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We study how the θ-term is affected by interactions in certain one-dimensional gapped sys-

tems that preserve charge-conjugation, parity, and time-reversal invariance. We exploit the

relation between the chiral anomaly of a fermionic system and the classical shift symmetry

of its bosonized dual. The vacuum expectation value of the dual boson is identified with

the value of the θ-term for the corresponding fermionic system. Two (related) examples

illustrate the identification. We first consider the massive Luttinger liquid and find the

θ-term to be insensitive to the strength of the interaction. Next, we study the continuum

limit of the Heisenberg XXZ spin-1/2 chain, perturbed by a second nearest-neighbor spin

interaction. For a certain range of the XXZ anisotropy, we find that we can tune between

two distinct sets of topological phases by varying the second nearest-neighbor coupling.

In the first, we find the standard vacua at θ = 0, π, while the second contains vacua that

spontaneously break charge-conjugation and parity with fractional θ/π = 1/2, 3/2. We

also study quantized pumping in both examples following recent work.
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1. Introduction

1.1. Generalities

Certain insulators can be distinguished by the presence or absence of a topological

term in their low-energy effective actions [1]. In even spacetime dimensions the topological

term is a θ-term, while in odd dimensions, it is the Chern-Simons form. (By topological,

we mean a term that is independent of the background metric.) More generally, insulators

that may be described by quadratic Hamiltonians at low energies are classified via the

homotopy class of their gapped Hamiltonian [2,3].

In this note, we are concerned with gapped systems defined in two spacetime dimen-

sions and we study how the θ-term depends upon certain types of interactions. In the

continuum, the canonical example of a theory whose low energy action contains a θ-term

is provided by a single massive Dirac fermion ψ minimally coupled to a background U(1)

gauge field Aµ. The action has the form

S =

∫

d2nx
[

ψ̄(i∂µγ
µ − eAµγ

µ −m)ψ
]

, (1.1)

where e,m are the charge and mass of the fermion, and 2n is the spacetime dimension.

The matrices γµ satisfy the algebra, {γµ, γν} = 2ηµν , with ηµν = diag(1,−1, ...,−1), and

ψ̄ := ψ†γ0. Call the field strength of the gauge field, F . Then, the θ-term, obtained in the

low energy action for the above example, is given by the quantity

θI(F ) =
θ

2

∫

d2nx(eF/2π)n, (1.2)

where Fn := ǫi1j1...injnFi1j1 · · ·Finjn . θ takes a value equal to either zero or π depending

upon the sign of the mass m. When θ = 0 the insulator is said to be trivial, while the

insulator is called non-trivial when θ = π.

In general, I(F ) is integral when the theory is studied on a compact, oriented even-

dimensional manifold. (The factor of 1/2 ensures that the minimum value of I(F ) = 1

since we only consider systems on manifolds that admit a spin structure, i.e., fermions;

otherwise, the 1/2 should be removed.) When the manifold is non-compact, quantization

is a bit more subtle. In two dimensions, this condition is equivalent to the assumption that

the background U(1) gauge field is compact and the energy of a gauge field configuration

is finite. In four dimensions, quantization of I(F ) follows from the assumption that the

electromagnetic field configuration is produced by electrically and magnetically charged
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point particles – Dirac quantization. (For a recent discussion of the quantization of I(F )

in 3+1 dimensions, please see [4].) Quantization of I(F ) implies that θ has period 2π since

it is the quantity exp(iθI(F )) that appears in the path integral.

For a given spacetime dimension, I(F ) is odd under two of the discrete spacetime

symmetries: charge-conjugation, parity, or time-reversal (C,P, T ). Given that θ has period

2π and I(F ) is integral, the discrete symmetry under which I(F ) is odd folds the 2π interval

in half; the two fixed points of the discrete symmetry are at θ = 0, π. Thus, the positive

and negative mass Dirac theories represent the two distinct classes of insulators invariant

under the symmetries that change the sign of I(F ).

To determine the discrete symmetries under which I(F ) is odd, it is necessary to

know the transformation of the fields and coordinates. Charge conjugation does not act

upon the coordinates, however, it changes the sign of all components of the gauge field,

Aµ → −Aµ. Parity is a reflection about the origin of all spatial directions xi → −xi and

similarly reverses the sign of all spatial components of the gauge field Ai → −Ai. Time-

reversal is an anti-unitary transformation, i→ −i, that transforms t→ −t and Ai → −Ai.

For example, in two and four spacetime dimensions, I(F ) transforms as (−,−,+) and

(+,−,−), respectively, under (C,P, T ), where ± refers to a quantity that is even/odd

under the particular discrete symmetry.

In perturbation theory, a non-zero θ-term is found in the effective action for a back-

ground gauge field coupled to a slowly varying charge density field after integrating out a

massive Dirac fermion [5]. The necessity of the charge density field should be contrasted

with the situation in an odd number of spacetime dimensions. In this case, no charge

density field is required and the Chern-Simons form is found at one-loop by integrating

out a massive Dirac fermion. In odd dimensions, a component of the gauge field plays a

role similar to that of the charge density field; this observation was used in the dimensional

reduction technique of [1] in deriving the existence of a θ-term. A second approach for

determining the θ-term for massive fermionic systems is reviewed in the paragraph below.

In Sec. 2, we show more explicitly how a θ-term is generated in a related example.

The following argument relies upon the U(1) chiral Adler-Bell-Jackiw anomaly [6].

This argument is well known [1,7,8] and we review it for completeness. Denote the product

of all gamma matrices, γ2n+1 := inγ0...γ2n−1, and complexify the fermion mass term as,

mψ̄ψ =
1

2
mψ̄(1 + γ2n+1)ψ +

1

2
m∗ψ̄(1− γ2n+1)ψ. (1.3)
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Under a chiral transformation, ψ → exp(iαγ2n+1)ψ, the complex mass parameter rotates

m → exp(2iα)m. Because the path integration measure is not invariant under the chiral

rotation, the quantum action also shifts by a term proportional to 2αI(F ) [9]. (That the

action for the Dirac fermion shifts by a θ-term with θ = 2α is exact at one-loop.) However,

physical quantities cannot depend upon the choice of variables in the path integral. Ob-

servables can only depend upon the product M = m exp(−iθ) with θ being the coefficient

of an I(F ) term that may be present in the tree-level action. Thus, the theory (1.1) with

positive mass is different from the one with negative mass with vanishing tree-level θ in

both theories because M differs by a sign. However, it is possible to rewrite the action

for the negative mass theory by noting −m = m exp(iπ), and so the two massive Dirac

actions only differ by a term equal to πI(F ). Once the massive fermion is integrated out,

the effective actions for the background gauge field will differ by the presence of the term

πI(F ).

Please see [8] for a very nice discussion about how anomalies in various dimensions

can be used to classify gapped systems.

1.2. Motivation and Outline

It is interesting to generalize these ideas to interacting topological phases [10,11,12].

In the context of the massive Dirac theory, a generic interaction does not transform simply

under a chiral transformation and so the above argument does not apply in general. In

particular, a chiral rotation can change the sign of an interaction term and the low energy

properties of a theory can be sensitive to the sign change. However, even if the interaction

is invariant under a chiral transformation, the change of measure of the path integral, as

inferred from an anomalous axial current, can naively depend upon the interaction. As

an example of the latter phenomenon, in Sec. 2 we study the 1+1 dimensional massive

Luttinger liquid; here, the axial anomaly equation explicitly depends upon the interaction

strength and the Fujikawa analysis is complicated by the presence of the marginal current-

current interaction. In general, however, a relevant interaction introduces a new mass scale

and may dramatically affect the low energy physics.

There are two approaches towards the study of interacting topological insulators.

The first is to consider a massive theory and add arbitrary interactions that maintain the

symmetries of interest. We do this in Sec. 2. The second approach is less direct and

generally rather difficult to study in practice. Begin with a classically gapless theory that

admits a massive perturbation and ask whether or not the particular deformation results
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in a physically interesting topological phase. We take this approach is Sec. 3. There need

not be complete overlap with the various phases obtained (theoretically) via the above two

approaches.

Because the models we discuss and the techniques by which we study them are well

known, let us summarize what is new. Using bosonization to study interacting 1+1 di-

mensional fermionic systems, we identify the vacuum expectation value of the dual boson

with the value of the θ-term. Bosonization allows us to determine the θ-term directly.

We familiarize ourselves with this identification in the context of the massive Luttinger

model. Next, we relate the dimer and Neel phases of the Heisenberg XXZ spin-1/2 chain

perturbed by a second nearest-neighbor interaction to the value of a corresponding θ-term:

the dimer and Neel phases contain the θ = π/2, 3π/2 and θ = 0, π vacua, respectively.

Finally, we study adiabatic charge pumping [13,14,15] in both models. The novelty in the

XXZ chain lies in the fact that it is necessary for the varied parameter to wind twice about

the origin in order to transfer a full unit of charge across the system; a single winding is

analogous to varying between a positive and negative mass theory in the context of the

Luttinger liquid.

This paper is organized as follows. In Sec. 2, we study the massive Luttinger liquid

as an example of a 1+1 dimensional interacting topological phase. We find that the Z2

classification by the θ-term is independent of the strength of the interaction. In Sec. 3, we

discuss the continuum limit of the Heisenberg XXZ spin-1/2 chain, perturbed by a second

nearest-neighbor interaction. For a certain range of the XXZ anisotropy, we find that we

can tune between two distinct sets of topological phases by varying the second nearest-

neighbor coupling. In the first set, we find the standard θ = 0, π vacua, while the second

set contains vacua that spontaneously break charge-conjugation and parity with fractional

θ/π = 1/2, 3/2. Adiabatic variation of certain parameters in both models results in charge

transport. In contrast to the massive Luttinger liquid [13,15], the XXZ chain transitions

to the θ = π vacuum after a single closed orbit in parameter space and only results in an

half-unit of charge transfer. Two windings are necessary in order to return to the original

vacuum and so the total charge transferred is integral. We summarize in Sec. 4.
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2. Massive Luttinger Liquid

2.1. Invariance of θ

A simple example where the interactions can be treated exactly is provided by the

massive Luttinger liquid [16,17,18]. The action

S =

∫

d2x
[

ψ̄(i∂µγ
µ−eAµγ

µ)ψ−
1

2
ψ̄
(

m(1+γ3)+m
∗(1−γ3)

)

ψ−
g

2
(ψ̄γµψ)(ψ̄γ

µψ)
]

. (2.1)

(2.1) describes a 1+1 dimensional spinless two-component fermion ψ of charge e coupled

to a background gauge field Aµ. The constant charge density field m couples the left and

right handed components of ψ and functions as the mass parameter. The action breaks

both C and P when m has a non-zero imaginary part. The current-current interaction is

parameterized by the coupling g. A more general quartic interaction will be considered in

Sec. 3.

At finite g, it is simplest to study (2.1) after bosonization of the fermion [18]; we

introduce a scalar field φ that satisfies

1 + g/π = 4π/β2,

ψ̄i∂µγ
µψ =

1

2
(∂µφ)

2,

ψ̄γµψ =
β

2π
ǫµν∂νφ,

1

2
ψ̄(1 + γ3)ψ = ψ†

RψL =
1

2β2
exp(iβφ),

(2.2)

where the magnitude of the coefficient of the exponential in the final equality in (2.2) is

chosen for convenience. Substituting (2.2) into (2.1), and after one integration by parts in

the last term, we obtain

S =

∫

d2x
[1

2
(∂µφ)

2 −
m

2β2
exp(iβφ) −

m∗

2β2
exp(−iβφ) +

βe

2π
φǫµν∂µAν

]

. (2.3)

The integration by parts in the last term of (2.3) is required if the action is to be gauge-

invariant on a space with boundary. Further, this form of the action correctly displays

the chiral anomaly associated with shifts of the φ field or, in the fermionic language, the

Jacobian of the path integration measure under a chiral transformation. More precisely, a

chiral rotation of ψ → exp(iαγ3)ψ is equivalent to a shift of φ by α and the last term in

(2.1) correctly reproduces the shift of the action by I(F ) under this transformation. We
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also note that φ → −φ + π under a C transformation, while φ changes sign under a P

transformation, and is neutral under T . (Although C effectively takes m → −m, it also

shifts θ, thus preserving m exp(−iθ).)

Expanding the exponential exp(±iβφ), β2 acts as a coupling constant for the leading

quartic scalar interaction, assuming for the moment that m is real. Thus, the duality

(2.2) interchanges a strongly coupled fermion theory for a weakly coupled boson theory

and vice versa. When β2 = 4π, g vanishes and (2.3) relates a free massive fermion to an

interacting scalar field. Through its definition in terms of β, the interaction strength g of

the four-fermion interaction controls the radius of the φ boson; φ is periodically identified

under φ → φ + 2π/β. Invariance of exp(iS) under a shift of φ by its period is consistent

with the integrality of I(F ); in general, however, integrality of I(F ) is distinct from the

requirement that exp(iS) be invariant under periodic shifts of φ. For the remainder, we

restrict φ to the interval [0, 2π/β).

The scaling dimension of exp(iβφ) equals β2/4π or (1 + g/π)−1 in terms of the

fermionic interaction strength g. Attractive interactions between the fermions increase

the dimension of the exponential operator, while repulsive interactions have the opposite

effect. β2 ≥ 8π or g ≤ −π/2 parameterize a line of fixed points that terminates when

β2 = 8π at the SU(2)1 WZW critical point [19]. Thus, we restrict to the regime where

exp(iβφ) is relevant.

It is convenient to absorb the phase of the mass m by redefining φ. Writing m =

|m| exp(ia), we rename φ̃ = φ+ a/β. With this redefinition, the action becomes

S =

∫

d2x
[1

2
(∂µφ̃)

2 −
|m|

β2
cos(βφ̃) +

βe

2π

(

φ̃− a/β
)

ǫµν∂µAν

]

. (2.4)

At energies low compared to |m| the scalar field is frozen and minimizes its potential energy

at 〈φ̃〉 = π/β or, in the original coordinate, 〈φ〉 = (π − a)/β. In the low energy effective

action

Seff =
(π − a)

2

∫

d2x(e ǫµνFµν/2π), (2.5)

the dependence upon β has completely disappeared; the effective action is independent of

the strength of the current-current interaction. We see explicitly that the low energy action

equals (π−a)I(F ). The C and P symmetric points lie at a = 0, π; namely, when m > 0 or

m < 0. When a differs from these two values, the theory breaks C and P. These results

are independent of the interaction strength. (We remark that identifying the ±m theory

with the θ = 0, π vacuum is a convention. An invariant statement requires a specification

of a tree-level θ-term – tuned to zero in this example – as discussed in the introduction.

In the absence of this, we can only say that the effective actions for the two theories differ

by a θ = π term.)
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2.2. Adiabatic Variations

In this section, we re-derive the results recently obtained in [15], and discussed previ-

ously in slightly more generality in [14,1], concerning the Thouless charge pump [13]. This

review provides intuition for a similar study in the context of the Heisenberg XXZ spin-1/2

chain discussed in Sec. 3. As an aside, we mention how the chiral anomaly equation is

related to the conductance of a one-dimensional wire.

It is natural to consider two currents constructed from the fields in (2.1): (1) the vector

current Jµ
V = ψ̄γµψ and (2) the axial current Jµ

A = ψ̄γ3γ
µψ. Their integrated charge

densities describe, respectively, the sum and difference of the number of left and right

moving fermions. If both currents were conserved, the number of left and right moving

fermions would be separately conserved. However, the axial current is not conserved

because of the fermion mass term and the minimal coupling to the background gauge field.

The bosonization rules (2.2) allow us to rewrite these currents in terms of the scalar φ:

Jµ
V = β

2π
ǫµν∂νφ while Jµ

A = β
2π
∂µφ. The vector current is identically conserved while the

axial current, given its definition in terms of φ, obeys an equation that follows directly

from the φ equation of motion,

∂µJ
µ
A =

|m|

2π
sin(βφ̃) +

β2e

(2π)2
ǫµν∂µAν . (2.6)

In the fermion language, the first term on the righthand side of (2.6) is the explicit violation

of the axial symmetry by the mass term while the second term obtains from a variation of

the fermion path integration measure. Note that the coefficient of ǫµν∂µAν depends upon

the interaction through β2/4π.

Consider first an adiabatic change of sign of the fermion mass when the background

field is set to zero. In particular, consider the arc parameterized at non-zero |m| by

adiabatically varying the phase a with respect to time. In the vacuum, the vector current

〈Jµ
V 〉 = β

2π
ǫµν〈∂νφ〉 = − 1

2π
ǫµν∂νa. Therefore, the amount of charge that passes through

an arbitrary point on the line,

∆Q = e

∫ ∞

−∞

dtJx
V =

e

2π

∫ ∞

−∞

dt ∂ta =
e

2π
∆a. (2.7)

Choosing ∆a = 2π, i.e., a loop about the origin, (2.7) is simply a restatement of Thou-

less’ result on quantized charge transport in one spatial dimension [13] generalized to the

Luttinger liquid as nicely demonstrated recently in [15]. Adiabatic variation of the phase
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of the mass term about the origin results in transport of a single unit of charge (modulo

one) through the system. If the loop does not enclose the origin, ∆a = 0 and no charge is

transported. (2.7) gives an explicit example with interactions of the phenomenon discussed

in [1] where two distinct topological insulators are connected via a path in parameter space

that preserves a non-zero excitation gap, but does not necessarily maintain the discrete

symmetries of the two classes of insulator.

Contact with the work of [20,21,5] can be made by considering instead an interpolation

in space instead of time between two values ofm. It is sufficient to consider an interpolation

of the phase a of m. The charge carried by a soliton,

Q = e

∫

dxJ0
V = e

∫

dx
β

2π
∂x〈φ〉 =

e

2π
∆a. (2.8)

If the soliton interpolates between positive and negative values of the mass parameter,

then ∆a = π and so Q = e/2 [20]. However, in general, the change of the phase of m, and

therefore the corresponding charge carried by the soliton, can be arbitrary [5].

This provides an heuristic way to understand why the charge transported for any

closed loop in m space is integral. Consider a finite length chain and imagine introducing

a soliton or kink near the left end that interpolates between the two vacua at ±m. This

interpolation is achieved by varying the phase of m as above in space as opposed to time.

The charge carried by the soliton, Q = e/2. Closing the loop by returning to the positive

m−axis results in the transport of a second e/2 soliton. If we had instead reversed the path

in m space so that the origin was not enclosed, it would have been equivalent to taking a

kink from the left to the right end and then back again with zero net charge transfer.

As an aside, we mention a result that follows from the axial current equation (2.6).

Set m = 0 and allow the external electric field ǫµν∂µAν to vary adiabatically with time.

In particular, adiabatically vary Ax while keeping At = 0. The system is placed on a

spatial circle of length L and ψ is taken to be periodic around L (more general boundary

conditions are also possible). A general constant background Ax cannot be removed by

a gauge transformation as this would ruin the assumed periodicity of ψ since a gauge

transformation multiplies the fermion field by exp(ieα) with α the gauge transformation

parameter. However, when Ax = 2πn/eL, for n an integer, it is possible to perform a

gauge transformation with the choice α = Axx to remove the background field. In other

words, a gauge field configuration Ax = 2πn/eL is physically equivalent to a configuration

without any background field.
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Let Ax adiabatically vary from zero to 2π/eL so that the system returns to its orig-

inal ground state after the variation with, perhaps, a slight relabeling of its spectrum.

Integrating (2.6) with m = 0 over spacetime, we find

NL −NR =

∫

dtdx ∂µJ
µ
A =

β2e

4π2

∫

dtdx ∂tAx =
β2eL

4π2
∆Ax. (2.9)

Because ∆Ax = 2π/eL, the difference NL−NR changes by β2

2π
. Note that if the interaction

g is tuned to zero, β2 = 4π and the difference NL − NR = 2 reflecting the fact that one

left-handed fermion has emerged from the fermi sea, while one right-handed fermion has

been captured. Such a flow in the spectrum ensures the charge of the vacuum remains

the same after the adiabatic variation. However, a non-zero current obtains after the

variation since there is an imbalance between the number of left and right movers. For

arbitrary interaction, that the difference is proportional to β2/4π is a manifestation that

the conductance of an interacting 1+1 dimensional chain equals β2

4π
e2

h
(assuming Luttinger

liquid leads) [22,23,24].

3. Generic Interactions

In this section, we study slightly more generic interactions that preserve C and P. We

focus on a one-dimensional system that is gapped in the IR, not because of a tree-level mass

term, but because of interactions.1 We view this as an alternative approach to building

insulators with interesting topological properties.

3.1. θ-Vacua

The motivation for the model considered in this section is the Heisenberg XXZ spin-

1/2 chain described by the microscopic Hamiltonian,

H = J
∑

i

[

Sx
i · Sx

i+1 + Sy
i · Sy

i+1 + g′Sz
i · Sz

i+1

]

, (3.1)

with J, g′ > 0. The spin operators obey the SU(2) algebra, [Sa
j , S

b
j ] = iǫabcSc

j for spins

on the same lattice site, j. g′ parameterizes a line of critical points for 0 ≤ g′ ≤ 1. The

1 See [25] for a related discussion in 3+1 dimensions where the interactions are due to disorder.

In general, disorder may be treated exactly in 1+1 dimensions [26].
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system enters a massive phase when g′ > 0. (The system is ferromagnetic when g′ < 0.) It

is well known that the continuum limit is described by the action (for a review, see [27]),

S =

∫

d2x
[

ψ̄(i∂µγ
µ − eAµγ

µ)ψ −
g

2

(

(ψ̄γµψ)2 − 2((ψ†
RψL)

2 + (ψ†
LψR)

2)
]

, (3.2)

where the subscripts L,R refer to the left and right moving parts of the fermion. In obtain-

ing (3.2), we have dropped unimportant constants and absorbed any renormalization of the

Fermi velocity by a redefinition. Note that we have introduced in (3.2) a background gauge

field minimally coupled to the number current of the Jordan-Wigner fermions. Fermion

number is identified with the Sz eigenvalue in the spin language. The interaction terms

are parameterized by the coupling g which is linearly related to the XXZ anisotropy pa-

rameter, g′. In (3.2), the first interaction term is simply the current-current interaction

whose effects we previously studied in Sec. 2. The second interaction term, naively zero by

the Pauli principle, is responsible for dynamical mass generation. The product should be

understood as the leading term in the operator product expansion (OPE) of the operator

(ψ†
R,LψL,R) with itself. This second term is the spin-less analog of Umklapp scattering

[28,29,30] and we refer to it as the Umklapp term.

Bosonization proceeds as in Sec. 2 by introducing a scalar field φ satisfying (2.2). The

resulting action

S =

∫

[1

2
(∂µφ)

2 +
g

β2
cos(2βφ) +

βe

2π
φǫµν∂µAν

]

. (3.3)

We assume that we are in the regime β2 < 2π where the Umklapp term is relevant. (The

precise value in terms of microscopic parameter g′ of the XXZ chain at which this transition

occurs can be obtained and supports the qualitative prediction of the sine-Gordon model

that a transition to a massive phase occurs for some finite g ∼ π.) The low energy limit of

(3.3) is achieved by taking g → ∞. The Umklapp potential freezes the scalar field at one

of the two vacua, 〈φ〉 = 0, π/β. These two vacua are Z2 chiral partners and correspond to

θ = 0, π, respectively.

Notice that in contrast to the example in Sec. 2 where the tree level mass term only

allowed a single vacuum for a particular sign of the cosine interaction (assuming the range

of φ was restricted to the interval [0, 2π/β)), the two topologically distinct vacua for this

model both occur for one sign of the cosine interaction. Of course, this is due to the doubled

periodicity of the cosine potential. Note there do not exist additional non-trivial vacua

when g < 0. The reason is that the dimension of the Umklapp operator is determined by

g and so when g < π, cos(2βφ) is irrelevant and decouples from the low energy physics.
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It is possible to find additional vacua when the coefficient of the cosine is negative,

however, it is necessary to independently vary the dimension of the Umklapp operator and

its coefficient. In terms of the motivating XXZ chain, this is achieved by adding a second

nearest-neighbor spin interaction [31],

δH = λ
∑

i

Si · Si+2. (3.4)

The bosonic version of the continuum action

S =

∫

[1

2
(∂µφ)

2 +
(g − 6λ)

β2
cos(2βφ) +

βe

2π
φǫµν∂µAν

]

, (3.5)

where β2/4π = (1 + (g + 2λ)/π)−1. Choose g > π so that the Umklapp operator is

relevant even when the second nearest-neighbor coupling vanishes. The massless Luttinger

liquid separates at λ = g/6 two distinct sets of massive phases . When λ < g/6, the

vacua lie at 〈φ〉 = 0, π/β, while when λ > g/6, 〈φ〉 = π/2β, 3π/2β and the corresponding

θ = π/2, 3π/2. The two vacua in the regime λ > g/6 spontaneously break C and P. This

follows from the fact that I(F ) is integral.

If I(F ) were even, for example, the range of θ would be reduced to the interval [0, π)

and the two vacua at θ = π, 3π/2 would be identified with their π/β partners and effectively

removed. The remaining vacua would become the two C,P invariant vacua – the vacuum

with non-zero vacuum expectation value having fractional θ = π/2. We are not aware

of an argument that would require I(F ) to be even. Note that invariance of the total

action with respect to a shift of φ that preserves the cosine interaction is equivalent to the

requirement that I(F ) be even, however, quantization of I(F ) and the shift symmetry of

a potential need not be related.

In terms of the spin-chain, the transition at λ = g/6 separates two distinct sets of

phases. The vacua that preserve C,P correspond to the Neel phase while the dimerized

phase occurs for λ > g/6, given a sufficiently large g > π.

Finally, we remark that (3.5) contains the most relevant interactions consistent with

the symmetries of the spin chain. One possible operator of lower dimension is cos(βφ),

obtained from an alternating interaction in the spin model, but it can be ignored since it

violates the discrete Z2 lattice symmetry, φ→ φ/β. There is one other possibly dangerous

operator, namely, cos(βφ′) where φ′ is defined as follows. Expand φ = φL + φR into left

and right moving modes. We define φ′ := φL − φR. (It can be identified with the T-dual

of φ.) It is possible to ignore cos(βφ′) as long as the spin-chain Hamiltonian (3.1) enjoys

the U(1) rotation symmetry about the z-axis since this acts as φ′ → φ′ + α where α is an

arbitrary constant.
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3.2. Adiabatic Variation

Following the method discussed in Sec. 2, it is now possible to examine the nature of

charge transport under adiabatic variation of parameters in the XXZ spin-chain. Just as it

was necessary to allow the mass parameter in Sec. 2 to be complex, we take the coefficient

of the cosine interaction discussed in this section to be complex. This is done as follows.

The continuum limit of the XXZ spin-chain is parameterized by two couplings, g, λ

which we allow to be complex. g + 2λ determines the dimension of the cosine interaction

while and g−6λ is the coupling constant of the interaction. Thus, we must keep the linear

combination g + 2λ real while allowing g − 6λ to take complex values. Hermiticity of the

Lagrangian is maintained by adding in the Hermitian conjugate interaction. Writing g =

g1+ig2 and λ = λ1+iλ2, for gi, λi real, we consider arbitrary values of g1−6λ1+i(g2−6λ2)

while requiring g2 = −2λ2 so that the dimension of the operator is real. The relation

between g2, λ2 reduces the dimension of the parameter space by one. We take g1, g2, λ1 to

parameterize the continuum limit of the XXZ chain.

In order to simplify the presentation, let us define, g̃ = g1 + 2λ1 and ρ exp(ia) =

g1 − 6λ1 + 4ig2, with 0 ≤ ρ =
√

(g1 − 6λ1)2 + 16g2)2 and a = tan−1(4g2/(g1 − 6λ1)). The

resulting bosonic action

S =

∫

d2x
[1

2
(∂µφ)

2 + ρ cos(2β̃φ+ a) +
β̃e

2π
φǫµν∂µAν

]

, (3.6)

where 4π/β̃2 = 1+ g̃/π. At low energies or ρ→ ∞, the vacua lie at 〈φ〉 = −a/2β̃ + nπ/β̃,

for integer n.

We consider the path obtained at non-zero ρ by varying a : 0 → 2π. Following Sec. 2,

the amount of charge that is transferred across the system

∆Q = −e

∫ ∞

−∞

dt
β̃

2π
∂t〈φ〉 =

e

2π

∫ ∞

−∞

dt ∂ta =
e

4π
∆a. (3.7)

The factor of 1/2 on the right hand side of (3.7) is due to the doubled periodicity of the

cosine interaction. When ∆a = 2π, an half-integral charge is transferred across the system.

The system, however, has not returned to its initial state, but has transitioned to its Z2

chiral partner. It is necessary to wind twice about the origin, a : 0 → 4π, in order to

return to the original vacuum. Doing so, we find integral charge transport.
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4. Discusion

We considered the effects of certain interactions on the θ-term for one-dimensional

gapped systems. Our examples were simple and well known. What is new is our viewpoint

on the transitions described by tuning of various parameters in the models. We made use

of abelian bosonization techniques to determine the value of the θ-term in the low energy

action. In particular, the semi-classical minimum of the potential for the dual boson was

shown to directly determine the value of the θ-term.

The first model we studied was that of the massive Luttinger liquid. When the

interactions are taken to vanish, the model describes free massive fermions. The sign of

the mass determines the topological phase in which the system lies. The two phases are

distinguished by the value of a θ-term. We found these two values of θ to be stable to

arbitrary current-current interactions.

In the course of studying this model, we made contact with the recent work [15]. By

adiabatically varying the phase of the mass term, a unit of charge is pumped through the

system. In the massless limit, we also noticed that the axial anomaly equation provided a

simple way to infer the conductance of a one-dimensional interacting wire.

The second model we studied was inspired by the Heisenberg XXZ spin-1/2 chain

perturbed by a second nearest-neighbor interaction. For vanishing second nearest-neighbor

interaction, we found two vacua related to each other by a Z2 chiral translation. Phases

with fractional θ/π = 1/2, 3/2 obtained when this interaction was turned on with sufficient

strength, however, these vacua spontaneously broke both C and P. In XXZ chain, we

studied adiabatic charge pumping and found, in contrast to the model studied in Sec. 2,

it was necessary to perform two cycles in order to return to the same vacuum at the end

of the variation. Again, an integral unit of charge was pumped during the variation.

Part of the initial motivation in studying simple one-dimensional systems amenable to

bosonization techniques was to have a better understanding of the θ-term in the context

of various topological phases of matter. In particular, we were interested in studying

interactions in the controlled environs of one-dimensional systems. This work provides

context for further exploration of phases of matter where we can hope to find fractional

values of θ/π preserving C,P, T [32,7].
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