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A theory of the electronic response in spin and charge disordered media is developed with the
particular aim to describe III-V dilute magnetic semiconductors like Ga1−xMnxAs. The theory com-
bines a detailed k · p description of the valence band, in which the itinerant carriers are assumed
to reside, with first-principles calculations of disorder contributions using an equation-of-motion ap-
proach for the current response function. A fully dynamic treatment of electron-electron interaction
is achieved by means of time-dependent density functional theory. It is found that collective excita-
tions within the valence band significantly increase the carrier relaxation rate by providing effective
channels for momentum relaxation. This modification of the relaxation rate, however, only has a
minor impact on the infrared optical conductivity in Ga1−xMnxAs, which is mostly determined by
the details of the valence band structure and found to be in agreement with experiment.
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I. INTRODUCTION

The idea of using both charge and spin of electrons in a new generation of electronic devices constitutes the basis of
spintronics.1 The magnetic properties of the material combined with its semiconducting nature makes dilute magnetic
semiconductors (DMSs) potentially appealing for various spintronics applications.2 In particular, the effect of carrier
mediated ferromagnetism opens up the possibility to control the electron spin and magnetic state of a system or device
by means of an electric field. A lot of attention is drawn to Ga1−xMnxAs due to the well developed technology of the
conventional GaAs based electronics and discovery of its relatively high ferromagnetic transition temperature,2 with
a current record of Tc = 185 K.3

Unlike most other III-V DMSs, the nature of the itinerant carriers in Ga1−xMnxAs is still under debate.4,5 It is
widely accepted that for low-doped insulating samples the Fermi energy lies in a narrow impurity band. For more
heavily doped, high-Tc metallic samples there are strong indications that the impurity band merges with the host
semiconductor valence band forming mostly host-like states at the Fermi energy with some low-energy tail of disorder-
related localized states.6 First-principles calculations7–9 have so far not been fully conclusive regarding the nature of
the itinerant carriers in this regime, and further theoretical studies continue to be necessary. Meanwhile, attention
has shifted to model Hamiltonian approaches assuming either the valence band10 or impurity band11 picture and their
ability to adequately describe the experimental results in Ga1−xMnxAs.

The extreme sensitivity of the magnetic and transport properties of Ga1−xMnxAs to details of the growth
conditions12 and post-growth annealing13–15 points to the crucial role played by the defects and their configura-
tions. This has stimulated intense research on the structure of defects and their influence on the various properties
of the system.16 It is essential, therefore, to develop a theory of electrical conductivity in DMSs with emphasis given
to disorder and electron-electron interactions, without neglecting the intricacies of the electronic band structure.
Several previous theoretical studies of Ga1−xMnxAs, based on the assumption of the valence-band nature of itinerant
holes, treat the band structure in detail, while disorder and many-body effects are only accounted for using simple
phenomenological relaxation time approximations and static screening models.17–19 Other studies of the magnetic
and transport properties of DMSs include microscopic treatments of disorder effects,20–25 but use simplified model
descriptions of the band structure.

Here we present a comprehensive theory for the electron dynamics in DMSs which accounts for the complexity of the
valence band structure of the semiconductor host material and treats disorder and electron-electron interaction on an
equal footing. In previous work we used a simplified treatment of the semiconductor valence band26,27 or considered
only static properties of the system.28 In this paper we simultaneously account for the complexity of the valence band,
use a first-principles approach to describe disorder contributions, and employ a fully dynamic treatment of electron
interactions.

To account for the valence band structure we use the generalized k · p approach29 where a certain number of bands
are treated exactly while the contribution from the remote bands is included up to second order in momentum.
For our purposes (in the optimally annealed regime, with itinerant valence band holes) the k · p approach is an
ideal compromise: it captures the essential features of the band structure which dominate the infrared response of
Ga1−xMnxAs, while being computationally much less expensive than a fully ab initio treatment. The latter would be
more appropriate for acceptor levels that are spatially localized or deep in the gap.4

To describe disorder effects we use the equation of motion for the paramagnetic current response function of the
fully disordered system. This approach has some similarities to models developed earlier using the memory function
formalism.30–32 The advantage of our approach as compared to the memory function formalism is the relative simplicity
and transparency of the derivation and the straightforward possibility to include the spin degree of freedom. Another
advantage is that our formalism is expressed in terms of a current-current and a set of density and spin-density response
functions. This enables us to use the powerful apparatus of time-dependent density-functional theory (TDDFT)33

to treat many-body effects such as dynamic screening and collective excitations of the itinerant carriers in principle
exactly.

The paper is divided into two major sections and conclusions. For ease of reading, some of the derivations are pre-
sented in appendices. The theory section (Sec. II) is organized as follows. In Sec. II A we present our general formalism
based on the equation of motion of the current-current response function of the disordered system. In Sec. II B we
describe the evaluation of the current-current, density and spin-density response functions for the multiband system
using a generalized k · p perturbation approach. Next, in Sec. II C we show the treatment of electron-electron interac-
tion by means of TDDFT. In Section III we first discuss the new features that the valence band character of itinerant
carriers brings into the system, namely the dominance of the long-wavelength side of the single-particle excitation
spectrum by the interband spin transitions and the effective suppression of the collective plasmon excitations within
the valence band for the whole range of momentum. Next, in Sec. III B we discuss the effect of magnetic doping: spin
and charge disorder in the system and modification of the band structure in the magnetically ordered phase. We show
that the full dynamic treatment of electron-electron interactions allows us to capture the effect of collective excitations
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on the carrier relaxation time. We then compare our results also with experimental data on infrared conductivity.
Finally, in Sec. IV we draw our conclusions.

II. THEORY

A. General formalism

We discuss a system described by the Hamiltonian

Ĥ = Ĥe + Ĥm + Ĥd, (1)

where Ĥe is the contribution of the itinerant carriers and Ĥm represents the subsystem of localized magnetic spins.
These two terms constitute the “clean” part of the total Hamiltonian. The last term in Eq. (1) describes disorder in
the system:

Ĥd = V 2
∑

k

~̂U(k) · ~̂ρ(−k), (2)

where the four-component charge and spin disorder scattering potential

~̂U(k) =
1

V

∑

j




Uj(k)

−J
2

(
Ŝz

j − 〈S〉
)

−J
2 Ŝ−

j

−J
2 Ŝ+

j


 eik·Rj (3)

is coupled to the four-component vector of charge and spin density operators of the itinerant carriers:

~̂ρ =




ρ̂1

ρ̂z

ρ̂+

ρ̂−


 =




n̂
ŝz

ŝ+

ŝ−


 (4)

with the components

ρ̂µ(k) =
1

V

∑

q

∑

nn′

〈un′,q−k|σµ|un,q〉 â+
n′,q−k ân,q . (5)

Here, σµ (µ = 1, z, +,−) is defined via the Pauli matrices, where σ1 is the 2× 2 unit matrix, σ± = (σx ± iσy)/2, and
|un,q〉 are the two-component Bloch function spinors with wave vector q and band index n. The summation in Eq. (3)
is performed over all defects. Note that the mean field part of the p-d exchange interaction between itinerant holes
and localized spins is absorbed into the clean system band structure Hamiltonian Ĥe; disorder in our model consists
of the Coulomb potential of charge defects and fluctuations of localized spins around the mean field value 〈S〉.

The general case of multiple types of defects, including defect correlations, was considered in Ref. 26. For simplicity
we here include only the most important defect type, namely randomly distributed manganese ions in gallium sub-
stitutional positions (MnGa). Our model treats localized spins as quantum mechanical operators coupled to the band
carriers via a contact Heisenberg interaction featuring a momentum-independent exchange constant J . We use the
value of V J = −55 meV nm3, which corresponds to the widely used DMS p-d exchange constant N0β = −1.2 eV.10

The z-axis is chosen along the direction of the macroscopic magnetization.
Earlier we developed a theory of transport in charge and spin disordered media with emphasis on a treatment of

disorder and electron-electron interaction.27 It is based on an equation of motion34,35 approach for the paramagnetic
current-current response of the full, disordered system:

χjpαjpβ
(r, r′, τ) = − i

h̄
Θ(τ)〈[ĵpα(τ, r), ĵpβ(r′)]〉H , (6)

where

ĵpα(τ, r) = e
i
h̄

Ĥτ ĵpα(r)e−
i
h̄

Ĥτ (7)
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is the paramagnetic current-density operator in Heisenberg representation and α, β = x, y, z are Cartesian coordinates.
During the derivation we assumed our system to be macroscopically homogeneous, which implies that the coherence

length of the electrons is much shorter than the system size. In this case, summing over all electrons will leave us with
an averaged effect of disorder that does not depend on the particular disorder configuration. For such macroscopically
homogeneous systems the response at point r depends only on the distance |r − r′| to the perturbation and not on
the particular choice of points r and r′. The a posteriori justification for this assumption is that we will apply our
formalism in the weak-disorder limit on the metallic side of the metal-insulator transition in Ga1−xMnxAs.

Another major approximation involves the decoupling procedure, where we neglect the influence of the itinerant
carriers on the localized spins. Therefore, our approach does not include magnetic polaron effects and lacks the
microscopic features of carrier mediated ferromagnetism. The latter, however, can be reinstated to some extent by
introducing a phenomenological Heisenberg-like term in the magnetic subsystem Hamiltonian Ĥm. Details of the
derivation are presented in Ref. 27. Thus, instead of calculating the Curie temperature for our DMS system, we
take it as an input parameter to define the temperature-dependent magnetization of the localized spin subsystem.
The coupling to the itinerant carriers then occurs via the fluctuations of the localized spins that come in through the
disorder potential, Eq. (3).

The final expression for the total current response reads

χJ
αβ(q, ω) = χc

jpαjpβ
(q, ω) +

n

m
δαβ

+
V 2

m2ω2

∑

k

kαkβ

∑

µν

〈
Ûµ(k) Ûν(−k)

〉

Hm

×
(
χρµρν (q − k, ω) − χc

ρµρν (−k)
)
, (8)

where χρµρν (k, ω) is the set of charge and spin density response functions with respect to the operators (4)–(5) and
the superscript “c” indicates quantities defined in the clean system. By comparing Eq. (8) with the Drude formula in
the weak disorder limit ωτ ≫ 1,

χJ
D(ω) =

n

m

1

1 + i/ωτ
≈ n

m
− in

mωτ
, (9)

we identify the tensor of Drude-like frequency- and momentum-dependent relaxation rates of the form

τ−1
αβ (q, ω) = i

V 2

nmω

∑

k

µν

kαkβ

〈
Ûµ(−k) Ûν(k)

〉

Hm

×
(
χρµρν (q − k, ω) − χc

ρµρν (k, 0)
)
. (10)

Note that the right-hand side of Eqs. (8) and (10) contains the set of spin and charge response functions of the full,
disordered system. Therefore, strictly speaking, Eq. (8) should be evaluated self-consistently36 with the continuity
equations closing the loop. Here we use a simplified approach based on two approximations. First, taking the weak
disorder limit in the right hand side of Eq. (10) we retain terms up to the second order in components of the disorder
potential. In other words, the spin and charge response functions of the full system in Eq. (10) are replaced by their
clean system counterparts:

χρµρν (q − k, ω) → χc
ρµρν (q − k, ω). (11)

Next we assume that the paramagnetic current response function of the full system may be expressed as the clean
system response function with a lifetime broadening given by Eq. (10):

χjpαjpβ
(q, ω) ≈ χc

jpαjpβ
(q, ω − iτ−1

αβ ). (12)

Equations (10)–(12) will be used in the following.

B. Multiband k · p approach

In order to obtain the conductivity through Eqs. (10)–(12) we will have to calculate the paramagnetic current
response and spin and charge density response functions of the clean system. To properly describe the complexity of
the semiconductor valence band we are going to implement the multiband k · p approach.
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First we derive the current and density response functions in the formal basis of the Bloch states

|n,k〉 =
1√
V

eik·r|un,k〉 (13)

which diagonalize the clean system Hamiltonian

Ĥ =
∑

n,k

εn,k â+
n,kân,k. (14)

Within second quantization in the basis (13), the paramagnetic current in the system with spin-orbit interaction is
given by

ĵp(q) =
1

V

∑

n,n′,k

[
h̄

m0

(
k − 1

2
q

)
〈un′,k−q|un,k〉

+
1

m0
〈un′,k−q|~̂π|un,k〉

]
â+

n′,k−qân,k, (15)

with

~̂π = p̂ +
h̄

4m0c2
[σ̂ × ∇̂Uc], (16)

where Uc is the periodic crystal field potential. Hereafter, performing the real space integration we assume that the
envelop function varies slowly on the scale of the unit cell.

Introducing the time dependence of the creation and destruction operators in (15), the paramagnetic current
response of the multiband system can be directly evaluated, and one finds

χc
jpαjpβ

(q, ω) =
1

V m2
0

∑

n,n′,k

fn′,k−q − fn,k

εn′,k−q − εn,k + h̄ω + iη
(17)

×
[
h̄
(
kα − qα

2

)
〈un′,k−q|un,k〉 + 〈un′,k−q|π̂α|un,k〉

] [
h̄
(
kβ − qβ

2

)
〈un,k|un′,k−q〉 + 〈un,k|π̂β |un′,k−q〉

]
.

A similar procedure for the spin and charge density response yields:

χc
ρµρν (q, ω) =

1

V

∑

n,n′,k

fn′,k−q − fn,k

εn′,k−q − εn,k + h̄ω + iη
〈un′,k−q|σ̂µ|un,k〉〈un,k|σ̂ν |un′,k−q〉. (18)

All we need now for evaluating Eqs. (17) and (18) is to determine the form of the periodic Bloch functions |un,k〉 that
diagonalize the clean system Hamiltonian. The common approach is to diagonalize the multiband k · p Hamiltonian
that treats certain bands exactly and treats contributions from remote bands up to second order in momentum. The
derivation of such a Hamiltonian is outlined in Appendix A. By diagonalizing the matrix of this Hamiltonian, however,
we obtain the eigenvectors of the modified Hamiltonian (A7). Before evaluating the matrix elements between Bloch
periodic functions |un,k〉 in Eqs. (17) and (18) we therefore have to perform the unitary transformation (A4). Details
of these calculations are presented in Appendix B.

The final expression for the paramagnetic current response function in the long-wave limit q = 0 (since we are
looking for the optical response) is given by

χc
jpαjpβ

(ω) =
1

V m2
0

∑

n,n′,k

fn′,k − fn,k

εn′,k − εn,k + h̄ω + iη
(19)

×
[
∑

s′s

B∗
s′(n′,k)Bs(n,k)

m0

h̄

∂

∂kα
〈s′|H̄ |s〉

][
∑

s′s

B∗
s (n,k)Bs′(n′,k)

m0

h̄

∂

∂kβ
〈s|H̄ |s′〉

]
,

where H̄ denotes the effective multiband k · p Hamiltonian (A7) and B(n,k) is its eigenvector for the state with
energy εn,k. The charge and spin density response is approximated by

χc
ρµρν (q, ω) ≈ 1

V

∑

n,n′,k

fn′,k−q − fn,k

εn′,k−q − εn,k + h̄ω + iη
(20)

×
∑

s′,s,τ,τ ′

B∗
s′(n′,k− q)Bτ ′(n′,k − q)Bs(n,k)B∗

τ (n,k)〈s′|σ̂µ|s〉〈τ |σ̂ν |τ ′〉.
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If σ̂µ = (σ̂ν)
+
, i.e. for χnn, χszsz and χs±s∓ , the second sum is a real quantity. Then, the imaginary part is

ℑ[χc
ρµ(ρµ)+(q, ω)] = − π

(2π)3

∑

n,n′

∫
d3k(fn′,k−q − fn,k)δ[h̄ω − (εn,k − εn′,k−q)]

∣∣∣∣∣∣

∑

s′,s′

B∗
s′(n′,k − q)Bs(n,k)〈s′|σ̂µ|s〉

∣∣∣∣∣∣

2

.

(21)

It is seen that in the long-wavelength limit (q → 0) the imaginary part of the density response (σµ ≡ σ1) vanishes as
a product of orthogonal states, while the imaginary part of spin response is, in general, finite. We conclude from this
that the long-wavelength spectrum of single-particle excitations is dominated by spin transitions.

The calculations were performed within an 8-band k · p model. The basis functions and explicit form of the
Hamiltonian matrix are presented in Appendix C.

C. Electron-electron interaction

A major advantage of our formalism is that it is expressed in terms of current and density response functions. This
allows us to use the powerful apparatus of TDDFT to account for the effects of electron-electron interaction.

Let us first examine the current response of the clean system. In this paper we are considering the optical response,
i.e. the response to transverse perturbations. Since transverse perturbations only induce a transverse response in a
homogeneous system, there are no density fluctuations directly created by an electromagnetic field. The total current
response of the interacting system in this case can be expressed as

(
χJ(q, ω)

)−1

=
(
χJ

0 (q, ω)
)−1

+
4πe

ω2 − c2q2
+

q2

ω2
vqGT+, (22)

where χJ
0 is the response of the noninteracting system, vq is the Coulomb interaction, and the local field factor GT+

represents corrections from the exchange-correlation (xc) part of the electron interaction.

The corrections to the transverse current response function caused by electron-electron interaction are relativistically
small in this case and can be neglected. So, for the transverse current response of the clean system we will use the
noninteracting form.

The set of the density and spin-density response functions of the clean system enters our expression (10) for
the frequency- and momentum-dependent relaxation rates. TDDFT allows us to describe all the effect of electron
interaction, including correlations and collective modes, in principle, exactly. Within the TDDFT formalism the
charge- and spin-density responses of the interacting system can be expressed as:38

χ−1(q, ω) = χ0
−1(q, ω) − v(q) − fxc(q, ω), (23)

where all quantities are 4× 4 matrices and χ0 denotes the matrix of response functions of the noninteracting system,

v(q) is the Hartree part of the electron-electron interactions, and fxc represents xc corrections in the form of local

field factors. As a simplification we use only the exchange part of fxc and apply the adiabatic local spin density

approximation. Explicit expressions for the local field factors of the partially spin polarized system are given in
Appendix D.

In general, fxc is a symmetric 4 × 4 matrix. If, however, the z-axis is directed along the average spin, then the

ground state transversal spin densities vanish, ρ+ = ρ− = 0, and the matrix fxc becomes block-diagonal:

fxc =




f11 f1z 0 0
f1z fzz 0 0
0 0 0 f+−
0 0 f+− 0


 . (24)

Performing the matrix inversion in Eq. (23) we obtain the tensor of response functions of the interacting system in
the form
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χ ≡




χnn χnsz χns+ χns−

χszn χszsz χszs+ χszs−

χs+n χs+sz χs+s+ χs+s−

χs−n χs−sz χs−s+ χs−s−




=




χ0
nn − fzz∆

εLFF

χ0
nsz + f1z∆

εLFF
0 0

χ0
szn + f1z∆

εLFF

χ0
szsz − (v(q) + f11)∆

εLFF
0 0

0 0 0
χ0

s+s−

1 − f+−χ0
s+s−

0 0
χ0

s−s+

1 − f+−χ0
s−s+

0




,

(25)
where

εLFF = 1 −
(
v(q) + f11

)
χ0

nn(q, ω) − fzzχ
0
szsz (q, ω) − f1z

(
χ0

nsz (q, ω) + χ0
szn(q, ω)

)
+
(
fzz

(
v(q) + f11

)
− f2

1z

)
∆, (26)

and

∆ = χ0
nnχ0

szsz − χ0
nsz χ0

szn = 4χ0
↑χ

0
↓. (27)

III. RESULTS AND DISCUSSION

We now discuss applications of our formalism for the specific case of GaMnAs DMSs. The band structure parameters
used in our calculations correspond to those of the GaAs host material: the band gap and spin-orbit splitting are
Eg = 1.519 eV and ∆ = 0.341 eV, Luttinger parameters are γ1 = 6.97, γ2 = 2.25 and γ3 = 2.85, conduction band
effective mass is me = 0.065 m0, Kane momentum matrix element is Ep = 27.86 eV and the static dielectric constant
K = 13. The s(p)-d exchange interaction constants within the conduction and valence bands are N0α = 0.2 eV and
N0β = −1.2 eV, respectively.

A. Clean p-type GaAs

Before considering the effects of magnetic impurities and associated charge and spin disorder on the transport
properties, we would like to discuss some new features that the valence band character of the itinerant carriers brings
into the system. They stem from the complexity of the semiconductor valence band: strong spin orbit interaction
and the Γ-point degeneracy of the p-states.

The multiband nature of the valence band gives rise to a rich single-particle excitation spectrum. In Fig. 1 we show
a schematic representation of the valence band structure of a p-type semiconductor. Arrows indicate the possible
single-particle excitations. In addition to the intraband excitations within the heavy hole band (analogous to the
excitations within the conduction band of n-doped semiconductors), here we have intra-band excitations within the
light hole band as well as inter-valence band excitations between light and heavy hole bands and between split-off
and heavy and/or light hole bands.

The variety of the possible single-particle excitations substantially modifies the density and spin response of the
system. Some of the modifications are not very obvious. At the end of the Sec. II B we already mentioned the
significant difference between spin and density responses in the long wavelength limit. Let us consider this in more
detail. The spin response of the noninteracting electron gas coincides with the density response and can be expressed
through the Lindhard function. The spin-orbit interaction within the valence band breaks down this correspondence.

In Fig. 2 we plot the imaginary part of the noninteracting density and longitudinal spin response functions in

p-doped GaAs for different wave vectors. For a small wave vector q = 0.003Å
−1

the longitudinal spin response
exhibits a strong peak around 0.2 eV associated with inter-valence band spin excitations between heavy and light
hole subbands. The corresponding density excitations are suppressed due to the orthogonality of the initial and final
states, see Eq. (21). As a result, the density response for short wavevectors is almost nonexistent. If we increase

the wave vector to q = 0.05Å
−1

, the intraband excitations within the heavy hole band become noticeable in both
density and spin responses. The longitudinal spin response, however, still prevails in the range of inter-valence band
transitions.

This leads us to conclude that the long-wavelength spectrum of the single-particle excitations in p-doped semicon-
ductors is dominated by the inter-valence band spin excitations. The origin of this effect is in the spin-orbit interaction,
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EF

hh lh so

hh-lh

FIG. 1. (Color online) Schematic diagram of the possible single-particle excitations in the valence band of a p-type semicon-
ductor. Dashed lines indicate intra-valence band excitations within the heavy hole band (hh), within the light hole band (lh)
and inter-valence band excitations between heave hole and light hole bands (hh-lh) and between split-off and heavy hole and
light hole bands (so).

which mixes spin and orbital degrees of freedom. Without the spin-orbit interaction, vertical spin excitations would
be prohibited due to the orthogonality of the orbital parts of Bloch functions.

Another interesting feature of p-doped semiconductors is the effective suppression of the collective modes in the
valence band. In the conventional picture of the conduction band, collective plasmon excitations are well defined in
the long-wavelength side of the excitation spectrum. With increasing momentum, the collective mode approaches and
then enters the region of single-particle excitations, where it becomes rapidly suppressed due to Landau damping.

The situation is different for the valence band. In Fig. 3 we plot a schematic diagram of the excitation spectrum.
The excitation region for single-particle transitions within the heavy hole band is qualitatively similar to that of
the conduction band. In the valence band, however, the single-particle excitation spectrum is extended due to the
intraband transitions within the light hole band and interband transitions between heavy and light hole bands and
between split-off and heavy/light hole bands (red and blue arrows in Fig. 1). In Fig. 3 the corresponding regions of
single-particle excitations are shaded with different patterns. It can be seen that the collective mode in the valence
band falls entirely within the region of single-particle excitations and, therefore, becomes suppressed even at the
long-wavelength side of the spectrum. Error bars in Fig. 3 indicate the plasmon resonance broadening due to Landau
damping.

To illustrate the effect we have performed numerical calculations of the plasmon dispersion and the lifetime broad-
ening of the collective excitations in the valence band of p-doped GaAs. The plasmon frequencies were determined as
the zeros of the real part of the RPA dielectric function and the lifetime broadening is associated with the imaginary
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FIG. 2. (Color online) Imaginary part of the noninteracting density and longitudinal spin response functions in p-doped GaAs

for different wave vectors q = 0.003Å
−1

(a) and q = 0.05Å
−1

(b). The hole concentration is p = 3.5 × 1020 cm−3.

part of the frequency poles. In Fig. 4 the black and red lines correspond to the dispersion and the lifetime of the
plasmon excitations, respectively. The dotted lines indicate the regions of the intraband single-particle excitations
within the light hole and heavy hole bands, compare with Fig. 3. At small wavevectors the plasmon mode falls within
the region of inter-valence band single-particle excitations resulting in a lifetime broadening of the collective resonance
of about 5 meV. Once the plasmon dispersion enters the region of single-particle excitations within the light hole band,
the life-time broadening substantially increases into the 30-40 meV range. An additional sharp rise in the damping
takes place when the collective mode enters the region of heavy hole intraband excitations.

We thus conclude that the collective response of valence-band holes in GaAs is substantially different compared to
conduction band electrons. We also mention recent work by Schliemann40,41 who pointed out several other interesting
features of the structure and response of interacting hole gases in p-doped III-V semiconductors.

B. Magnetically doped GaMnAs

The introduction of magnetic impurities in GaAs has two consequences. First, charge and spin disorder are brough
into the system and, second, the mean field part of the p-d exchange interaction between localized spins and itinerant
holes causes modifications of the valence band structure once the system enters the magnetically ordered phase.

Let us consider the effect of disorder first. In calculating carrier relaxation rates, most theoretical models for
GaMnAs use a static screening approach, where all many-body effects are reduced to the static screening of the
Coulomb disorder potential. Within our model, however, the momentum and frequency dependent relaxation rate
(10) is expressed through the set of density and spin-density response functions that allows us to use the full dynamic
treatment of electron-electron interaction, thus accounting for the variety of many-body effects including correlations
and collective modes.

In Fig. 5 we plot the frequency dependence of the total (charge and spin) relaxation rate calculated for Ga0.948Mn0.052As
within the static screening model and using the full dynamic treatment of electron-electron interaction according
to Eq. (10). The difference between the two curves in the static limit is due to the xc part of the electron-electron
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FIG. 3. (Color online) Schematic diagram of the excitation spectrum within the semiconductor valence band. Labels indicate
the edges of single-particle excitation regions within the heavy hole band (hh), within the light hole band (lh), between heavy
hole and light hole bands (hh-lh) and between the split-off band and heavy and light hole bands (so), see Fig. 1. As a result,
the plasmon mode in the valence band lies entirely within the single-particle excitation spectrum and is effectively suppressed
due to Landau damping.

interaction that affects both charge and spin scattering. The most striking difference, however, is the pronounced
feature appearing between 0.2 eV and 0.5 eV associated with the collective modes. Although we have seen above
that the collective excitations are significantly damped in the valence band, they still play an important role in the
transport properties of the system providing an effective channel for momentum relaxation. Their contributions give
up to 50% increase to the total carrier relaxation rate. Note that, due to their longitudinal character, the plasmon
modes do not directly affect the optical response and enter only indirectly through the tensor of frequency and
momentum dependent relaxation rates (10).

In Fig. 6 we compare our calculations of the infrared conductivity of ferromagnetic Ga0.948Mn0.052As with the
experimental data of Singley et al.42 The calculations were performed according to Eq. (12). Solid line corresponds
to a relaxation rate obtained through Eq. (10), dashed line describes calculations with the fixed τ−1 = 230 ps−1.
The theory shows qualitative agreement with the experiment. The insensitivity of the calculations to the frequency
dependence of relaxation rate (minor difference between solid and dashed lines in Fig. 6) suggests that effects of the
band structure play the dominant role in determining the shape of the infrared conductivity and overshadow the
strong frequency dependence of τ obtained within our model and presented in Fig. 5.
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FIG. 4. (Color online) Dispersion (dashed black) and lifetime broadening (solid red) of the valence band plasmon calculated for
the p-doped GaAs with the hole concentration of p = 3.5 × 1020 cm−3. Dotted lines correspond to the onset of the intraband
single-particle excitations within the light hole and heavy hole bands.

An alternative possible experimental probe that could reveal the details of the frequency and momentum dependence
of the carrier relaxation rate in more explicit ways are measurements of the position and lineshape of the plasmon
resonance itself. It was shown in Ref. 31 that these quantities are sensitive to the carrier relaxation time, with both
real and imaginary part of τ and its dynamic nature being essential. Our approach seems to fit well to describe such
experiments.

As was mentioned before, the magnetic impurities bring localized spins into the system, which interact with the
itinerant carriers through the p-d exchange interaction. The fluctuating part of this interaction constitutes the
spin disorder. The mean field part of exchange interaction, which we absorb into the clean system band structure
Hamiltonian Ĥe, is responsible for the spin splitting of the valence bands once the system enters the magnetically
ordered state. Due to the spin-orbit interaction within the valence band, this spin splitting strongly depends both on
the magnitude and direction of the wave vector k.

In Fig. 7 we plot the band structure of ferromagnetic Ga0.95Mn0.05As. Strong anisotropy of the valence band spin-
splitting is seen between directions along and perpendicular to the magnetization of localized spins (z-direction). The
inset shows a cut of the Fermi surface by the plane ky = 0. One can easily see the distortion of the Fermi surface from
the spherical shape of the paramagnetic system (for clarity we have neglected here the valence band warping, but
it is included in our calculations). The modification of the Fermi surface together with the suppression of localized
spin fluctuations are responsible for the significant drop in static resistivity of GaMnAs during the transition from
paramagnetic to ferromagnetic state. This effect was considered before.28,43

Here we point out that the modification of the valence band structure during the transition from paramagnetic to
ferromagnetic state also modifies energies and oscillator strengths of intervalence band optical transitions affecting
thus the infrared conductivity as well. To better show the underlying physics of temperature induced changes, we
plot in Fig. 8 the infrared conductivity for the sample parameters of Ref. 42, but with a small lifetime broadening
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FIG. 5. (Color online) Total (charge and spin) carrier relaxation rate for Ga0.948Mn0.052As with hole concentration p =
3× 1020 cm−3. Dashed line: static screening model. Solid line: evaluation of Eq. (10) with full dynamic TDDFT treatment of
electron interaction. See discussion in text.

of Γ = 5 meV. In the paramagnetic state (solid line) three features can be identified: a strong peak around 0.2 eV
corresponding to the heavy hole - light hole transitions, a smaller peak with a broad shoulder around 0.4 eV associated
with the split off to light hole transitions and a wide background of split off to heavy hole transitions.

With the temperature going below Tc = 70 K, two main phenomena occur. The first is the suppression of the high
energy shoulder of the split off to light hole transitions. The second is the appearance of the transitions between the
spin-split heavy hole and light hole bands and the redistribution of the oscillator strength among them. The lowest
energy peaks correspond to the transitions between spin-split bands. Calculations were performed for light linearly
polarized in the plane perpendicular to the magnetization. Due to the spin-orbit interaction within the valence band,
the transitions between the spin-split states are optically allowed. The additional peak at higher energy corresponds
to heavy hole-light hole “spin-flip” transitions. As the temperature goes down, the spin splitting increases and the
“spin-flip” transitions gain the intensities at the account of “spin-conserving” heavy hole-light hole transitions.

The real GaMnAs samples are much more disordered. In Fig. 9 we compare experimental data on infrared conduc-
tivity of Ga0.948Mn0.052As from Ref. 42 with calculations using our model of Eqs. (12) and (10). The large disorder
induced life-time broadening blankets most of the features discussed above. The suppression of the high energy
shoulder of split off to light hole transitions in the ferromagnetic state is seen, however, both on the experimental
and theoretical plots. Overall, for energies above the main peak position around 0.2 eV, the calculations are in good
agreement with the experimental results.

Note also that unlike in Ref. 19, our calculations do not require incorporation of an impurity band within the energy
gap to avoid a drop in conductivity around 0.8-1 eV. At energies below the main peak position the agreement with
the experiment is worse. We should mention, however, that this is the region of ωτ ≤ 1 where our calculations are
less reliable due to approximate nature of the expression (12). The self-consistent evaluation of Eq. (8) should be
used there instead. Once the frequency goes to zero, the static conductivity should more appropriately be calculated
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FIG. 6. (Color online) Infrared conductivity of ferromagnetic Ga0.948Mn0.052As with hole concentration p = 3 × 1020 cm−3.
Calculations are performed according to Eq. (12), and using a relaxation rate obtained through Eq. (10) (solid line) or a fixed
τ−1 = 230 ps−1 (dashed line). Symbols are the experimental data of Ref. 42.

using an expression derived from the semiclassical Boltzmann equation.18 We have investigated this regime before28

to describe the drop in static resistivity in the ferromagnetic phase.

IV. CONCLUSIONS

We have developed a comprehensive theory of transport in spin and charge disordered media. The theory is based
on the equation of motion of the paramagnetic current response function of the disordered system, treats disorder
and many-body effects on equal footings, and combines a k · p based description of the semiconductor valence band
structure with a full dynamic treatment of electron-electron interaction by means of TDDFT. We have applied our
theory to the specific case of GaMnAs.

We have shown that the multiband nature and spin-orbit interaction within the valence band bring new effects for p-
doped GaAs as compared to the conventional n-type systems. The density and spin-density responses of noninteracting
carriers within the valence band are not the same anymore. Moreover, the long wavelength side of the single-particle
excitation spectrum is now completely dominated by the inter-valence band spin excitations. Due to the extended
region of single-particle excitations within the valence band, the collective plasmon mode entirely falls within the
region of these excitations and, therefore, is effectively damped for all wave vectors.

For the magnetically doped system the mean-field part of the p-d exchange interaction between itinerant holes
and localized spins substantially modifies the semiconductor band structure once the system enters a magnetically
ordered phase. This modification significantly affects energies and oscillator strengths of the intervalence band optical
transitions. Our calculations are in good agreement with experimental data for the temperature dependence of the
infrared conductivity in GaMnAs.
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ky = 0.

A full dynamical treatment of electron-electron interactions is essential to capture the influence of the collective
excitations on the carrier relaxation rate. Our calculations show that, by providing an effective channel of momentum
relaxation, the collective excitations within the valence band significantly (up to 50%) increase the transport relaxation
rate.

However, it turns out that the actual infrared absorption spectra are not very sensitive to the details of the
frequency dependence of the relaxation rate, but are mostly determined by the features of the band structure. Direct
measurements of the position and lineshape of the plasmon resonance itself are likely to be more sensitive to the
details of the frequency and momentum dependence of the carrier relaxation rate.

In this work we considered optical response properties. Since a transversal electric field does not directly couple to
longitudinal collective modes, plasmon excitations affect the carrier dynamics of the system only indirectly through the
relaxation rates, see Eq. (10) and Fig. 5. It would be interesting to consider the response to longitudinal fields, where
the collective modes would dominate the carrier dynamics. The disorder-induced damping of such collective modes in
heterostructures would be of particular interest. This requires a generalization of our formalism for inhomogeneous
or lower-dimensional systems.

The theory presented here, treating disorder and many-body effects on equal footings, provides a very general
framework for describing electron dynamics in materials. It can, in principle, be made self-consistent and thus be
applied beyond the weak-disorder limit; it can accommodate many different types of disorder, as well as band structure
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3 × 1020 cm−3 and Tc = 70 K calculated with weak disorder, lifetime broadening of Γ = 5 meV.

models. This should make it well suited for further exploration of the optical and transport properties of DMSs and
other systems of practical interest.
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Appendix A: Generalized k · p approach

The derivation of the generalized k · p perturbation approach presented here is based on Ref. 29. First, the
electronic wave function is expanded in the Luttinger-Kohn basis37

Ψ =
∑

n,k

An(k)χn,k =
1√
V

∑

n,k

An(k)eikr|un,0〉, (A1)

where |un,0〉 are periodic parts of Bloch functions at k = 0, and An(k) are the expansion coefficients. This results in
the following matrix form of the Schrödinger equation:

∑

n,k

An(k)

[(
εn,0 +

h̄2k2

2m0
− ε

)
δn′,n +

h̄

m0
k · πn′,n

]
= 0, (A2)

where εn,0 are the band edge energies at k = 0.
The last term in Eq. (A2) mixes states with different n for k 6= 0. Now we separate the whole set of the bands {n}

into those whose contribution we are going to calculate exactly {s}, and the remote bands {r} that we will treat up
to the second order in momentum. Equation (A2) can be represented as

(H0 + H1 + H2)A = εA, (A3)
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FIG. 9. (Color online) Temperature dependence of the infrared conductivity of Ga0.948Mn0.052As with hole concentration
p = 3 × 1020 cm−3 and Tc = 70 K. Upper panel: experimental data of Ref. 42. Lower panel: results from Eq. (12).

where A is the vector of coefficients An(k), H0 is the diagonal part of Hamiltonian, and H1 and H2 correspond to the
block-diagonal and off-block-diagonal parts of the k · π matrix with respect to the included and remote bands. Next,
we apply the canonical transformation

A = eSB = eS1+S2B, (A4)

with S1 and S2 being antihermitian operators of first and second order in the perturbation, respectively. The matrix
equation (A3) then has the form

{
e−S1−S2(H0 + H1 + H2)e

S1+S2
}
B = H̄B = εB. (A5)

By choosing

H2 + [H0, S1] = 0, [H0, S2] + [H1, S1] = 0, (A6)

where [...] denotes the commutator, we write up to terms of second order in the perturbations H1 and H2

H̄ ≈ H0 + H1 +
1

2
[H2, S1]. (A7)

The matrix elements between the Luttinger-Kohn periodic amplitudes |un,0〉 ≡ |n〉 are

〈n|H0|n′〉 =

(
εn,0 +

h̄2k2

2m0

)
δn,n′ , (A8)
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〈s|H1|s′〉 =
∑

α

h̄kαπα
s,s′

m0
, (A9)

〈s|H2|r〉 =
∑

α

h̄kαπα
s,r

m0
, (A10)

〈s|S1|r〉 = − 〈s|H2|r〉
〈s|H0|s〉 − 〈r|H0|r〉

=
∑

α

h̄kαπα
s,r

m0

1

εr,0 − εs,0
. (A11)

For the last term in (A7) we can then write

〈s|[H2, S1]|s′〉 =
∑

r

{
〈s|H2|r〉〈r|S1|s′〉

− 〈s|S1|r〉〈r|H2|s′〉
}

(A12)

=
∑

α,β
r

h̄2kαkβ

m2
0

(
πα

s,rπ
β
r,s′

εs′,0 − εr,0
+

πβ
s,rπ

α
r,s′

εs,0 − εr,0

)
.

Here we used the fact that the H2 and S1 operators have only off-block-diagonal matrix elements between the s and
r bands. Eqs. (A8)-(A12) define the matrix of the effective Hamiltonian (A7). Nonvanishing matrix elements are
determined by the symmetry of the crystal.

Appendix B: Evaluation of the matrix elements in Eqs. (17) and (18)

In order to evaluate Eq. (17) we need to calculate the following matrix element:

h̄
(
kα − qα

2

)
〈ui′,k−q|ui,k〉 + 〈ui′,k−q|π̂α|ui,k〉 =

〈
ui′,k−q

∣∣∣h̄
(
kα − qα

2

)
+ π̂α

∣∣∣ ui,k

〉
, (B1)

where |ui,k〉 is expressed through the amplitudes at the zone center:

|ui,k〉 =
∑

n

An(i,k)|un,0〉. (B2)

From diagonalization of the effective Hamiltonian (A7), however, we obtain coefficients Bn(i,k) related to An(i,k)
through Eq. (A4). Expanding eS ≈ 1 + S, we express

|ui,k〉 =
∑

s

Bs(i,k)|s〉 +
∑

s

∑

r

〈r|S(k)|s〉Bs(i,k)|r〉, (B3)

where we have used the fact that the coefficients Bn are non-zero only for exact bands and S has only off-block-diagonal
matrix elements. The bra vector is

〈ui′,k′ | =
∑

s′

B∗
s′(i′,k′)〈s′| −

∑

s′

∑

r′

〈s′|S(k′)|r′〉B∗
s′(i′,k′)〈r′|, (B4)

where we have used the antihermiticity of S. Matrix elements of an arbitrary operator F̂ to the lowest order in S can
then be expressed as follows:

〈ui′,k′ |F̂ |ui,k〉 =
∑

s′s

B∗
s′(i′,k′)Bs(i,k)

(
〈s′|F̂ |s〉 +

∑

r

(
〈s′|F̂ |r〉〈r|S(k)|s〉 − 〈s′|S(k′)|r〉〈r|F̂ |s〉

))
. (B5)

Using Eq. (A11) for matrix elements of Ŝ1, we have

〈ui′,k′ |F̂ |ui,k〉 =
∑

s′s

B∗
s′(i′,k′)Bs(i,k)


〈s′|F̂ |s〉 − h̄

m0

∑

λ,r

(
kλ〈s′|F̂ |r〉〈r|π̂λ |s〉

εr − εs
+

k′
λ〈s′|π̂λ|r〉〈r|F̂ |s〉

εr − εs′

)
 . (B6)
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The matrix element (B1) has thus the following form:〈
ui′,k−q

∣∣∣h̄
(
kα − qα

2

)
+ π̂α

∣∣∣ ui,k

〉
=
∑

s′s

B∗
s′(i′,k− q)Bs(i,k)

×


h̄
(
kα − qα

2

)
δs′s + 〈s′|π̂α|s〉 +

h̄

m0

∑

λ,r

(
kλπα

s′,rπ
λ
r,s

εs − εr
+

(kλ − qλ)πλ
s′,rπ

α
r,s

εs′ − εr

)
 .

For q = 0 it reduces to

〈ui′,k |h̄kα + π̂α|ui,k〉 =
∑

s′s

B∗
s′(i′,k)Bs(i,k)



h̄kαδs′s + 〈s′|π̂α|s〉 +
h̄

m0

∑

λ,r

kλ

(
πα

s′,rπ
λ
r,s

εs − εr
+

πλ
s′,rπ

α
r,s

εs′ − εr

)

 . (B7)

By comparison with the expressions derived in Appendix A, we find that this reduces to

〈ui′,k |h̄kα + π̂α|ui,k〉 =
∑

s′s

B∗
s′(i′,k)Bs(i,k)

m0

h̄

∂

∂kα
〈s′|H̄ |s〉, (B8)

where H̄ is the Hamiltonian (A7).
The matrix elements of the spin operator in Eq. (18) should also be evaluated through Eq. (B6):

〈ui′,k′ |σ̂µ|ui,k〉 =
∑

s′s

B∗
s′(i′,k′)Bs(i,k)


〈s′|σ̂µ|s〉 − h̄

m0

∑

λ,r

(
kλ〈s′|σ̂µ|r〉〈r|π̂λ|s〉

εr − εs
+

k′
λ〈s′|π̂λ|r〉〈r|σ̂µ |s〉

εr − εs′

)
 . (B9)

Let us look now at the sum over remote bands. Since the spin operator acts only on the spin part of the basis
functions, only those remote bands whose orbital part has the same symmetry as the exact bands will contribute to
this sum.

If we are considering a 6 × 6 Hamiltonian and neglect inversion asymmetry, the exact states are p-bonding states
that transform according to the F+

1 representation of the point group Oh (Γ′
15 small representation). The momentum

operator transforms as F−
2 , and since the direct product F+

1 × F−
2 × F+

1 does not contain a unit representation, the
sum over remote bands vanishes. There may be a small contribution in Td crystals, but it can be considered negligible.

If we are working in an 8-band k · p model, there are possible contributions to the sum when |s〉 and |r〉 are Γ′
1

states and |s′〉 is Γ′
15 and vice versa. Since there is only a small admixture of the conduction band amplitude to the

valence band states, these contributions are expected to be small and therefore can be neglected.
Based on this reasoning, we use the following approximation:

〈ui′,k′ |σ̂µ|ui,k〉 ≈
∑

s′s

B∗
s′(i′,k′)Bs(i,k)〈s′|σ̂µ|s〉. (B10)

Appendix C: 8 × 8 Hamiltonian

In the basis

|1〉 = |E, +
1

2
〉 = S ↑,

|2〉 = |E,−1

2
〉 = iS ↓,

|3〉 = |HH, +
3

2
〉 =

1√
2
(X + iY ) ↑,

|4〉 = |LH, +
1

2
〉 =

i√
6
[(X + iY ) ↓ −2Z ↑],

|5〉 = |LH,−1

2
〉 =

1√
6
[(X − iY ) ↑ +2Z ↓], (C1)

|6〉 = |HH,−3

2
〉 =

i√
2
(X − iY ) ↓,

|7〉 = |SO, +
1

2
〉 =

1√
3
[(X + iY ) ↓ +Z ↑],

|8〉 = |SO,−1

2
〉 =

i√
3
[−(X − iY ) ↑ +Z ↓],
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the Hamiltonian matrix has the form




Eg +
h̄2k2

2m̃e
0

i√
2
V k+

√
2

3
V kz

i√
6
V k− 0

i√
3
V kz

1√
3
V k−

0 Eg +
h̄2k2

2m̃e
0

i√
6
V k+

√
2

3
V kz

i√
2
V k−

1√
3
V k+

i√
3
V kz

− i√
2
V k− 0 P + Q L M 0

i√
2
L′ −i

√
2M ′

√
2

3
V kz − i√

6
V k− L∗ P − Q 0 M −i

√
2Q′ i

√
3

2
L′

− i√
6
V k+

√
2

3
V kz M∗ 0 P − Q −L −i

√
3

2
L′∗ −i

√
2Q′

0 − i√
2
V k+ 0 M∗ −L∗ P + Q −i

√
2M ′∗ − i√

2
L′∗

− i√
3
V kz

1√
3
V k− − i√

2
L′∗ i

√
2Q′ i

√
3

2
L′ i

√
2M ′ P ′ − ∆ 0

1√
3
V k+ − i√

3
V kz i

√
2M ′∗ −i

√
3

2
L′∗ i

√
2Q′ i√

2
L′ 0 P ′ − ∆




(C2)

with

k± = kx ± iky,

V = −i
h̄

m0
〈S|p̂x|X〉 =

√

Ep
h̄2

2m0
.

Interaction with remote bands results in the intra valence band terms

P (′) = − h̄2

2m0
γ̃

(′)
1 k2,

Q(′) = − h̄2

2m0
γ̃

(′)
2 (k2

x + k2
y − 2k2

z),

L(′) =
h̄2

2m0
i2
√

3γ̃
(′)
3 kzk−,

M (′) = − h̄2

2m0

√
3[γ̃

(′)
2 (k2

x − k2
y) − iγ̃

(′)
3 (kxky + kykx)],

where renormalization leads to

1

m̃e
=

1

m∗
e

− 1

m0

Ep

3

(
2

Eg
+

1

Eg + ∆

)
,

γ̃1 = γ1 −
Ep

3Eg
,

γ̃′
1 = γ1 −

Ep

3(Eg + ∆)
,

γ̃2 = γ2 −
Ep

6Eg
,

γ̃′
2 = γ2 −

Ep

12

(
1

Eg
+

1

Eg + ∆

)
,

γ̃3 = γ3 −
Ep

6Eg
,

γ̃′
3 = γ3 −

Ep

12

(
1

Eg
+

1

Eg + ∆

)
.
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This reflects the fact that the interaction between conduction and valence bands is taken in our Hamiltonian explicitly.
In writing the matrix (C2) we have neglected small terms associated with the lack of inversion symmetry in Td crystals.

The matrix of the mean-field part of the s(p)-d exchange interaction, which is responsible for the band spin splitting
in the magnetically ordered phase, has the form

−1

2
〈S〉xN0




α 0 0 0 0 0 0 0
0 −α 0 0 0 0 0 0
0 0 β 0 0 0 0 0

0 0 0 1
3β 0 0 i 2

√
2√
3

β 0

0 0 0 0 − 1
3β 0 0 −i 2

√
2√
3

β

0 0 0 0 0 −β 0 0

0 0 0 −i 2
√

2√
3

β 0 0 − 1
3β 0

0 0 0 0 i 2
√

2√
3

β 0 0 1
3β




, (C3)

where the z-axis is chosen in the direction of the magnetization and N0α and N0β are the s-d and p-d exchange
constants.

The mean field value of localized spins is determined as the thermodynamical average

〈S〉 = 〈Ŝz〉 =
1

Z
Tr e−

Ĥm
kT Ŝz, (C4)

with the partition function

Z = Tr e−
Ĥm
kT . (C5)

Within the mean field approximation for uncorrelated spins the spin Hamiltonian is

Ĥm = −BeffŜz, (C6)

with the effective field

Beff = 〈Ŝz〉J0, (C7)

and

J0 =
3kTc

S(S + 1)
. (C8)

The Curie temperature Tc is an input parameter of our model; through the transcendental equations (C4) and (C7)
it determines the mean field value of 〈S〉.

Appendix D: Local field factors for partially spin polarized systems

Expressions for local field factors of partially spin polarized electron gas were derived in Ref. 39, but in a different
spin basis. Here we will briefly rederive them in the basis of Eq. (4).

In the adiabatic approximation (which ignores frequency dependence), the components of the tensor fxc of the local

field factors in Eq. (23) have the form

fij =
∂2 [nexc(n, ξ)]

∂ρi∂ρj
, (D1)

where exc is the xc energy per particle, n ≡ ρ1 is the electron density, and ξ is the spin polarization:

ξ ≡ |~ξ| =
1

n

√
ρ2

z +
1

2
(ρ+ρ− + ρ−ρ+). (D2)
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We assume here that exc depends only on the absolute value of |ξ|. Direct evaluation of Eq. (D1) gives

f11 = 2
∂exc

∂ρ1
− 2ξ

∂2exc

∂ρ1∂ξ
+ ρ1

∂2exc

∂ρ2
1

+
ξ2

ρ1

∂2exc

∂ξ2
,

f1i =
∂ξ

∂ρi

(
ρ1

∂2exc

∂ρ1∂ξ
− ξ

∂2exc

∂ξ2

)
, i = (z, +,−),

fzz = A + ρ2
zB,

fz+ =
ρzρ−

2
B,

fz− =
ρzρ+

2
B,

f++ =
ρ−ρ−

4
B,

f−− =
ρ+ρ+

4
B,

f+− =
A

2
+

ρ−ρ+

4
B,

with

A =
1

ρ1ξ

∂exc

∂ξ
, B =

1

(ρ1ξ)2

(
ξ
∂2exc

∂ξ2
− ∂exc

∂ξ

)
.

Note that fii′ = fi′i and, generally, the tensor of local field factors is a symmetric matrix. If, however, the z-axis is
directed along the average spin direction, so that the ground-state transverse spin densities vanish (ρ+ = ρ− = 0),
then the matrix reduces to the block-diagonal form of Eq. (24).

We define the xc energy of the spin polarized system in the usual manner as39

exc(n, ξ) = exc(n, 0) +
(
exc(n, 1) − exc(n, 0)

)
f(ξ), (D3)

with

f(ξ) =
(1 + ξ)4/3 + (1 − ξ)4/3 − 2

2(21/3 − 1)
. (D4)

This is exact for the exchange part, but only approximately so for the correlation part (which will be neglected anyway
in the following). With this, we get

∂exc

∂ξ
=
(
exc(n, 1) − exc(n, 0)

)(1 + ξ)1/3 − (1 − ξ)1/3

3
2 (21/3 − 1)

, (D5)

and

∂2exc

∂ξ2
=
(
exc(n, 1) − exc(n, 0)

)(1 + ξ)−2/3 + (1 − ξ)−2/3

9
2 (21/3 − 1)

. (D6)

This completes the definition of the local field factors for partially spin polarized system. The only remaining
ingredients we need to perform the actual calculations are the expressions for the xc energy for unpolarized and
fully spin polarized system, exc(n, 0) and exc(n, 1). In this work for simplicity we limit ourselves to the exchange part
of exc:

ex(n, 0) = −3e2

4K

(
3n

π

)1/3

, (D7)

ex(n, 1) = 21/3ex(n, 0), (D8)

where K is the static dielectric constant of the host material. Direct evaluation gives the following expressions:

∂exc

∂n
= − e2

8K

(
3

π

)1/3

n−2/3
(
(1 + ξ)4/3 + (1 − ξ)4/3

)
,

∂2exc

∂n2
=

e2

12K

(
3

π

)1/3

n−5/3
(
(1 + ξ)4/3 + (1 − ξ)4/3

)
,

∂2exc

∂n ∂ξ
= − e2

6K

(
3

π

)1/3

n−2/3
(
(1 + ξ)1/3 − (1 − ξ)1/3

)
.
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