,
which scales as the ratio of the Heisenberg time to the er-
godic time, is reduced to gT ∼ (TBkL)/λ−1

∗ ∼ (λ∗TB)kL.
Now a typical chaotic wave function ψα(r) may be writ-
ten as a superposition of O(gT ) non-ergodic basis states

ηi(r). Since the correlator η∗i (r)ηi(r
′) for each non-

ergodic basis state ηi is of order V −1, we easily see that

ψ∗
α(r)ψα(r′) takes typical values of order V −1g

−1/2
T . The

wave function intensity correlator Csc(r, r
′) scales as the

square of the amplitude correlator, or as V −2g−1
T for typ-

ical pairs (r, r′), yielding a lower bound

δv2
αβ ∼ ∆2

g2
T

∼ ∆2

(λ∗TBkL)2
(18)

for the integral (3), consistent with Eqs. (14) and (17).
For “generic” chaotic systems, the correlation decay

time λ−1
∗ is of the same order as the one-bounce time

TB, and the above asymptotic scaling arguments for
λ∗TB ≪ 1 are not directly applicable. However, the first
few bounces may be summed up numerically to obtain
the semiclassical coefficient bsc. This coefficient may in
practice be quite large even for generic chaotic systems
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(e.g., the modified stadium billiard) and grows as the
system becomes less chaotic (and the time scale associ-
ated with non-universal behavior increases), in qualita-
tive agreement with Eq. (17).

Qualitatively, the above discussion is consistent with
our billiard results shown in Fig. 2, as fluctuations are
observed to be consistently larger for the less chaotic a =
0.25 billiard, as compared with the a = 1.00 billiard. We
note that both billiards are “generic,” in the sense that
they are not fine-tuned to obtain an anomalously long
time scale λ−1

∗ .
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FIG. 3: The enhancement of the variance of vαβ (solid line),
vαα (dashed line) and vαβγδ (dotted line) over the correspond-
ing random wave predictions is shown for a = 0.25 billiards,
at kL = 30, 40, 50, 60, 70, and 140. In each case, the data is
averaged over bump sizes s = 0.1 and 0.2. See Sec. IIIB below
for a discussion of vαα and vαβγδ. For vαβ , the random wave
prediction is given by Eq. (5) with bg = −0.10, and analogous
expressions for vαα and vαβγδ may be found in Ref. 24, with
corresponding constants b′g = −2.25 and b′′g = 0.90, respec-
tively.

However, a close look at the data suggests that the nu-
merical results cannot be explained fully by semiclassical
arguments, no matter how many bounces are included in
the analysis. The semiclassical correction to the variance
in Eq. (14) is manifestly O(1/(kL)2). However, the inset
in Fig. 2 clearly shows that the dynamical contribution
to the variance with kL is not consistent with Eq. (14)
but instead appears to follow a much slower power law
∼ 1/(kL)−1.15. This may be seen also in Fig. 3 (solid
line), where the enhancement over the random wave pre-
diction grows instead of diminishing with increasing kL.
We also note in Fig. 3 the increase from kL = 70 to
kL = 140 in the enhancement of the double-diagonal ma-
trix element variance δv2

αα (dashed line), discussed below
in Sec. III B. While this might be partly due to sta-
tistical noise, the data show clearly that wave function
fluctuations are not beginning to approach random wave
expectations even at kL = 140.

This anomalous behavior results from a combination
of two related factors: the dynamical enhancement, dis-

cussed above, of the bsc coefficient due to a finite cor-
relation time scale λ−1

∗ in an actual dynamical system,
and the consequent saturation of the 1/(kL)2 behavior
at moderate (<∼ 100) values of kL. As the classical sys-
tem becomes less unstable and the correlation time λ−1

∗

increases, bsc also increases in accordance with Eq. (17),
leading to greatly enhanced matrix element variance at
very large values of kL (14). Because the variance is
bounded above independent of kL, the (kL)−2 growth in
the variance necessarily breaks down for smaller values
of kL. This small-kL saturation sets in at ever larger val-
ues of kL as the system becomes less unstable and λ−1

∗

becomes larger.

Alternatively, one may note that the natural expansion
parameter for interaction matrix element fluctuations in
a dynamical system is not (kL)−1 but rather the inverse
Thouless conductance g−1

T ∼ (λ∗TBkL)−1, and the semi-
classical contribution with prefactor bsc in Eq. (14) is
the leading O(g−2

T ) effect in such an expansion. Terms of

third and higher order in g−1
T , although formally sublead-

ing and not included in a semiclassical calculation, be-
come quantitatively as large as the leading O(g−2

T ) term
when gT falls below some characteristic value. This a sig-
nature of the breakdown of the semiclassical expansion
(14) in the calculation of interaction matrix element fluc-
tuations. Furthermore, if one considers chaotic billiards
with a long correlation decay time λ−1

∗ , the importance
of formally subleading terms in the g−1

T expansion, and
thus the breakdown of the semiclassical expansion, will
extend to quite large values of kL. These results suggest
that interaction matrix element statistics are particularly
sensitive to long-range wave function correlations that go
beyond the semiclassical approximation. We remark that
there is no conflict here with the well-known fact that
semiclassical approximations may work quite well in the
evaluation of other types of statistical quantities, even in
the same billiard systems as the ones being considered
here and in the same kL regime.

The above assertions are explicitly confirmed for a
quantum map model, described in detail in the Ap-
pendix, which has scaling behavior analogous to that
of a two-dimensional billiard, with the number of states
N = 2π/h̄ playing the role of semiclassical parameter
kL = pL/h̄ in the billiard.37,38 As in the billiard, a free
parameter in the definition of the map allows for con-
trol of the classical correlation decay time λ−1

∗ . A key
difference between the two-dimensional billiard and the
map model is that the map lacks a logarithmic random
wave contribution to the variance. We see in Fig. 4 that
the expected N−2 behavior of the variance is observed
at sufficiently large N , for all three families of quantum
maps considered. Furthermore, the prefactor multiply-
ing N−2 in each case agrees with that obtained from a
semiclassical calculation, and as expected this prefactor
grows with increasing classical correlation time λ−1

∗ (cor-
responding to a decrease in the chaoticity of the system).
We also see in Fig. 4 that even for a “typical” chaotic
system (i.e., λ∗TB ∼ 1), strong deviations from the 1/N2
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FIG. 4: The two-body matrix element variance S for a quan-
tum map, Eq. (A6) in the Appendix, as a function of the
Hilbert space dimension N . From top to bottom, the three
solid lines represent data for dominant orbit stability expo-
nent λ0 = 0.25, 0.50, 1.00. The three dashed lines indicate
the asymptotic 1/N2 behavior for each case in the semiclas-
sical regime of large N , where the theoretical prefactors are
obtained from the classical dynamics.

law appear already below N ≈ 80. Such deviations ex-
tend to even larger N for chaotic systems with slower
classical correlation decay. Based on results shown in
Fig. 4 and the scaling N ∼ kL, it is reasonably safe to
conclude that the large-N or large-kL expansion will be
valid for kL ∼ 1000, corresponding to ∼ 105 electrons
in the dot. At the same time we see that this expan-
sion, though theoretically appealing and asymptotically
correct, is problematic in describing the quantitative be-
havior of interaction matrix element fluctuations for real
chaotic systems in the physically interesting energy range
kL < 100.

The above numerical calculations were all performed
in the presence of time reversal symmetry (β = 1). From
Eq. (14) we see that when time reversal symmetry is
broken (β = 2), both the random wave contribution to
the matrix element variance (the term proportional to
ln kL + bg) and the semiclassical contribution (the term
proportional to bsc) are suppressed by the same factor of
4. Thus, the dynamical enhancement factor for a given
dot geometry is necessarily β-independent in the semi-
classical limit kL ≫ 1. However, the saturation effect,
which tends to suppress the enhancement as kL is re-
duced, will be less important when β = 2, since the vari-
ance is smaller in this case. Thus, at any finite value of
kL, the dynamical enhancement in the variance over the
random wave model will be greater when time reversal
symmetry is broken, and one may expect enhancements
somewhat larger than those shown in Fig. 3. This result
has been confirmed in the quantum map model.

B. Fluctuation of vαα and vαβγδ

We have similarly studied the variance δv2
αα of double-

diagonal interaction matrix elements and the variance

δv2
αβγδ of off-diagonal interaction matrix elements for ac-

tual chaotic billiards. Once again, the random wave pre-
dictions24 must be used as the baseline for comparison.
In Fig. 3, we show the enhancement factor for these ma-
trix element variances, together with the corresponding

data for δv2
αβ discussed previously.

In the range 30 ≤ kL ≤ 70 most relevant to experi-
ment, we observe an enhancement in δv2

αα over the ran-
dom wave prediction that is similar to the enhancement

in δv2
αβ in the same energy range. In both cases, the en-

hancement factor continues to grow, instead of approach-
ing unity, at increasing kL. This latter fact strongly
suggests that even at kL = 140, we are still far from
the asymptotic regime of large gT , where matrix element
fluctuations would be adequately described by a random
wave picture supplemented by semiclassical corrections.
The enhancement at large kL is particularly dramatic
in the case of δv2

αα fluctuations. On the other hand,
the variance of off-diagonal matrix elements vαβγδ is en-
hanced over the random wave prediction by at most 10%,
over the entire energy range considered. This is consis-
tent with the reasonable expectation that dynamical ef-
fects lead to particularly strong deviations from random
wave behavior in a modest fraction of the total set of
single-particle states, such as those associated with par-
ticularly strong scarring on unstable periodic orbits.39

Such deviations lead to a significant tail in the vαα dis-
tribution, but have a minimal effect on the distribution
of off-diagonal matrix elements, since it is unlikely for all
four wave functions ψα, ψβ ψγ , and ψδ to be strongly
scarred or antiscarred on the same orbit.

Indeed, inspection of wave functions ψα associated
with anomalously high double-diagonal matrix elements
vαα shows that these wave functions have disproportion-
ately high intensity on average near the dominant hori-
zontal bounce periodic orbit, which follows the lower edge
of the billiard in Fig. 1. We note, however, that asymp-
totic scar theory in the kL→ ∞ limit predicts O(1/(kL))
corrections to the intensity correlation function in posi-
tion space and only in a region of size O(1/(kL)1/2) sur-
rounding a periodic orbit. Comparing with the integral
expression (3) for the variance, we see that periodic orbits
asymptotically contribute to the variance only at order
1/(kL)3, compared to the O(1/(kL)2) semiclassical effect
associated with generic (non-periodic) classical trajecto-
ries (14). Thus, the relative importance of periodic orbit
effects on matrix element fluctuations is a finite-kL (or
finite-h̄) phenomenon, which cannot explain the quan-
titative scaling behavior of the variance with kL, and
which is expected to become irrelevant in the asymptotic
kL→ ∞ limit.
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C. Matrix element covariance δvαβδvαγ

The normalized random wave model has been shown
to produce a covariance δvαβδvαγ that is always nega-
tive, has size ∼ ∆2 ln kL/(kL)3 for small ω = Eβ − Eω,
and falls off as (ω/ET )−2 ∼ (δkL)−2 for ω ≫ ET , where
ET is the ballistic Thouless energy.24 However, in a dif-
fusive dot, the same matrix element covariance is found
to be a positive constant ∝ ∆2/g3

T (where gT is the dif-
fusive Thouless conductance) for energy separations ω
much smaller than the diffusive Thouless energy Ec. This
diffusive covariance falls off for ω ≫ Ec but remains posi-
tive as long as ω ≪ h̄/τ , where τ is the mean free time.22

An interesting issue is then the sign of the covariance in
an actual chaotic system.

First we note the sum rule24

∑

β 6=γ

δvαβδvαγ = −
∑

β

(δvαβ)2 . (19)

This sum rule is quite general and holds for either a bal-
listic or a diffusive dot as long as a completeness relation
is satisfied within an energy window in which the states
β and γ reside. The average covariance must therefore
be negative when averaged over all states β and γ within
such an energy window. The size of the energy window in
each case must be at least of size h̄ multiplied by the in-
verse time scale of first recurrences. In a ballistic system
this implies an energy window of size at least E0 = h̄/TB,
where TB is the one-bounce time. In a diffusive system,
the completeness relation requires energy scales larger
than E0 = h̄/τ , where τ is the mean free time, and thus
the positive sign of the diffusive covariance at energy sep-
arations ω ≪ h̄/τ does not contradict the sum rule (19).

In actual chaotic billiards, it is in principle possible to
find positive covariance at energy scales ω ≪ E0, as long
as the covariance is sufficiently negative for ω ∼ E0 to
produce a negative average covariance over the full en-
ergy window that is consistent with the sum rule (19).
Such positive covariance can result from scars since ψβ
and ψγ will typically be scarred or antiscarred along the
same orbits when ω = Eβ−Eγ is small. The scar contri-
bution to the covariance for small ω is O(1/(kL)3) (i.e.,
of the same order as the scar contribution to the vari-
ance) and is formally subleading compared with the neg-
ative O(ln kL/(kL)3) random wave contribution. How-
ever, within the range of kL values relevant to experi-
ments, the scar contribution can dominate and lead to a
positive covariance for nearby single-particle wave func-
tions.

Unfortunately, it is not practical to calculate the ma-
trix element covariance in a real billiard, since the num-
ber of wave functions that can be averaged over is not
sufficient to obtain a signal larger than the statistical
noise. We instead obtain good statistics for the covari-
ance in a ballistic discrete map model, introduced pre-
viously in the discussion of the variance, and described
in detail in the Appendix. In such discrete maps, the
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FIG. 5: The covariance δvαβδvαγ is computed as a function
of energy separation ω = Eβ − Eγ for an ensemble of ballis-
tic discrete-time maps, described in the Appendix, Eqs. (A9)
and (A10). Here E0 = h̄/TB , where TB is the one-bounce
time. The system size N is 128, and A = 0. The dotted line
indicates the negative average covariance implied by the sum
rule (19).

matrix element variance or covariance contains no loga-
rithmic terms. For generic chaotic ballistic systems (i.e.,
Lyapunov time of the same order as the one-step time),
we find that the covariance is O(N−3) ∼ O((kL)−3) and
positive for ω ≪ E0 = h̄/TB, but becomes negative at
ω ∼ E0, in contrast with the random wave prediction
of an always negative covariance. A typical example for
N = 128 is shown in Fig. 5. Here discreteness of time
implies energy periodicity with period 2πE0 = 2πh̄/TB,
and thus a maximum energy separation ω = πE0. In
Fig. 5, the dotted line indicates the negative average co-
variance over the entire energy window of size 2πE0, as
required by the sum rule (19). We note that due to par-
tial cancellation between positive covariance at small en-
ergy separations and negative covariance at larger sepa-
rations, the average covariance is noticeably smaller than
the “typical” value, although both scale as O(N−3).

It is interesting to compare with the covariance in an
ensemble of two-dimensional diffusive discrete maps.40

Typical data is shown in Fig. 6 for an ensemble of diffu-
sive maps on a 32x32 lattice, with Thouless conductance
gT = 12 (solid curve) and gT = 24 (dashed curve). The
theory predicts a variance scaling as 1/g2

T and a covari-

ance scaling as 1/g3
T , so δvαβδvαγ/δv2

αβ should scale as

1/gT in the gT → ∞ limit. Just as in the ballistic case,
the covariance is positive for small separations ω and be-
comes negative when ω ∼ E0. The average covariance
over a maximal energy window of size 2πE0 is again neg-
ative, as predicted by the sum rule (19) and indicated by
a dotted line.
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FIG. 6: The covariance δvαβδvαγ is computed as a function
of energy separation ω = Eβ−Eγ for an ensemble of diffusive
discrete-time maps on a 32x32 lattice.40 The solid curve cor-
responds to Thouless conductance gT = 12 (Ec/E0 = 0.074)
and the dashed curve corresponds to gT = 24 (Ec/E0 =
0.147). Here E0 = h̄/τ , where τ is the mean free time. The
value ω = Ec, below which the covariance is expected to ap-
proach a constant positive value, is indicated by a circle in
each case. The dotted line indicates the negative average co-
variance implied by the sum rule (19).

IV. ONE-BODY MATRIX ELEMENTS

When an electron is added to the finite dot, charge ac-
cumulates on the surface and its effect can be described
by a one-body potential energy V(r), which diverges at
the boundary of the dot. For comparison with the ran-
dom wave predictions, we use the schematic approxima-
tion

V(~r) ∼
(

min
~R∈C

|~r − ~R|
)− 1

2

, (20)

which was shown in Ref. 24 to correctly capture the effect
of the one-body potential energy in the random wave
model. Here C is the boundary of the billiard, and the
schematic potential (20) is normalized to have the same
average as the true one-body potential.24

The diagonal matrix elements of V(r) are given by vα ≡
Vαα =

∫

V
dr |ψα(r)|2 V(r), and the variance of these one-

body matrix elements may be computed as

δv2
α =

∫

V

∫

V

dr dr′ V(r)C(r, r′)V(r′) . (21)

Dynamical enhancement of one-body matrix element
fluctuations may be studied similarly to the analysis
of two-body matrix element fluctuations presented in
Sec. III. The leading semiclassical contribution to the
variance is obtained by substituting the normalized semi-
classical intensity correlatorCdg

sc [see Eq. (16)] for C(r, r′)

in Eq. (21). We immediately obtain

δv2
α =

cg + csc
β

∆2

kL
+O

(

∆2

(kL)2

)

, (22)

where cg is a geometry-dependent dimensionless coeffi-
cient arising already in the random wave model,24 while
csc ∼ (λ∗TB)−1 is associated with the classical dynam-
ics. We note that the asymptotic power-law behavior of
the variance is unchanged from the random wave model,
and the variance is enhanced only by a kL-independent
constant.
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FIG. 7: The variance of the one-body diagonal matrix element
vα for modified quarter-stadium billiards (a = 0.25; averaged
over s = 0.1 and s = 0.2) is plotted as a function of semiclassi-
cal parameter kL. Solid line: Neumann boundary conditions.
Dashed line: Dirichlet boundary conditions on curved bound-
aries, and Neumann boundary conditions elsewhere. Dotted
line: Analytic prediction for the random wave model (given
by Eq. (22), including only the cg term).

Numerical data for δv2
α in modified quarter-stadium

billiards is presented in Fig. 7, and compared with ran-
dom wave results. The ratio of the actual variance to
the random wave prediction is shown in Fig. 8. Clearly
this ratio is not constant but rather grows with kL (as
was also the case with the vαβ variance). Assuming that
semiclassical expressions are applicable in the asymptotic
large-kL regime, the results of Fig. 8 indicate once again
that at kL ≈ 70 this regime is still far from being reached.
The same can be observed by comparing data for Neu-
mann and Dirichlet boundary conditions in Fig. 7. Since
Dirichlet wave functions decay to zero at distances less
than 1/k from a boundary, where the surface potential is
especially strong, we expect larger matrix element fluctu-
ations for the Neumann boundary condition data, qual-
itatively consistent with the results in the figure. How-
ever, the fraction of points r so close to the boundary
is O(1/kL), while the surface potential V(r) is only en-
hanced by O((kL)1/2) there, so the boundary condition
effect is formally subleading. Nevertheless, we clearly
see from the figure that in the energy range of experi-
mental interest, the boundary condition effect is of size
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comparable both to the dynamical enhancement and to
the baseline random wave prediction for the variance.
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FIG. 8: Enhancement factor of the vα variance over the ran-
dom wave prediction is plotted for modified quarter-stadium
billiards with Neumann boundary conditions, averaged over
s = 0.1 and 0.2. Solid line: a = 0.25; dashed line: a = 1.00.

V. MATRIX ELEMENT DISTRIBUTIONS

Just as was done previously for the random wave
model,24 we can go beyond the variance to investigate
higher moments of the matrix element distribution for
actual chaotic systems. A typical distribution for diago-
nal two-body matrix elements vαβ in a modified quarter-
stadium billiard with a = 0.25 and s = 0.1 is shown in
Fig. 9. Since the approach to Gaussian behavior is al-
ready very slow in the case of random waves, it is not
surprising to find even stronger deviations from a Gaus-
sian shape for matrix elements in real chaotic systems at
the same energies. Thus, for modified quarter-stadium
billiards with a = 1, the skewness γ1 of the vαβ distri-
bution grows from 1.95 at kL = 70 to 2.72 at kL = 140,
while the skewness for the same geometry in the random
wave model drops slightly from 1.21 to 1.09. Similarly,
the excess kurtosis γ2 increases from 8.3 at kL = 70 to
20.9 at kL = 140, while dropping from 3.7 to 3.3 in the
random wave model. Similar behavior is obtained for
other matrix elements. Clearly, the distribution tails are
very long, and the assumption of Gaussian matrix ele-
ment distributions is even less justified for real chaotic
systems than it was in the random wave model.

VI. BEYOND THE CHAOTIC REGIME

In this Section we consider fluctuations of matrix ele-
ments in systems that are not fully chaotic. Here no uni-
versal behavior is expected but we shall see that in such
systems the variance can be enhanced much more than
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FIG. 9: The distribution of diagonal interaction matrix ele-
ments vαβ is shown for real random waves in a disk24 (dashed
curve) and for actual eigenstates in a modified quarter-
stadium billiard geometry with Neumann boundary condi-
tions (solid curve) at kL = 70. A Gaussian distribution with
the same mean and variance as the random wave distribution
is shown as a dotted curve for comparison.

in fully chaotic systems.32 We use the modified quarter-
stadium billiard [see Eq. (1)] with s = 0 or a < 0. The
choice s = 0 corresponds to the original Bunimovich sta-
dium, whose quantum fluctuation properties are dom-
inated by the marginally-stable bouncing-ball modes,
while a < 0 corresponds to a lemon billiard, which has a
classically mixed, or soft chaotic, phase space.

A. Two-body matrix elements

1. Fluctuation of diagonal matrix elements vαβ

In contrast with the ln kL/(kL)2 falloff in the vαβ vari-
ance predicted for fully chaotic dynamics by Eq. (14), in
the case of regular or mixed dynamics we expect kL-
independent matrix element fluctuations of order unity.
To see this explicitly, suppose that the classical phase
space consists of one regular and one chaotic region,
with each wave function uniformly distributed over one
of the two regions. Projecting these regions onto po-
sition space, let f(r) be the fraction of the energy hy-
persurface at r that is part of the regular region, i.e.,
the fraction of momentum directions at r that corre-
spond to stable trajectories. Then the average regu-
lar wave function has intensity |ψreg(r)|2 = V −1f(r)/f
at position r, while the average chaotic wave function
has intensity |ψch(r)|2 = V −1(1 − f(r))/(1 − f). Here
f = 1

V

∫

V dra f(ra) is the total fraction of regular points
in classical phase space, or equivalently the fraction of
regular quantum eigenstates in the large kL limit. Then,
starting with the expression (2) for the two-body matrix
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element we find that on average

vαβ = ∆V

∫

V

dr
1

V 2

f2(r)

f
2 = ∆

f2

f
2 (23)

whenever α and β are both regular states, to be compared
with the overall average vαβ = ∆ for all states α, β.
Clearly, vαβ is enhanced by a factor of order unity, since
the two regular states tend to be concentrated in the
same region of phase space. Similarly, by replacing f with
1−f , we obtain enhanced vαβ = ∆(f2−2f+1)/(1−f)2
when both α and β are chaotic, and finally, below average

interaction matrix elements vαβ = ∆(f2 − f)/(f
2 − f)

are typically obtained when one single-particle state is
regular and the other chaotic. Combining these results,
we obtain the lower bound

δv2
αβ ≥ ∆2

(

f2 − f
2

f − f
2

)2

, (24)

where the quantity in parentheses is a classical system
property independent of kL. Unless the local regular
fraction f(r) is a position-independent constant, this
quantity is nonzero, and the standard deviation is nec-
essarily of the order of ∆, i.e. of the same order as the
average vαβ . We note that Eq. (24) is a lower bound
only, as it assumes that each regular or chaotic state is
uniformly spread over its corresponding phase space re-
gion. Any intensity fluctuations within the set of regular
states or within the set of chaotic states will only add to
the total matrix element variance.

The kL-independence of the variance for regular sys-
tems can also be inferred from the following simple argu-
ment: regular-like quantum behavior is obtained when
the ergodic time λ−1

∗ of a chaotic system becomes of
the same order as the Heisenberg time πkLTB needed
to resolve the spectrum. Then the Thouless conductance
gT ∼ kLλ∗TB is of order unity and Eqs. (14) and (17) ob-

tained originally for chaotic dynamics imply δv2
αβ ∼ ∆2.

Thus, in both the chaotic and the regular (or mixed)
situations, increased interaction matrix element fluctua-
tions can be understood as arising from excess wave func-
tion localization, beyond what is expected from a random
wave model.

The constant factor in Eq. (24) depends not only on the
regular fraction f in phase space, but equally importantly

on the relative size ∼ f
2
/f2 of the position-space region

in which the regular states live (i.e., the participation
ratio of the regular states). For example, in the extreme
case where all regular states live in in area Vreg and all
chaotic states live in the complementary area V − Vreg,

we have f = f2 = Vreg/V , and δv2
αβ = ∆2, independent

of the size of Vreg.
Eq. (24) predicts very large enhancement, scaling as

(kL)2/ ln kL, of the matrix element variance in mixed dy-
namical systems, over the random wave prediction. Large
matrix element fluctuations in the presence of soft chaos
have previously been observed in Ref. 32.
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FIG. 10: The variance of vαβ for a = 0.25, 1.00 quarter-
stadium billiards (upper and lower solid lines); a = −0.25,
−0.50 quarter-lemon billiards (upper and lower dashed lines);
random waves (dotted line). Neumann boundary conditions
are used for all four billiards.

The diagonal matrix element variance δv2
αβ is com-

puted as a function of kL for two typical mixed phase-
space quarter-lemon billiards and shown by dashed lines
in Fig. 10. As expected, no falloff with kL is observed. In
Fig. 11, we see that enhancement of an order of magni-
tude or more over random wave behavior can easily be ob-
tained for physically interesting values of kL. The most
dramatic enhancement is observed for the a = −0.25
quarter-lemon billiard, which is closer to integrability.
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FIG. 11: Enhancement of the vαβ variance as compared
with the random wave prediction for a = 0.25, 1.00 quarter-
stadium billiards (solid lines); a = −0.25, −0.50 quarter-
lemon billiards (dashed lines). See Fig. 10.

Behavior intermediate between hard chaos and mixed
chaotic/regular phase space is obtained in the presence
of families of marginally stable classical trajectories, such
as the “bouncing ball” orbits of the stadium billiard. In
the quarter stadium billiard (s = 0 in Fig. 1), exceptional
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states associated with such orbits are concentrated in the
rectangular region of the billiard and constitute a fraction
∼ 1/(kL)1/2 of the total set of states.41 When α and β
are both bouncing ball states, δvαβ = vαβ−vαβ ∼ ∆, just
as would be the case for regular states concentrated in
a finite fraction of the available coordinate space. These
special matrix elements dominate the variance, leading
to

δv2
αβ ∼ ∆2

kL
, (25)

and implying an enhancement factor ∼ kL/ lnkL over
the random wave prediction. Numerical data for quarter-
stadium billiards is shown by solid lines in Figs. 10 and
11. The stronger fluctuations are observed in the less
chaotic a = 0.25 stadium.

2. Fluctuation of vαα and vαβγδ

A calculation analogous to the one resulting in Eq. (24)

shows that δv2
αα must also be O(∆2) and kL-independent

for a billiard with mixed phase space. In addition, the
average vαα is enhanced by an O(1) factor from its ran-
dom wave value of 3∆ (β = 1) or 2∆ (β = 2). In the
stadium billiard, the absence of a stable phase space re-
gion ensures that bouncing ball states, with δvαα ∼ ∆
and frequency ∼ 1/(kL)1/2 should dominate the double-
diagonal matrix element variance:

δv2
αα ∼ ∆2

(kL)1/2
. (26)

The billiard results (not shown) are qualitatively consis-
tent with the above predictions, although statistical noise
prevents us from extracting a meaningful power law be-
havior.

In contrast, fluctuations in the off-diagonal matrix ele-
ments vαβγδ are relatively little affected by bouncing ball
orbits or even regular phase space regions. This is due
to the fact that these elements are zero on average, not
O(∆), and thus an increase by an O(1) factor of some
matrix elements does not necessarily lead to a large vari-
ance. We may consider an extreme scenario where each
eigenstate is located in one of two disjoint regions of area
V/2. Clearly vαβγδ is non-vanishing only when all four
states are located in the same half of the billiard. In
such a case, the typical v2

αβγδ is enhanced by a factor of
8 compared with the random wave prediction, ignoring
logarithms. Because 1/8 of all matrix elements vαβγδ are

nonzero, the variance δv2
αβγδ is nearly unchanged from

the ergodic case. The above argument generalizes triv-
ially to an arbitrary number of wave function classes.
Numerical data in quarter-stadium and quarter-lemon

billiards (not shown) confirm that δv2
αβγδ is nearly inde-

pendent of the classical dynamics in the billiard. Higher
moments of the δvαβγδ distribution are greatly enhanced
in systems with mixed phase space, and the distribution
becomes strongly non-Gaussian.

B. One-body matrix elements

In a billiard with mixed classical phase space,
we expect the one-body matrix element vα
of the surface charge potential V to average
∫

V
dr V(r)f(r)/

∫

V
dr f(r) = Vf/f for regular states,

where f(r) is the function defined in Section VI A 1,
and similarly to average (V − Vf)/(1 − f) for chaotic
states. We then obtain a lower bound for the variance
analogous to Eq. (24),

δv2
α ≥

(

Vf − V f
)2

f − f
2 , (27)

which is O(∆2) and independent of kL. Thus, Eq. (27)
implies an enhancement by a factor ∼ kL over the vari-
ance for fully chaotic billiards given by Eq. (22). The
absence of a falloff in the variance with increasing kL
is consistent with our results for quarter-lemon billiards
(dashed lines) in Fig. 12.

5×10-4

1×10-3

2×10-3

5×10-3

1×10-2

 30  40  50  60  70

(δ
v α

)2

kL

FIG. 12: The variance of vα for a = 0.25, 1.00 quarter-
stadium billiards (solid lines); a = −0.25, −0.50 lemon bil-
liards (dashed lines); random waves (dotted line). Neumann
boundary conditions are used for all four billiards.

In the quarter-stadium billiard, bouncing-ball states
with δvα ∼ ∆ will once again dominate the variance

δv2
α ∼ ∆2

(kL)1/2
, (28)

which is a factor ∼ (kL)1/2 enhancement over random
wave behavior. The decay predicted by Eq. (28) is not
observed in the numerical data in the experimentally rel-
evant range 30 ≤ kL ≤ 70 (solid lines in Fig. 12), sug-
gesting once again that the energies are not high enough
for the asymptotic large-kL scaling laws to be applicable.
We do find that enhancement by a factor of 5 to 15 of
the one-body matrix element variance is quite possible in
the energy range of interest, when the billiard under con-
sideration exhibits either soft chaos or marginally stable
orbits in the classical dynamics.
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VII. SUMMARY AND CONCLUSION

We have studied fluctuations of two-body and one-
body matrix elements in chaotic billiards as a function of
a semiclassical parameter kL, and compared them with
the normalized random wave model predictions. Under-
standing the quantitative behavior of these fluctuations is
important for the proper analysis of peak spacing statis-
tics in the Coulomb blockade regime of weakly coupled
chaotic quantum dots.

Dynamical effects, associated with non-random short-
time behavior in actual chaotic systems, are formally sub-
leading for two-body matrix elements, and of the same
order as the random wave prediction for one-body matrix
elements. In practice, however, we find that these effects
can easily lead to enhancement by a factor of 3 or 4 of the
variance in both one-body and two-body matrix elements
for experimentally relevant values of kL and in reason-
able hard chaotic geometries. Somewhat larger enhance-
ment factors are expected when time reversal symmetry
is broken by a magnetic field. The size of these dynam-
ical corrections scales in each case as a power of λ−1

∗ , a
time scale associated with approach to ergodicity in the
associated classical dynamics. Random wave behavior is
recovered in the limit λ−1

∗ → 0. In typical geometries,
dynamical effects on matrix element fluctuations cannot
be properly computed in a semiclassical approximation,
as higher-order terms are quantitatively of the same size
as the semiclassical expression in the kL range of experi-
mental interest. We have used a quantum map model to
investigate the approach to semiclassical scaling at very
large values of kL as well as the saturation of matrix
element fluctuations at moderate to small values of kL.

In the case of the interaction matrix element covariance
for energy levels that are separated by less than the ballis-
tic Thouless energy, dynamical effects are not only often
larger than random wave effects, but are also of oppo-
site sign, leading to an overall covariance that is positive.
This is in contrast with the random wave model where
the covariance is always negative. Nevertheless, the sum
rule (19) is preserved due to large negative covariances
for more widely separated states. We have discussed an
analogy with similar behavior in diffusive systems.

Systems with a mixed chaotic-regular phase space or
with families of marginally stable classical orbits show
even stronger enhancement of matrix element fluctua-
tions as compared with the random wave model. We
discussed the expected asymptotic scaling with kL of the
matrix element fluctuations in these cases, and found it
to be very different from the scaling found in chaotic sys-
tems.

Our results strongly indicate that wave function statis-
tics in actual chaotic single-particle systems, including
dynamical effects, are needed to make a proper quantita-
tive comparison between theory (e.g., Hartree-Fock) and
experiment. A better understanding of single-particle
wave function correlations is then essential for the calcu-
lation of observables in an interacting many-electron sys-

tem such as the peak spacing distribution in the Coulomb
blockade regime of a quantum dot. Furthermore, these
correlations need to be understood beyond the naive lead-
ing order semiclassical approximation, to allow compari-
son with experiments, which are generally performed at
moderate values of the semiclassical parameter kL.
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Appendix A: Quantum Map Model

To understand better the anomalously slow decay of

δv2
αβ and other matrix element fluctuations in realistic

chaotic systems, we may consider a toy model (perturbed
cat map42) that displays very similar behavior and for
which it is easy to collect good statistics at very large
values of kL. Define a classical map on the torus (q, p) ∈
[−π, π) × [−π, π) by

qt+1 = qt +K ′(pt) mod 2π

pt+1 = pt − V ′(qt+1) mod 2π . (A1)

The above map may be obtained by stroboscopically
viewing the periodically-kicked Hamiltonian system

H(q, p, t) = K(p) +

∞
∑

n=−∞

δ(t− n)V (q) . (A2)

We choose the kick potential to be a perturbation of an
inverted harmonic oscillator

V (q) = −q
2

2
−A cos q −B(4 cos q − cos 2q)

+ C(2 sin q − sin 2q) , (A3)

while the kinetic term governing free evolution between
kicks is

K(p) =
p2

2
+A cos p+B(4 cosp− cos 2p) . (A4)

K(p) is even in p to preserve a time-reversal invariance
(symmetry class β = 1). V (q) andK(p) have been chosen
so that the map has a period-1 orbit at q = p = 0, with
stability exponent

λ0 = cosh−1

[

1 +
1

2
(1 −A)2

]

≈ 1 −A , (A5)



14

where the approximate form holds for λ0 ≪ 1. Thus, A
may be varied to change the stability of the shortest orbit,
whereas the perturbations B and C, which have no effect
on the linearized behavior around q = p = 0, allow for
ensemble averaging while keeping the monodromy matrix
of the central orbit fixed.

This map may be quantized using standard tech-
niques;37 the position basis is discrete with spacing h̄
due to periodicity in momentum. The Hilbert space di-
mension, N = 2π/h̄, plays the role of the semiclassical
parameter kL = pL/h̄ in the billiard system. The double
integral of Eq. (3) must be replaced by a double sum

S = N2
N
∑

i,j=1

i6=j

[

|ψi|2|ψj |2 − c
]2

, (A6)

where c is a constant that ensures

N2
N
∑

i,j=1

i6=j

[

|ψi|2|ψj |2 − c
]

= 0 . (A7)

Note that since we are working in one dimension, we must
drop the i = j terms to prevent them from dominating
the sum. Our one-dimensional toy model will not repro-
duce the ln kL/(kL)2 behavior that is associated with
the short-distance 1/k ≪ |r − r

′| ≪ L divergence of the
two-dimensional correlator. Instead, we can think of S
as the analogue of the two-dimensional integral (3) with
the short-distance part subtracted:

V 2

∫

V

∫

V

dr dr′ C2(r, r′)− 3

π

(

2

β

)2
ln kL

(kL)2
∼ bg

(kL)2
+· · · .
(A8)

Numerical results for the map are shown in Fig. 4. We
observe the expected S = bmap/N

2 semiclassical behav-
ior for large N , and the increase of the prefactor bmap

with decreasing classical stability exponent λ0 (see the
discussion in Section III A). Furthermore, we note that
even for the “typical” case λ0 = 1, strong deviations
from the simple power-law behavior appear for N ≤ 50;
even larger values of N are necessary to observe the cor-
rect power law for smaller λ0. All the curves saturate at
S ≈ 0.045, leading to the appearance of a slower than
1/N2 decay at moderate N values. Thus, it is not sur-
prising that a weaker than expected dependence on kL
is observed for moderate kL values in Section III A.

As noted in Ref. 24, the interaction matrix element
covariance is suppressed relative to the variance by a fac-
tor ∼ kL or N , and the covariance is not a self-averaging
quantity. To improve the poor ratio of signal to statis-
tical noise, we may work with a larger ensemble defined
by

V (q) = −q
2

2
−A cos q + Vrnd(q)Θ(|q| − q0) (A9)

and

K(p) =
p2

2
+A cos p+Krnd(p)Θ(|q| − p0) , (A10)

where Vrnd(q) andKrnd(p) are random functions, Krnd(p)
is even to preserve time-reversal symmetry, and Θ is the
step function: Θ(x) = 1 for x ≥ 0 and 0 otherwise. The
local dynamics near the periodic orbit at q = p = 0 is
unaffected by the ensemble of perturbations. In Fig. 5,
we use A = 0 and q0 = p0 = π/2, but very similar
behavior is obtained for other values of the parameters.
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41 A. Bäcker, R. Schubert and P. Stifter, J. Phys. A 30, 6783

(1997).
42 P. A. Boasman and J. P. Keating, Proc. R. Soc. London,

Ser. A 449, 629 (1995).


