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Motivated by recent experiments on quasi-1D vanadium oxides, we study quantum phase transi-
tions in a one-dimensional spin-orbital model describing a Haldane chain and a classical Ising chain
locally coupled by the relativistic spin-orbit interaction. By employing a field-theoretical approach,
we analyze the topology of the ground-state phase diagram and identify the nature of the phase
transitions. In the strong coupling limit, a long-range Néel order of entangled spin and orbital
angular momentum appears in the ground state. We find that, depending on the relative scales
of the spin and orbital gaps, the linear chain follows two distinct routes to reach the Néel state.
First, when the orbital exchange is the dominating energy scale, a two-stage ordering takes place
in which the magnetic transition is followed by melting of the orbital Ising order; both transitions
belong to the two-dimensional Ising universality class. In the opposite limit, the low-energy orbital
modes undergo a continuous reordering transition which represents a line of Gaussian critical points.
On this line the orbital degrees of freedom form a Tomonaga-Luttinger liquid. We argue that the
emergence of the Gaussian criticality results from merging of the two Ising transitions in the strong
hybridization region where the characteristic spin and orbital energy scales become comparable.
Finally, we show that, due to the spin-orbit coupling, an external magnetic field acting on the spins
can induce an orbital Ising transition.

PACS numbers:

I. INTRODUCTION

Over the past decades, one-dimensional spin-orbital models have been a subject of intensive theoretical studies.
The interest is to a large extent motivated by experimental discovery of unusual magnetic properties in various quasi-
one-dimensional Mott insulators.1,2 The inter-dependence of spin and orbital degrees of freedom is usually described
by the so-called Kugel-Khomskii Hamiltonian in which the effective spin exchange constant depends on the orbital
configuration and vice versa.3,4 Another mechanism of coupling spin and orbital degrees of freedom is the on-site
relativistic spin-orbit (SO) interaction λL · S, where L is the orbital angular momentum and λ is the coupling
constant. In compounds with quenched orbital degrees of freedom, the presence of the SO term usually leads to the
single-ion spin anisotropy DS 2

z where D ∼ λ2/∆ and ∆ denotes the energy scale of the crystal field which lifts the
degenerate orbital states.
For systems with residual orbital degeneracy, on the other hand, the effect of the SO term is much less explored

compared with the Kugel-Khomskii-type coupling. Due to the directional dependence of the orbital wave functions,
the SU(2) symmetry of the Heisenberg spin exchange is expected to be broken in the presence of the SO interaction.
The resultant spin anisotropy is likely to induce a long-range magnetic order in the spin sector. A more intriguing
question is what happens to the orbital sector. To answer this question, one needs to consider the details of the
interplay between the orbital exchange and the SO coupling. Here we consider the simplest case of a two-fold orbital
degeneracy per site. Specifically, the two degenerate states could be the dyz and dzx orbitals in a tetragonal crystal field
observed in several transition-metal compounds. We introduce pseudospin-1/2 operators τa (a = x, y, z) to describe
the doublet orbital degrees of freedom assuming that τz = ±1 correspond to the states |yz〉 and i|zx〉, respectively.
Alternatively, one can also realize the double orbital degeneracy in the Mott-insulating phase of a 1D fermionic optical
lattice where the eigenvectors of τz refers to px and py orbitals in an anisotropic potential.5,6 Restricted to this doublet
space, the orbital angular momentum operator L = (0, 0, τx). This can be easily seen by noting that the eigenstates
of τx carry an angular momentum 〈Lz〉 = ±1.
The exchange interaction between localized orbital degrees of freedom is characterized by its highly directional

dependence: the interaction energy only depends on whether the relevant orbital is occupied for bonds of a given
orientation. This is particularly true for interactions dominated by direct exchange mechanism. Denoting the relevant
orbital projectors on a given bond as P = (1 + τβ)/2, where τβ/2 is an appropriate pseudospin-1/2 operator (τβ

being a Pauli matrix), the orbital interaction is thus described by an Ising-type term τβi τ
β
j . The well studied orbital
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compass model and Kitaev model both belong to this category.7,8 The quantum nature of these models comes from
the fact that different operators τβ , which do not commute with each other, are used for bonds of different types.
To avoid unnecessary complications coming from the details of orbital interactions, we assume that there is only one
type of bond in our 1D system and the orbital interaction is thus governed by a classical Ising Hamiltonian.
We incorporate these features into the following toy model of spin-orbital chain (Js, Jτ > 0):

H = HS +Hτ +HSτ (1)

= JS
∑

n

Sn · Sn+1 + Jτ
∑

n

τznτ
z
n+1 + λ

∑

n

τxnS
z
n.

Motivated by the recent experimental characterizations of quasi-1D vanadium oxides,14–19 here we focus on the case
of quantum spin with length S = 1. The above model thus describes a Haldane chain locally coupled to a classical
Ising chain by the SO interaction HSτ . The role of the λ-term is two-fold: firstly it introduces anisotropy to the spin-1
subsystem, and secondly it endows quantum dynamics to the otherwise classical Ising chain.
Before turning to a detailed study of the phase diagram of model (1), we first discuss its connections to real

compounds. As mentioned above, the interest in the toy model is partly motivated by the recent experimental progress
on vanadium oxides which include spinel ZnV2O4

14–17 and quasi-1D CaV2O4.
18,19 In both types of vanadates, the

two d electrons of V3+ ions have a spin S = 1 in accordance with Hund’s rule. In the low-temperature phase of both
vanadates, the vanadium site embedded in a flattened VO6 octahedron has a tetragonal symmetry. This tetragonal
crystal field splits the degenerate t2g triplet into a singlet and a doublet. As one of the two d electrons occupies
the lower-energy dxy state, a double orbital degeneracy arises as the second electron could occupy either dzx or dyz
orbitals. The fact that the dxy orbital is occupied everywhere also contributes to the formation of weakly coupled
quasi-1D spin-1 chains in these compounds.20 On the other hand, the details of the orbital exchange depends on
the geometry of the lattice and in the case of vanadium spinel the orbital interaction is of three-dimensional nature.
The Ising orbital Hamiltonian in Eq. (1) thus should be regarded as an effective interaction in the mean-field sense.
Nonetheless, the toy model provides a first step towards understanding the essential physics introduced by the SO
coupling. Moreover, many conclusions of this paper can be applied to the case of quasi-1D compound CaV2O4 where
the vanadium ions form a zigzag chain.
It is instructive to first establish regions of stable massive phases. In the decoupling limit, λ → 0, our model

describes two gapped systems: a quantum spin-1 Heisenberg chain and a classical orbital Ising chain. The ground
state of the spin sector is a disordered quantum spin liquid with a finite spectral gap21 ∆S , whereas the orbital ground
state is characterized by a classical Néel order along the chain: 〈τzn〉 = (−1)n ηz . Quantum effects in the orbital sector
induced by the SO coupling play a minor role. Obviously, just because of being gapped, both the spin-liquid phase and
the orbital ordered state are stable as long as λ remains small. Consider now the opposite limit, λ ≫ JS , Jτ . In the
zeroth order approximation, the model is dominated by the single-ion term HSτ whose doubly degenerate eigenstates
|±〉 = |Sz = ±1〉 ⊗ |τx = ±1〉 represent locally entangled spin and orbital degrees of freedom. Switching on small
JS and Jτ leads to a staggered ordering of the |+〉 and |−〉 states along the chain. Physically, the large-λ ground
state can be viewed as a simultaneous Néel ordering of spin and orbital angular momentum characterized by order
parameters ζ and ηx such that 〈Sz

n〉 = (−1)nζ and 〈Lz
n〉 = 〈τxn 〉 = (−1)nηx. The Ising order parameter ηz vanishes

identically in this phase.
These observations naturally lead to the following questions. How is the magnetically ordered Néel state at large

λ connected to the disordered Haldane phase as λ → 0 ? What is the scenario for the orbital reorientation transition
ηz → ηx, which is of essentially quantum nature ? In this paper we employ the field-theoretical approach to address
these questions. We first note that the one-dimensional model (1) is not exactly integrable. As a consequence, the
regime of strong hybridization of the spin and orbital excitations, which is the case when Jτ , JS and λ are all of
the same order, stays beyond the reach of approximate analytical methods. We thus will be mainly dealing with
limiting cases Jτ ≫ JS and Jτ ≪ JS , in which one can integrate out the “fast” variables to obtain an effective action
for the “slow” modes. Following this approach, we establish the topology and main features of the ground-state
phase diagram in the accessible parts of the parameter space of the model. We were able to unambiguously identify
the universality classes of quantum criticalities separating different massive phases. Using plausible arguments we
comment on some features of the model in the regime of strong spin-orbital hybridization.
We demonstrate that the aforementioned reorientation transition ηz → ηx can be realized in one of two possible

ways. In the limit of large Jτ , we find a sequence of two quantum Ising transitions and an intermediate massive phase,
sandwiched between these critical lines, in which both ηz and ηx are nonzero. This is consistent with the recent
findings22 based on DMRG calculations and some analytical estimations. In the opposite limit, when the Haldane
gap ∆S is the largest energy scale, integrating out the spin excitations yields an effective lowest-energy action for
the orbital degrees of freedom, which shows that the ηz → ηx crossover takes place as a single Gaussian quantum
criticality. At this critical point, the orbital degrees of freedom display an extremely quantum behaviour: they are
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gapless and form a Tomonaga-Luttinger liquid. This is the main result of this paper. We bring about arguments
suggesting that the emergence of the Gaussian critical line is the result of merging of the two Ising criticalities in the
region of strong spin-orbital hybridization.

Any field-theoretical treatment of the model (1) must be based on a properly chosen contiuum description of
the spin-1 antiferromagnetic Heisenberg chain. Its properties have been thoroughly studied, both analytically and
numerically (see for a recent review Ref. 23). In what follows, the spin sector of the model (1) will be treated within
the O(3)-symmetric Majorana field theory, proposed by Tsvelik:24

HM =
∑

a=1,2,3

[

iv

2
(ξaL∂xξ

a
L − ξaR∂xξ

a
R)− imξaRξ

a
L

]

+Hint.

(2)

Here ξaR,L(x) is a degenerate triplet of real (Majorana) Fermi fields with a mass m, the indices R and L label the
chirality of the particles, and

Hint =
1

2
g
∑

a

(ξaRξ
a
L)

2

is a weak four-fermion interaction which can be treated perturbatively. The continuum theory (2) adequately describes
the low-energy properties of the generalized spin-1 bilinear-biquadratic chain

HS → H̄S = JS
∑

n

[

Sn · Sn+1 − β (Sn · Sn+1)
2
]

. (3)

in the vicinity of the critical point β = 1.25 This quantum criticality belongs to the universality class of the SU(2)2
Wess-Zumino-Novikov-Witten (WZNW) model with central charge c = 3/2.

At small deviations from criticality the Majorana mass m ∼ JS |β− 1| determines the magnitude of the triplet gap,
∆S = |m| ≪ JS . The theory of a massive triplet of Majorana fermions is equivalent to a system of three degenerate
noncritical 2D Ising models, with m ∼ (T − Tc)/Tc. This is one of the most appealing features of the theory because
the most strongly fluctuating physical fields of the S = 1 chain, namely the staggered magnetization and dimerization
operators, have a simple local representation in terms of the Ising order and disorder parameters.24,26,27 It is this fact
that greatly simplifies the analysis of the spin-orbital model (1). While the correspondence between the models (2)
and (3) is well justified at |β − 1| ≪ 1, it is believed that the Majorana model (2) captures generic properties of the
Haldane spin-liquid phase of the spin-1 chain, even though at large deviations from criticality (|β − 1| ∼ 1, ∆S ∼ Js)
all parameters of the model should be treated as phenomenological.

The remainder of the paper is organized as follows. We start our discussion with Sec. II which contains a brief
summary of known facts about the Majorana model24 that will be used in the rest of the paper. In Sec. III we consider
the limit Jτ/∆S ≫ 1 and by integrating out the ‘fast’ orbital modes, show that on increasing the SO coupling λ the
system undergoes a sequence of two consecutive quantum Ising transitions in the spin and orbital sectors, respectively.
In section IV we analyze the opposite limiting case, Jτ/∆S ≪ 1, and, by integrating over the ‘fast’ spin modes, show
that there exists a single Gaussian transition in the orbital sector accompanied by a Neel ordering of the spins. We
then conjecture on the topology of the ground-state phase diagram of the model. In Sec. V we show that spin-orbital
hybridization effects near the orbital Gaussian transition lead to the appearance of a non-zero spectral weight well
below the Haldane gap which can be detected by inelastic neutron scattering experiments and NMR measurements.
In Sec. VI we comment on the role of an external magnetic field. We show that, through the SO interaction, a
sufficiently strong magnetic field affects the orbital degrees of freedom and can lead to a quantum Ising transition in
the orbital sector. Sec. VII contains a summary of the obtained results and conclusions. The paper has two appendices
containing certain technical details.

II. SOME FACTS ABOUT MAJORANA THEORY OF SPIN-1 CHAIN

In this Section, we provide some details about the O(3)-symmetric Majorana field theory,24 Eq. (2), which represents
the continuum limit of the biquadratic spin-1 model (3) at |β − 1| ≪ 1.

In the continuum description, the local spin density of the spin model (3) has contributions from the low-energy
modes centered in momentum space at q = 0 and q = π:

S(x) = IR(x) + IL(x) + (−1)x/a0N(x) (4)
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FIG. 1: Schematic phase diagram of the model on the (xS, xτ )-plane, where xS = ∆S/λ and xτ = Jτ/λ.

The smooth part of the local magnetization, I = IR + IL, is a sum of the level-2 chiral vector currents. The SU(2)2
Kac-Moody algebra of these currents is faithfully reproduced in terms of a triplet of massless Majorana fields28

ξ = (ξ1, ξ2, ξ3):

Iν = − i

2
(ξν × ξν) , (ν = R,L) (5)

This fact is not surprising because, as already mentioned, the central charge of the SU(2)2 WZNW theory is c = 3/2,
whereas that of the theory of a massless Majorana fermion (equivalently, critical 2D Ising model) is c = 1/2. At small
deviations from criticality (|β − 1| ≪ 1) the fermions acquire a mass. Strongly fluctuating fields of the spin-1 chain,
the staggered magnetization N(x) and dimerization operator ǫ(x) = (−1)nSn · Sn+1, are nonlocal in terms of the
Majorana fields but admit a simple representation in terms of the order, σ, and disorder, µ, operators of the related
noncritical Ising models:

N ∼ (1/α) (σ1µ2µ3, µ1σ2µ3, µ1µ2σ3) ,

ǫ ∼ (1/α)σ1σ2σ3, (6)

where α ∼ a0 is a short-distance cutoff of the continuum theory. These expressions together with their duals (i.e.
their counterparts obtained by the duality transformation in all Ising copies, σa ↔ µa) determine the vector and
scalar parts of the WZNW 2×2 matrix field ĝ which is a primary scalar field with scaling dimension 3/8. It has been
demonstrated in Ref. 28 that using the representation (6) and the short-distance operator product expansions for the
Ising fields, one correctly reproduces all fusion rules of the SU(2)2 WZNW model. An equivalent way to make sure
that this is indeed the case is to consider the four-Majorana representation of the weakly coupled spin-1/2 Heisenberg
ladder26,27 and take the limit of a infinite singlet Majorana mass to map the low-energy sector of the model on the
O(3) theory (2).

In the spin-liquid phase of the spin chain (3), which is the case β < 1, the Majorana massm is positive, implying that
the degenerate triplet of 2D Ising models is in a disordered phase: 〈σa〉 = 0, 〈µa〉 6= 0 (a = 1, 2, 3). In particular, this
implies that the O(3) symmetry remains unbroken, 〈N〉 = 0, and the ground state of the system is not spontaneously
dimerized, 〈ǫ〉 = 0.

The representation (6) proves to be very useful for calculating the dynamical spin correlation functions because the
asymptotics of the Ising correlators 〈σ(x, τ)σ(0, 0)〉 and 〈µ(x, τ)µ(0, 0)〉 are well known both at criticality and in a
noncritical regime. In the disordered phase (m > 0), the leading asymptotics of the Ising correlators are:

〈µ(r)µ(0)〉 ∼ (a/ξS)
1/4

[

1 +O(e−2r/ξS )
]

,

〈σ(r)σ(0)〉 ∼ (a/ξS)
1/4

√

ξS/r e−r/ξS (7)

where ξS = v/m is the correlation length, and r =
√
x2 + v2τ2. (By duality, in the ordered phase (m < 0) the

asymptotics of the correlators in (7) must be interchanged.) Correspondingly, the dynamical correlation function

〈N(r)N(0)〉 ∼ (a/ξS)
3/4

√

ξS/r e−r/ξS . (8)
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Its Fourier transform at q ∼ π and small ω describes a coherent excitation – a triplet magnon with the mass gap m:

ℑm χ(q, ω) ∼ m

|ω|δ
(

ω −
√

(q − π)2v2 +m2
)

. (9)

Since the single-ion anisotropy Hanis = D
∑

n (S
z
n)

2 lowers the original O(3) symmetry down to O(2) × Z2, one
expects24 that in the continuum theory it will induce anisotropy in the Majorana masses

m1 = m2 6= m3,

as well as in the coupling constants parametrizing the four-fermion interaction:

Hint →
1

2

∑

a 6=b

gab (ξ
a
Rξ

a
L)

(

ξbRξ
b
L

)

, g13 = g23 6= g12 .

This can be checked by using the correspondence (4) and short-distance operator product expansions (OPE) for the
physical fields. There will also appear anisotropy in the velocities, v1 = v2 6= v3, but we will systematically neglect
this effect. Thus, we have Hanis =

∫

dx Hanis, with

Hanis = Dα

∫

dx
[

I3(x)I3(x+ α) +N3(x)N3(x + α)
]

, (10)

where α ∼ a is a short-distance cutoff of the continuum theory. Using (5) and keeping only the Lorentz invariant
terms (i.e. neglecting renormalization of the velocities) we can replace (I3)2 by 2I3RI

3
L. To treat the second term in

the r.h.s. of (10), we need OPEs for the products of Ising operators:29

σ(z, z̄)σ(w, w̄)

=
1√
2

(

α

|z − w|

)1/4
[

1− π|z − w|ε(w, w̄)
]

, (11)

µ(z, z̄)µ(w, w̄)

=
1√
2

(

α

|z − w|

)1/4
[

1 + π|z − w|ε(w, w̄)
]

. (12)

Here ε = iξRξL is the energy density (mass bilinear) of the Ising model, z = vτ + ix and w = vτ ′ + ix′ are two-
dimensional complex coordinates, z̄ and w̄ are their conjugates. From the above OPEs it follows that

N3(x)N3(x+ α) = i(π/α)
(

ξ1Rξ
1
L + ξ2Rξ

2
L − ξ3Rξ

3
L

)

−(π2C)[(ξ1Rξ
1
L)(ξ

2
Rξ

2
L)− (ξ1Rξ

1
L)(ξ

3
Rξ

3
L)− (ξ2Rξ

2
L)(ξ

3
Rξ

3
L)],

where C ∼ 1 is a nonuniversal constant. As a result,

Hanis = −i
∑

a=1,2,3

δma ξaRξ
a
L +

1

2

∑

a 6=b

δgij (ξ
a
Rξ

a
L)

(

ξbRξ
b
L

)

, (13)

where

δm1 = δm2 = −δm3 = −(πC)D (14)

are corrections to the single-fermion masses, and δg12 = (2− π2C)Dα, δg13 = δg23 = π2CDα are coupling constants
of the induced interaction between the fermions. Smallness of the Majorana masses (|m|α/v ≪ 1) implies that the
additional mass renormalizations caused by the interaction in (13) are relatively small, m(Dα/v) ln(v/|m|α) ≪ D, so
that the main effect of the single-ion anisotropy is the additive renormalization of the fermionic masses, ma = m+δma,
with δma given by Eq.(14).

The cases D > 0 and D < 0 correspond to an easy-plane and easy-axis anisotropy, respectively. The spin anisotropy
(18) induced by the spin-orbit coupling is of the easy-axis type. At D < 0 the singlet Majorana fermion, ξ3, is the
lightest, m3 < m1 = m2. Increasing anisotropy drives the system towards an Ising criticality at D = −D∗, where
m3 = 0. At D < −D∗ the system occurs in a new phase where the Ising doublet remains disordered while the
singlet Ising system becomes ordered. It then immediately follows from the representation (6) that the new phase
is characterized by a Néel long-range order with 〈N3〉 6= 0. Transverse spin fluctuations, as well as fluctuations of
dimerization, are incoherent in this phase.
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III. TWO ISING TRANSITIONS IN THE ∆S≪Jτ LIMIT

Now we turn to our model (1). Let us consider the case when, in the absence of spin-orbit coupling, the orbital
gap is the largest: Jτ ≫ Js. The orbital pseudospins then represent the ‘fast’ subsystem and can be integrated
out. Assuming that λ ≪ Jτ , we treat the spin-orbit coupling perturbatively. In this case, the zero order Hamiltonian
H0 = HS+Hτ describes decoupled spin and orbital systems, while the spin-orbit interactionHSτ denotes perturbation.
Defining the interaction representation for all operators according to A(τ) = eτH0Ae−τH0 (here τ denotes imaginary
time), the interaction term in the Euclidian action is given by

SSτ = λ
∑

n

∫

dτ τxn (τ)S
z
n(τ). (15)

The first nonvanishing correction to the effective action in the spin sector is of the second order in λ:

∆Ss =
−λ2

2

∑

nm

∫

dτ1dτ2
〈

τxn (τ1)τ
x
m(τ2)

〉

τ
Sz
n(τ1)S

z
m(τ2).

(16)

Averaging in the right-hand side of (16) goes over configurations of the classical Ising chain Hτ . The correlation
function 〈τxn (τ1)τxm(τ2)〉τ is calculated in Appendix A. It is spatially ultralocal (because there are no propagating
excitations in the classical Ising model) and rapidly decaying at the characteristic time ∼ 1/Jτ , which is much shorter
than the spin correlation time ∼ 1/∆0:

〈τxn (τ1)τxm(τ2)〉τ = δnm exp (−4Jτ |τ1 − τ2|) . (17)

Passing to new variables, τ = (τ1 + τ2)/2 and ρ = τ1 − τ2, and integrating over ρ yields a correction to the effective
spin action which has the form of a single-ion spin anisotropy. Thus in the second order in λ, the spin Hamiltonian
acquires an additional term

Hani = − λ2

4Jτ

∑

n

(Sz
n)

2
. (18)

The anisotropy splits the Majorana triplet into a doublet (ξ1, ξ2) and singlet (ξ3), with masses

m1 = m2 = m+
πCλ2

4Jτ
, m3 = m− πCλ2

4Jτ
, (19)

where C ∼ 1 is a nonuniversal positive constant. The anisotropy is of the easy-axis type, so that the singlet mode
has a smaller mass gap.
As long as all the masses ma remain positive, the system maintains the properties of an anisotropic Haldane’s

spin-liquid. The dynamical spin susceptibilities calculated at small ω and q ∼ π (see Sec. II),

ℑm χxx(q, ω) = ℑm χyy(q, ω) (20)

∼ m1

|ω| δ
(

ω −
√

(q − π)2v2 +m2
1

)

,

ℑm χzz(q, ω) ∼ m3

|ω| δ
(

ω −
√

(q − π)2v2 +m2
3

)

,

indicate the existence of the Sz = ±1 and Sz = 0 optical magnons with mass gaps m1 and m3, respectively. Increasing
the spin-orbital coupling leads eventually to an Ising criticality at λ = λc1 = 2

√

Jτm/πC, where m3 = 0. At m3 < 0
the system occurs in a long-range ordered Néel phase with staggered magnetization 〈Sz

n〉 = (−1)nζ(λ), in which
the Z2-symmetry of model (18) is spontaneously broken. Using the Ising-model representation (6) of the staggered
magnetization of the spin-1 chain, we find that at 0 < λ − λc1 ≪ λc1 the order parameter ζ(λ) follows a power-law
increase:

ζ(λ) ∼
(

λ− λc1

λc1

)1/8

. (21)

The transverse spin fluctuations become incoherent in this phase. The situation here is entirely similar to that in the
spontaneously dimerized massive phase of a two-chain spin-1/2 ladder27,30, where the dimerization kinks make spin
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fluctuations incoherent. In the present case, the spontaneously broken Z2 symmetry of the Neel phase leads to the
existence of pairs of massive topological kinks contributing to a broad continuum with a threshold at ω = m1 + |m3|
(the details of calculation can be found in Ref.27):

ℑm χxx(q, ω) (22)

∼ 1
√

m1|m3|
θ(ω2 − (q − π)2v2 − (m1 + |m3|)2)
√

ω2 − (q − π)2v2 − (m1 + |m3|)2
.

In the Néel phase, the orbital sector acquires quantum dynamics because antiferromagnetic ordering of the spins
generates an effective transverse magnetic field which transforms the classical Ising model Hτ to a quantum Ising
chain. At λ > λc1 the spin-orbit term takes the form

HSτ = −h
∑

n

(−1)nτxn +H ′
Sτ , (23)

where h = λζ(λ) and H ′
Sτ = −λ

∑

n (S
z
n − 〈Sz

n〉) τxn accounts for fluctuations. Since both the orbital and spin sectors
are gapped, the main effect of this term is a renormalization of the mass gaps and group velocities. The transverse field
h gives rise to quantum fluctuations which decrease the classical value of ηz and, at the same time, lead to a staggered
ordering of the orbital pseudospins in the transverse direction. Since the orbital sector has a finite susceptibility with
respect to a transverse staggered field, in the right vicinity of the critical point ηx follows the same power-law increase
as ζ but with a smaller amplitude:

ηx ∼
(

h

Jτ

)

∼
√

∆S

Jτ

(

λ− λc1

λc1

)1/8

. (24)

This result is in a good agreement with previously obtained numerical results for order parameters (See Fig. 4(a) in
Ref. 22).
Performing an inhomogeneous π-rotation of the pseudospins around the y-axis, τx,zn → (−1)nτx,zn , τyn → τyn , we

find that at λ > λc1 the effective model in the orbital sector reduces to a ferromagnetic Ising chain in a uniform
transverse (pseudo)magnetic field:

Hτ ;eff = −Jτ
∑

n

τznτ
z
n+1 − h

∑

n

τxn . (25)

Notice that the restriction λ ≪ Jτ , which was imposed in the derivation of the effective Hamiltonian in the spin
sector, now can be released because the spin sector is assumed to be in the Néel phase.

At h = Jτ , i.e. at λ = λc2 where λc2 satisfies the equation

λc2 ζ(λc2) = Jτ , (26)

the model (25) undergoes a 2D Ising transition27,31 to a massive disordered phase with 〈τzn〉 = 0. This quantum
critical point can be reached when λ is further increased in the region λ > λc1. It is clear from (26) that λc2 is of the
order of or greater than Jτ . It is reasonable to assume that for such values of λ the Néel magnetization is close to its
nominal value, ζ ∼ 1, implying that λc2 ∼ Jτ . We see that the two Ising transitions are well separated:

λc2/λc1 ∼ (Jτ/∆S)
1/2 ≫ 1. (27)

Thus, in the limit Jτ ≫ ∆S , the ground-state phase diagram of the model (1) consists of three gapped phases
separated by two Ising criticalities, one in the spin sector (λ = λc1) and the other in the orbital sector (λ = λc2). At
0 < λ < λc1 the spin sector represents an anisotropic spin-liquid while in the orbital sector there is a Néel-like ordering
of the pseudospins: (−1)n〈τzn〉 ≡ ηz(λ) 6= 0. At λc1 < λ < λc2 the orbital degrees of freedom reveal their quantum
nature: the onset of the spin Néel order (ζ 6= 0) is accompanied by the emergence of the transverse component of
the staggered pseudospin density: (−1)n〈τxn 〉 ≡ ηx(λ) 6= 0. Upon increasing λ, the staggered orbital order parameter
η undergoes a continuous rotation from the z-direction to x-direction. At λ = λc2 a quantum Ising transition takes
place in the orbital sector where ηz vanishes. At λ > λc2 both sectors are long-range ordered, with order parameters
ζ, ηx 6= 0. The dependence of order parameters on λ is schematically shown in Fig. 2(a); this picture is in full
qualitative agreement with the results of the recent numerical studies.22

The crossover between the small and large λ limits studied in this section corresponds to path 1 on the phase
diagram shown in Fig. 1. The path is located in the region Jτ ≫ ∆S . Starting from the massive phase I and moving
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FIG. 2: Schematic diagram of order parameters as functions of the SO coupling constant λ. (a) Two Ising transitions in the
Jτ ≫ ∆S limit. (b) A single Gaussian transition in the ∆S ≫ Jτ limit. These two scenarios correspond to path-1 and path-2
in the phase diagram (Fig. 1), respectively.

along this path we first observe the spin-Ising transition (I → II) to the Néel phase. Long-range ordering of the
spins induces quantum reconstruction of the initialy classical orbital sector (i.e. generation of a nonzero ηx). The
orbital-Ising transition (II → III) takes place inside the spin Néel phase. Of course, feedback effects (that is, orbit
affecting spin) become inreasingly important upon deviating from the critical curve ∆SJτ ∼ 1 into phases II and III,
especially in the vicinity of the orbital transition where the spin-orbit coupling is very strong, λ ∼ Jτ . In this region
the behavior of the spin degrees of freedom is not expected to follow that of an isolated anisotropic spin-1 chain in the
Néel phase since the effect of an “explicit” staggered magnetic field ∼ ληx becomes important. We will see a pattern
of such behavior in the opposite limit of “heavy” spins, which is discussed in the next section.

IV. GAUSSIAN CRITICALITY AT Jτ≪∆S

In this section we turn to the opposite limiting case: ∆S ≫ Jτ . Now the spin degrees of freedom constitute the
“fast” subsystem and can be integrated out to generate an effective action in the orbital sector. We will show that, in
this regime, the intermediate massive phase where the orbital order parameter η undergoes a continuous rotation from
η = (0, 0, ηz) to η = (ηx, 0, 0) no longer exists. Going along path 2, Fig. 1, which is located in the region ∆S ≫ Jτ ,
we find that the two massive phases, I and III, are separated by a single Gaussian critical line characterized by central
charge c = 1. On this line the vector η vanishes, the orbital degrees of freedom become gapless and represent a
spinless Tomonaga-Luttinger liquid characterized by power-law orbital correlations.

At λ = 0 the spin-1 subsystem represents a disordered, isotropic spin liquid. Therefore the first nonzero correction
to the low-energy effective action in the orbital sector appears in the second order in λ:

∆S(2)
τ = −1

6
〈S2

Sτ 〉S (28)

= −1

2
λ2

∑

nm

∫

dτ1

∫

dτ2 〈Sn(τ1)Sm(τ2)〉S τxn (τ1)τ
x
m(τ2),

where 〈· · ·〉S means averaging over the massive spin degrees of freedom. According to the decomposition of the spin
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density, Eq. (4), the correlation function in (29) has the structure:

〈Sl(τ)S0(0)〉 = (−1)lf1(r/ξS) + f2(r/ξS). (29)

Here ξs = vs/∆S is the spin correlation length and r = (vsτ, x) is the Euclidian two-dimensional radius-vector. f1
and f2 are smooth functions with the following asymptotic behaviour27

f1(x) = C1x
−1/2e−x, f2(x) = C2x

−1e−2x (x ≫ 1), (30)

where C1 and C2 are nonuniversal constants. DMRG calculations show32 that C2 ≪ C1; for this reason the contribu-
tion of the smooth part of the spin correlation function can be neglected in (29).

Integrating over the relative time τ− = τ1 − τ2 we find that the spin-orbit coupling generates a pseudospin xx-
exchange with the following structure:

H ′
τ =

∑

n

∑

l≥1

(−1)l+1J ′
τ (l)τ

x
n τ

x
n+l (31)

Here the exchange couplings exponentially decay with the separation l, J ′
τ (l) ∼ (λ2/∆S) exp(−la0/ξS), so the sum-

mation in (31) actually extends up to l ∼ ξS/a0. In the Heisenberg model ξS is of the order of a few lattice spacings,
so for a qualitative understanding it would be sufficient to consider the l = 1 term as the leading one and treat the
l = 2 term as a correction. Making a π/2 rotation in the pseudospin space, τzn → τyn , τ

y
n → −τzn, we pass to the

conventional notations and write down the effective Hamiltonian for the orbital degrees of freedom as a perturbed
XY spin-1/2 chain:

Heff
τ =

∑

n

(

Jxτ
x
nτ

x
n+1 + Jyτ

y
nτ

y
n+1

)

+H ′
τ . (32)

where

H ′
τ = −J ′

x

∑

n

τxnτ
x
n+2 + · · · . (33)

Here Jy = Jτ , Jx = J ′
τ (1) > 0 and J ′

x = J ′
τ (2) > 0. By order of magnitude J ′

x < Jx ∼ λ2/∆S .

In the absence of the perturbation H ′
τ , the model (32) represents a spin-1/2 XY chain which for any nonzero

anisotropy in the basal plane (Jx 6= Jy) has a Néel long-range order in the ground state and a massive excitation
spectrum. This follows from the Jordan-Wigner transformation

τzn = 2a†nan − 1, τ+n = τxn + iτyn = 2a†ne
iπ

∑
j<n

a†
j
aj (34)

which maps the XY chain onto a model of complex spinless fermions with a Cooper pairing:33

Heff
τ = (Jx + Jy)

∑

n

(

a†nan+1 + h.c.
)

+ (Jx − Jy)
∑

n

(

a†na
†
n+1 + h.c.

)

. (35)

By increasing λ (equivalently, decreasing Jτ ) the model (35) can be driven to a XX quantum critical point, Jx = Jy(1),
i.e. λ = λc ∼

√
Jτ∆S , where the the system acquires a continuous U(1) symmetry. At this point the Jordan-Wigner

fermions become massless and the system undergoes a continuous quantum transition.

The transition is associated with reorientation of the pseudospins. Away from the Gaussian criticality the effective
orbital Hamiltoian is invariant under Z2×Z2 transformations: τxn → −τxn , τ

z
n → −τzn. In massive phases this symmetry

is spontaneously broken. Making a back rotation from τy to τz we conclude that at Jy > Jx (λ < λc) η
z 6= 0, ηx = 0,

while at Jy < Jx (λ > λc) ηz = 0, ηx 6= 0. Both ηz and ηx vanish at the critical point, so contrary to the case
Jτ ≫ ∆S , here there is no region of their coexistence.

The passage to the continuum limit for the model (32) based on Abelian bosonization is discussed in Appendix
B. There we show that the perturbation H ′

τ adds a marginal four-fermion interaction g = J ′
x(2)/πv ≪ 1 to the

free-fermion model (B3). In the spin-chain language, this is equivalent to adding a weak ferromagnetic zz-coupling.
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In the limit of weak XY anisotropy, |λ− λc|/λc ≪ 1, the low-energy properties of the orbital sector are described by
a quantum sine-Gordon model (all notations are explained in Appendix B)

H =
u

2

[

KΠ2 +
1

K
(∂xΦ)

2

]

+
2γ

πα
cos

√
4πΘ, (36)

where

γ ∼ Jτ

(

λ− λc

λc

)

, K = 1 + 2g +O(g2). (37)

The U(1) criticality is reached at λ = λc where, due to a finite value of g, the orbital degrees of freedom represent a
Tomonaga-Luttinger liquid. Close to the criticality, the spectral gap in the orbital sector scales as the renormalized
mass of the sine-Gordon model (36):

Morb ∼
∣

∣

∣

λ− λc

λc

∣

∣

∣

K
2K−1

. (38)

Strongly fluctuating physical fields acquire coupling dependent scaling dimensions. In particular, according to the
bosonization rules,27 the staggered pseudospin densities are expressed in terms of the vertex operators,

(−1)nτxn ≡ nx(x) ∼ sin
√
πΘ(x),

(−1)nτzn ≡ nz(x) ∼ cos
√
πΘ(x), (39)

both with scaling dimension d = 1/4K. This anomalous dimension determines the power-law behaviour of the average
staggered densities close to the criticality:

ηz(λ) ∼ (λc − λ)1/4K , λ < λc

ηx(λ) ∼ (λ− λc)
1/4K , λ > λc. (40)

A finite staggered pseudospin magnetization ηx at λ > λc generates an effective external staggered magnetic field
in the spin sector:

HS → H̄ = HS +H ′
S , H ′

S = −hS

∑

n

(−1)nSz
n, (41)

where hS = −ληx. The spectrum of the Hamiltonian H̄ is always massive. This can be easily understood within
the Majorana model (2). According to (6), in the continuum limit, the sign-alternating component of the spin
magnetization, N3 ∼ (−1)nSz

n, can be expressed in terms of the order and disorder fields of the degenerate triplet of
2D disordered Ising models: N3 ∼ µ1µ2σ3. In the leading order, the magnetic interaction H ′

S gives rise to an effective
magnetic field h3 = hS〈µ1µ2〉 applied to the third Ising system: h3σ3. The latter always stays off-critical.

Since in the Haldane phase the spin correlations are short-ranged, close to the transition point the induced staggered
magnetization ζ can be estimated using linear response theory. Therefore, at 0 < λ − λc ≪ λc, ζ follows the same
power-law increase as that of ηx but with a smaller amplitude:

ζ ∼ hS

∆S
∼

(

Jτ
∆S

)1/2 (
λ− λc

λc

)1/4K

(42)

So, in the part of the phase C, Fig. 1, where ∆S ≫ Jτ , the ηx-orbital order, being the result of a spontaneous
breakdown of a Z2 symmetry τxn → −τxn , acts as an effective staggered magnetic field applied to the spins and induces

their Néel alignment. This fact is reflected in a coupling dependent, nonuniversal exponent 1/4K characterizing the
increase of the staggered magnetization at λ > λc. The order parameters as functions of λ in the ∆S ≫ Jτ limit is
schematically shown in Fig. 2(b).

As already mentioned, the absence of a small parameter in the regime of strong hybridization, Jτ ∼ JS ∼ λ, makes
the analysis of the phase diagram in this region not easily accessible by analytical tools. Nevertheless some plausible
arguments can be put forward to comment on the topology of the phase diagram. It is tempting to treat the curve
Jτ∆S/λ

2 ∼ 1 as a single critical line going throughout the whole phase plane (Jτ/λ,∆S/λ). If so, we then can expect
that there exists a special singular point located in the region Jτ∆S/λ

2 ∼ 1. This expectation is based on the fact
that at Jτ ≫ ∆s limit the transition is of the Ising type and the spontaneous spin magnetization below the critical
curve follows the law ζ ∼ (λ−λc1)

1/8 with a universal critical exponent, whereas at Jτ ≪ ∆s the spin magnetization
has a different, nonuniversal exponent, ζ ∼ (λ−λc)

1/4K . Continuity considerations make it very appealing to suggest
that at the special point the Tomonaga-Luttinger liquid parameter takes the value K = 2, and the two power laws
match. Since the central charges of two Ising and one Gaussian criticalities satisfy the relation 1/2 + 1/2 = 1, the
singular point must be a point where the two Ising critical curves merge into a single Gaussian one.
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V. DYNAMICAL SIN SUSCEPTIBILITY AND NMR RELAXATION RATE IN THE VICINITY OF
GAUSSIAN CRITICALITY

It may seem at the first sight that, in the regime ∆S ≫ J , the spin degrees of freedom which have been integrated
out remain massive across the orbital Gaussian transition, and the spectral weight of the staggered spin fluctuations
is only nonzero in the high-energy region ω ∼ ∆S . However, this conclusion is only correct for the zeroth-order
definition of the spin field N0(x), given by Eq. (6), with respect to the spin-orbit interaction. In fact, the staggered
magnetization hybridizes with low-energy orbital modes via SO coupling already in the first order in λ and thus
acquires a low-energy projection which contributes to a nonzero spectral weight displayed by the dynamical spin
susceptibility at energies well below the Haldane gap.

To find the low-energy projection of the field Nz(r), we must fuse the local operator Nz
0 (r) with the perturbative

part of the total action. Keeping in mind that close to and at the Gaussian criticality most strongly fluctuating fields
are the staggered components of the orbital polarization, we approximate the SO part of the Euclidian action by the
expression

SSτ ≃ λa0
vS

∫

d2r Nz(r)nx(r), (43)

where r = (vSτ, x) is the two-dimensional radius vector (here τ is the imaginary time). We thus construct

Nz
P (r) = 〈e−SSτNz(r)〉

= Nz
0 (r)−

λa0
vS

∫

d2
r1〈Nz

0 (r)N
z
0 (r1)〉S nx(r1)

+ O(λ2), (44)

where averaging is done over the unperturbed, high-energy spin modes. For simplicity, here we neglect the anisotropy
of the spin-liquid phase of the S=1 chain and use formula (8). The spin correlation function is short-ranged. Treating
the spin correlation length ξS ∼ vS/∆S as a new lattice constant (new ultraviolet cutoff) and being interested in the
infrared asymptotics |r| ≫ ξS , we can replace in (44) nx(r1) by nx(r). The integral

∫

d2ρ 〈Nz
0 (ρ)N

z
0 (0)〉S (45)

∼ 1

a20
(a/ξS)

3/4

∫ ∞

0

dρ ρ
√

ξs/ρ e−ρ/ξS ∼ (ξS/a0)
5/4.

So the first-order low-energy projection of the staggered magnetization is proportional to

Nz
P (r) ∼

λ

∆S

(

ξS
a0

)1/4

nx(r). (46)

This result clarifies the essence of the hybridization effect: close to the Gaussian criticality the spin fluctuations
acquire a finite spectral weight in the low-energy region, ω ≪ ∆S , q ∼ π, which is contributed by orbital fluctuations
and can be probed in magnetic inelastic neutron scattering experiments and NMR measurements.

Away from but close to the Gaussian criticality the behavior of the dynamical spin susceptibility ℑmχ(q, ω) is
determined by the excitation spectrum of the sine-Gordon model for the dual field, Eq.(36). Since K > 1, it consists
of kinks, antikinks carrying the mass Morb, and their bound states (breathers) with masses (see e.g. Ref. 27)

Mj = 2Morb sin(πj/2ν),

j = 1, 2, . . . ν − 1, ν = 2K − 1 (47)

Since K − 1 = 2g is small, there will be only the first breather in the spectrum, with mass M1 = 2Morb(1 − 2π2g2).
The sine-Gordon model is integrable, and the asymptotics of its correlation functions in the massive regime have been
calculated using the form-factor approach (see for a recent review 35). Here we utilize some of the known results. At
λ < λc the operator nx ∼ sin

√
πΘ has a nonzero matrix element between the vacuum and the first breather state.

This form-factor contributes to a coherent peak in the dynamical spin susceptibility at frequencies much smaller than
than the Haldane gap:

ℑmχ(q, ω, T = 0) = A(λ/∆S)
2δ[ω2 − (q − π)2v2 −M2

1 ]

+ ℑmχcont(q, ω, T = 0). (48)
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Here A is a constant and the second term is the contribution of a multi-kink continuum of states with a threshold at
ω = 2Morb. At λ > λc the spectral properties of the operator cos

√
πΘ coincide with those of the operator sin

√
πΘ

at λ < λc. For symmetry reasons35, this operator does not couple to the first breather, so that at λ > λc ℑmχ(q, ω)
will only display the kink-antikink scattering continuum.

We see that, due to spin-orbit hybridization effects, the spin sector of our model loses the properties of a spin
liquid already in a noncritical orbital regime. This tendency gets strongly enhanced at the orbital Gaussian criticality
(Morb → 0) where all multi-particle processes merge, and the spin correlation function exhibits an algebraically
decaying asymptotics

〈Nz(r)Nz(0)〉 ≃ 〈Nz
P (r)N

z
P (0)〉 ∼

(

λ

∆S

)2
(a

r

)
1

2K

, (49)

implying that the spin sector of the model becomes reminiscent of Tomonaga-Luttinger liquid. In this limit (here for
simplicity we consider the T = 0 case) the dynamical spin susceptibility is given by34

ℑmχ(q, ω, T = 0) ∼ (λ/∆S)
2
[

ω2 − v2(q − π)2
]

1

4K
−1

. (50)

The NMR relaxation rate probes the spectrum of local spin fluctuations

1

T1
= A2T lim

ω→0

1

ω

∑

q

ℑmχzz(q, ω, T )

where A is an effective hyperfine constant. In spin-liquid regime of an isolated spin-1 chain, the existence of a Haldane
gap makes 1/T1 exponentially suppressed36: 1/T1 ∼ exp(−2∆S/T ). The admixture of low-energy orbital states in the
spin-fluctuation spectrum drastically changed this result. A simple power counting argument37 leads to a power-law
temperature dependence of the NMR relaxation rate:

1

T1
∼ A2

(

λ

∆s

)2

T
1

2K
−1 (51)

This result is valid not only exactly at the Gaussian criticality but also in its vicinity provided that the temperature
is larger than the orbital mass gap. By construction (see the preceding section) K ≥ 1. This means that the exponent
1/2K − 1 is negative and the NMR relaxation rate increases on lowering the temperature. It is worth noticing that
such regimes are not unusual for Tomonaga-Luttinger phases of frustrated spin-1/2 ladders.38 For our model, such
behavior of 1/T1 would be a strong indication of an extremely quantum nature of the collective orbital excitations.39

VI. BEHAVIOR IN A MAGNETIC FIELD: QUANTUM ISING TRANSITION IN ORBITAL SECTOR

We have seen in Sec.III that, due to spin-orbit coupling, the Néel ordering of the spins is accompanied by the
emergence of quantum effects in the orbital sector: the classical orbital Ising chain transforms to a quantum one. In
this section we briefly comment on a similar situation that can arise upon application of a uniform external magnetic
field h.

Since the spin-1 chain is massive, it will acquire a finite ground-state magnetization 〈Sz〉 only when the magnetic
field, h, is higher than the critical value hc1 ∼ ∆S , corresponding to the commensurate-incommensurate (C-IC)
transition. According to the definition (5), a uniform magnetic field along the z-axis, Hmag = −hIz, mixes up a pair
of Majorana fields, ξ1 and ξ2, and splits the spectrum of Sz = ±1 excitations (the Sz = 0 modes are unaffected by
the field). At h = hc1 the gap in the spectrum of the Sz = 1 excitations closes, and at h > hc1 these modes condense
giving rise to a finite magnetization. Once 〈Sz〉 6= 0, the effective Hamiltonian of the τ -chain becomes

H̄τ = Jτ
∑

n

τznτ
z
n+1 −∆τ

∑

n

τxn , ∆τ = λ〈Sz〉. (52)

Here we ignore the fluctuation term that couples τxn to ∆Sz
n = Sz

n − 〈Sz
n〉.

One should keep in mind that there exists the second C-IC transition at a higher field hc2 associated with full
polarization of the spin-1 chain. To simplify further analysis, let us assume that the range of magnetic fields hc1 <
h < hc2, where an isolated spin-1 chain has an incommensurate, gapless ground state, is sufficiently broad. This can
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be easily achieved in the biquadratic model (3) with β ∼ 1, in which case the Haldane gap – and hence hc1 – is small,
and the effects associated with the second C-IC transition can be neglected.

Now, by increasing the magnetic field h in the region h > hc1, the effective orbital chain (52) can be driven to an
Ising criticality. The induced transverse “magnetic field” ∆τ is proportional to a nonzero magnetization of the spin-1
chain. If λ/Jτ is large enough, then upon increasing the field the effective quantum Ising chain (52) can reach the
point ∆τ (h

∗) = Jτ where the Ising transition occurs. This will happen at some field h = h∗ > hc1. In the region
|h− h∗|/h∗ ≪ 1 the quantum Ising τ -chain will be slightly off-critical. Due to the SO coupling, these massive orbital
excitations will interact with the gapless Sz = ±1 spin modes. However, this interaction can only give rise to the
orbital mass renormalization (i.e. a small shift of the Ising critical point) and a group velocity renormalization of the
spin-doublet modes. For this reason we do not expect the aforementioned spin-orbital fluctuation term to cause any
qualitative changes.

The above discussion reveals an interesting fact: a sufficiently strong magnetic field acting on the spin degrees
of freedom can affect the orbital structure of the chain and drive it to a quantum Ising transition. The difference
with the situation discussed in Sec.III is that the external magnetic field induces a uniform spin polarization which,
in turn, gives rise to a uniform transverse orbital ordering 〈τxn 〉 6= 0. Thus, the classical long-range orbital order
〈τzn〉 = (−1)nηz, present at h < h∗, disappears in the region h > h∗, where the orbital degrees of freedom are
characterized by a transverse ferromagnetic polarization, 〈τx〉 6= 0.

VII. CONCLUSION AND DISCUSSION

In this paper, we have proposed and analyzed a 1D spin-orbital model in which a spin-1 Haldane chain is locally
coupled to an orbital Ising chain by an on-site term λ τxSz originating from relativistic spin-orbit (SO) interaction.
The SO term not only introduces anisotropy to the spin sector, but also gives quantum dynamics to the orbital degrees
of freedom. We approach this problem from well defined limits where either the spin or the orbital sector is strongly
gapped and becomes a ‘fast’ subsystem which can be integrated out. By analyzing the resultant effective action of
the remaining ‘slow’ degrees of freedom, we have identified the stable massive and critical phases of the model which
are summarized in a schematic phase diagram shown in Fig. 1.
In the limit dominated by a large orbital gap, i.e. Jτ ≫ ∆S , integrating out the orbital variables gives rise to an

easy-axis spin anisotropy D(Sz)2 where D ∼ −λ2/Jτ . As λ increases, the disordered Haldane spin liquid undergoes
an Ising transition into a magnetically ordered Néel state. The presence of antiferromagnetic spin order ζ in the Néel
phase in turn generates an effective transverse field h ∼ λζ acting on the orbital Ising variables. The orbital sector
which is described by the Hamiltonian of a quantum Ising chain reaches criticality when h = Jτ . In between the two
Ising critical points lies an intermediate phase (phase II in Fig. 1) where both Ising order parameters ηx and ηz are
nonzero. Such a two-stage ordering scenario illustrated by path 1 in the phase diagram (Fig. 1) has been confirmed
numerically by recent DMRG calculations.22 Interestingly, the orbital Ising transition can also be induced by applying
a magnetic field to the spin sector. As the field strength is greater than the Haldane gap, a field-induced magnon
condensation results in a finite magnetization density 〈Sz〉 in the linear chain. Thanks to the SO coupling, the orbital
sector again acquires a transverse field h ∼ λ〈Sz〉 and becomes critical when h = Jτ .
A distinct scenario of the orbital reorientation transition ηz → ηx occurs in the opposite limit ∆S ≫ Jτ . This

time we integrate out the fast spin subsystem and obtain a perturbed spin-1/2 XY Hamiltonian for the orbital sector.
The effective exchange constants are given by Jx ∼ λ2/∆S and Jy = Jτ . As λ is varied, the orbital sector reaches a
Gaussian critical point when Jx = Jy, at which the system acquires an emergent U(1) symmetry. The orbital order
parameter goes directly from η = (0, 0, ηz) to (ηx, 0, 0) in this single-transition scenario (illustrated by path 2 in
Fig. 1). Both order parameters ηx and ηz vanish at the critical point. We have shown that spin-orbital hybridization
effects near the Gaussian transition lead to the appearance of a non-zero spectral weight of the staggered spin density
well below the Haldane gap – the effect which can be detected by inelastic neutron scattering experiments and NMR
measurements.
The stability analysis of the orbital Gaussian criticality in the original lattice model (1), done in Appendix B, has

shown that this critical regime is protected by the τz → −τz symmetry of the underlying microscopic model. This
symmetry will be broken in the presence of an orbital field δ

∑

n τ
z
n which removes degeneracy between the local

orbitals dzx and dyz and adds a ”magnetic” field along the y-axis in the effective XY model (32). Such perturbation
will drive the orbital sector away from the Gaussian criticality. The same argument applies to a perturbation with
the structure β

∑

n S
z
nτ

z
n which also breaks the aforementioned symmetry. Integrating over the spins will generate an

extra term ∼ λβ
∑

n(τ
x
nτ

y
n+1 + τynτ

z
n+1) which, in the continuum limit, translates to λβ sin

√
4πΘ. As explained in

Appendix B, such perturbation will keep the orbital sector gapped with coexisting ηx and ηz orderings.
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Since the analysis presented in this paper is done in the limiting cases, precise predictions on the detailed shape of
the phase diagram or on the behavior of correlation functions in the regime of strong hybridization of spin and orbital
degrees of freedom, where all interactions included in the model are of the same order, are beyond our reach and
require further numerical calculations. On the other hand, the continuity and scaling analysis allow us to believe that
the global topology of the phase diagram and character of critical lines are given correctly. Finally the spin-orbital
model Eq. (1) can be generalized to the zigzag geometrical where two parallel spin-1 chains are coupled to a zigzag
Ising orbital chain via on-site SO interaction. The zigzag case is closely related to the quasi-1D compound CaV2O4.
While the two-Ising-transitions scenario is expected to hold in the Jτ ≫ ∆S regime, the counterpart of Gaussian
criticality in the zigzag chain remains to be explored and will be left for future study.
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Appendix A: Ising correlation function

In this Appendix we estimate the correlation function Γxx
nm(τ) = 〈τxn (τ)τxm(0)〉, where the averaging is performed

over the ground state of the Ising Hamiltonian Hτ = Jτ
∑

n τ
z
nτ

z
n+1, and τxn (τ) = eτHτ τxne

−τHτ .

It proves useful to make a duality transformation:

τznτ
z
n+1 = µx

n, τxn = µz
nµ

z
n+1.

The new set of Pauli matrices µa
n represents disorder operators. The Hamiltonian and correlation function become:

H → Jτ
∑

n

µx
n, (A1)

Γzz
nm(τ) → 〈µz

n(τ)µ
z
n+1(τ)µ

z
m(0)µz

m+1(0)〉. (A2)

The most important fact about the dual representation is the additive, single-spin structure of the Hamiltonian: the
latter describes noninteracting spins in an external “magnetic field” Jτ . Notice that by symmetry 〈µz

n〉 = 0. Therefore
the correlation function in (A2) has an ultralocal structure:

Γxx
nm(τ) = δnmY 2(τ), Y (τ) = 〈µz

n(τ)µ
z
n(0)〉. (A3)

The time-dependence of the disorder operator can be explicitly computed,

µz
n(τ) = eτJτµ

x
nµz

ne
−τJτµ

x
n = µz

n cosh(2Jττ) − iµy
n sinh(2Jττ).

Therefore (below we assume that τ > τ ′)

Y (τ − τ ′) = cosh 2Jτ (τ − τ ′) + 〈µx〉 sinh 2Jτ (τ − τ ′)

= exp[−2|Jτ |(τ − τ ′)]. (A4)

Here we used the fact that, in the ground state the Hamiltonian Hτ , 〈µx〉 = −sgn Jτ . Thus, as expected for the 1D
Ising model, the correlation function Γxx

nm(τ) is local in real space and decays exponentially with τ :

Γxx
nm(τ) = δnm exp (−4J⊥|τ |) . (A5)
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Appendix B: Perturbed XY chain, Eq. (32)

In this Appendix we analyze the perturbation (33) to the XY spin chain (32) and show that at the XX point it
represents a marginal perturbation which transforms the free-fermion regime to a Gaussian criticality describing a
Luttinger-liquid behavior of the orbital degrees of freedom.

Using the Jordan-Wigner transformation (34) we rewrite (33) as H ′
τ = H ′

1 +H ′
2, where

H ′
1 =

J ′
x(2)

2

∑

n

(a†nan+2 + h.c.)(a†n+1an+1 −
1

2
), (B1)

H ′
2 =

J ′
x(2)

2

∑

n

(a†na
†
n+2 + h.c.)(a†n+1an+1 −

1

2
). (B2)

Assuming that |Jx − Jy|, J ′
x ≪ Jx + Jy, we pass to a continuum description of the XY chain in terms of chiral,

right (R) and left (L), fermionic fields based on the decomposition (to simplify notations we set here a0 = 1):
an → (−i)nR(x) + inL(x). Then the Hamiltonian density of the XY model takes the form:

HXY (x) = −iv
(

R†∂xR− L†∂xL
)

− 2iγ
(

R†L† − h.c.
)

,

(B3)

where γ = Jx − Jy. Standard rules of Abelian bosonization27 transform (B3) to a quantum sine-Gordon model:

HXY (x) =
v

2

[

Π2 + (∂xΦ)
2
]

+
2γ

πα
cos

√
4πΘ, (B4)

where v = 2(Jx + Jy)a0 is the Fermi velocity, Π(x) = ∂xΘ(x) is the momentum conjugate to the scalar field Φ(x) =
ΦR(x)+ΦL(x), and Θ(x) = −ΦR(x)+ΦL(x) is the field dual to Φ(x). Here ΦR,L(x) are chiral components of the scalar
field. Using the fact that the fermions are spinless, one can impose the condition [ΦR(x),ΦL(x

′)] = i/4 and thus make
sure that the bosonization rules correctly reproduce the anticommutation relations {R(x), L(x′)} = {R(x), L†(x′)} =
0. An explicit introduction of the so-called Klein factors becomes necessary when bosonizing fermions with an internal
degree of freedom, such as spin 1/2, chain index etc, which is not the case here.

Let is find the structure of the perturbation (33) in the continuum limit. First of all we notice that

a†n+1an+1 − 1/2 ≡ : a†n+1an+1 :

→ (: R†R : + : L†L :) + (−1)n+1(R†L+ L†R)

=
1√
π
∂xΦ +

(−1)n

πα
sin

√
4πΦ. (B5)

Similarly

a†nan+2 + h.c.

→ −2
[

(: R†R : + : L†L :) + (−1)n(R†L+ L†R)
]

= −2

[

1√
π
∂xΦ− (−1)n

πα
sin

√
4πΦ

]

. (B6)

Dropping Umklapp processes R†(x)R†(x + α)L(x + α)L(x) + h.c. ∼ cos
√
16πΦ as strongly irrelevant (with scaling

dimension 4) at the XX criticality and ignoring interaction of the fermions in the vicinity of the same Fermi point,
we find that

(a†nan+2 + h.c.)(a†n+1an+1 − 1/2)
∣

∣

∣

smooth

→ −8 : R†R :: L†L := 2
[

Π2 − (∂xΦ)
2
]

. (B7)

We see that the perturbation H ′
1 generates a marginal four-fermion interaction to the free-fermion model (B3), thus

transforming the model (32) to an XYZ model with a weak ferromagnetic (zz)-coupling. This interaction can be
incorporated into the Gaussian part of the bosonic theory (B4) by changing the compactification radius of the field
Φ:

H = HXY +H′
1

=
u

2

[

KΠ2 +
1

K
(∂xΦ)

2

]

− 2γ

πα
cos

√
4πΘ. (B8)
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Here u is the renormalized velocity and K is the interaction constant which at J ′
x ≪ (Jx + Jy) is given by K =

1 + 2g +O(g2), where g = J ′
x(2)a0/πv ≪ 1.

Now we turn to H ′
2. We have:

a†na
†
n+2 + h.c. (B9)

→ −
[

R†(x)L†(x+ α) + L†(x)R†(x + α) + h.c.
]

+(−1)n
[

R†(x)R†(x+ α) + L†(x)L†(x+ α) + h.c.
]

.

Bosonizing the smooth term in the r.h.s. of (B10) one obtains ∂xΦcos
√
4πΘ. Bosonizing the staggered term yields

sin
√
4πΦcos

√
4πΘ. Using the OPE

sin
√
4πΦ(x) sin

√
4πΦ(x+ α)

= const− πα2(∂xΦ)
2 − 1

2
cos

√
16πΦ,

we find that, in the continuum limit, the Hamiltonian density H′
2 is contributed by the operators cos

√
4πΘ and

(∂xΦ)
2 cos

√
4πΘ (as before, we drop corrections related to Umklapp processes). The former leads to a small additive

renormalization of the fermionic mass γ and thus produces a shift of the critical point. The latter represents an
irrelevant perturbation (with scaling dimension 3) at the XX criticality. In a noncritical regime it renormalizes the
mass and four-fermion coupling constant g.

Considering the structure of the remaining terms in the expansion (31) one arrives at similar conclusions. Here a

remark is in order. The only dangerous perturbation which would dramatically affect the above picture is sin
√
4πΘ.

The presence of two nonlinear terms in the Hamiltonian, γ cos
√
4πΘ + δ sin

√
4πΘ, would make the fermionic mass

equal to
√

(λ− λc)2 + δ2. The Gaussian criticality in this case would never be reached, the model would always
remain massive, and nonzero staggered pseudospin densities, ηz and ηx, would coexist in the whole parameter range
of the model.

Fortunately, the appearance of the operator sin
√
4πΘ is forbidden by symmetry. The initial Hamiltonian (1) is

invariant under global pseudospin inversion In the z-component only: τzn → −τzn . After rotation τz → τy this
translates to τyn → −τyn . Using the bosonized expressions (39) for the staggered pseudospin densities we find that the
corresponding transformation of the dual field is Θ → √

π − Θ and so the bosonized Hamiltonian density must be
invariant under this transfomation. This explains why the operator sin

√
4πΘ cannot appear in the effective continuum

theory.
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