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A framework for calculating the k-conserving component of K-edge resonant x-ray emission spec-
troscopy measurements of anisotropic solids is presented. The crystalline band structure is calculated
using a quasiparticle self-consistent GW implementation. Coherent spectra are calculated in the
Kramers-Heisenberg formalism, and the effect of the experimental geometry in the dipole approxi-
mation is fully considered. Coherent spectra are calculated for ZnO and successfully compared to

previously measured data.
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I. INTRODUCTION

X-ray emission spectroscopy (XES) is a powerful tool
for probing the bulk electronic structure of crystalline
systems. The photon-in—photon-out nature and thus
large penetration depth of the technique means the bulk
band structure is probed,! and insulators can be inves-
tigated as well as metals. The general two-step x-ray
emission process begins with x-ray stimulated excitation
of a core hole, followed by the decay of a valence band
state to fill the empty state. When the core electron is ex-
cited into bands close to (~ 10 eV) the conduction band
minimum (CBM) this process becomes resonant and a
coherent term is measured along with the XES. In this
regime we are measuring resonant XES (RXES).

General overviews of RXES and the theory behind it
can be found in Refs. 2 and 3. However, there are few
reports in the literature where the coherent part of the
RXES (CRXES) have actually been calculated with ab
initio techniques, especially where the electronic struc-
ture requires an in depth treatment.*”

In this paper we present the results of an implemen-
tation of the Kramers-Heisenberg equation on top of a
quasisiparticle self-consistent (QS)-GW band structure
calculation. We give full consideration to the effect of
dipole selection rules on the incoming and outgoing pho-
tons in different polarization and experimental geome-
tries, enabling us to calculate spectra that are directly
comparable to experiment.

The theoretical results are compared to the measured
wurtzite zinc oxide (Zn0O) oxygen K-edge RXES. The lit-
erature yields a number of ZnO XES studies,®” and the
present work can be considered a continuation of the re-

sults we first reported in Ref. 10. We focus on wurtzite
Zn0O for two reasons: first, it has shown potential for
use in optoelectronic applications,'! consequently there
is interest in accurately determining the details of its
band structure; second, it has a remarkably dispersive
and anisotropic conduction band, as can be seen in the
band structure figures below. These features mean that
for excitation energies close to the CBM, and for spe-
cific experimental geometries, small unique areas of the
Brillioun zone can be probed with RXES, making the
material an ideal test case.

II. EXPERIMENT

The experimental spectra reproduced in this paper
were reported in Ref. 10, where the full experimental de-
tails can be found. Briefly, the sample was a 500 nm ZnO
epilayer, grown on epi-ready (0001) sapphire by plasma-
assisted MBE.'? The high crystalline quality of the film
was confirmed by a number of standard techniques.'3
The x-ray spectroscopy was performed on the undulator
beamline X1B at the National Synchrotron Light Source
at Brookhaven National Laboratory. X1B is equipped
with a spherical grating monochromator and a Nordgren-
type emission spectrometer. The X1 undulator produces
light which is linearly polarized in the horizontal plane
of the lab (see below). The energy resolution over the O
K-edge was approximately 0.20 eV and 0.37 eV for the
incident and emitted photons, respectively.

The CRXES was extracted from the RXES by using
the standard technique of subtracting as large a fraction
of the XES possible while subject to the physical con-



straint that the resulting spectra are never negative.?

The zero point of the calculated energy axis was placed
at the VBM. The need for this empirical alignment arises
from the inherent difficulty in calculating the core-level
excitation of several 100 eV on an absolute scale with a
precision of 0.1 eV or better. The experimental energy
and theoretical energy scales were then aligned by a rigid
shift to reach best agreement between the respective va-
lence bands. For our comparisons we estimate that the
experimental VBM is located at 527.2 eV.

IIT. THEORY
A. The Kramers-Heisenberg implementation

The coherent or (more precisely) wavevector conserv-
ing contribution to RXES is described according to the
Kramers-Heisenberg theory.23 For a one-electron band
structure model of the solid, the RXES can be described
by the following cross-section:
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Here, ¢, ¢ = (c,v) represent the single-particle band
energies, while wy corresponds to the incident (x-ray ab-
sorption) photon energy, which excites a dipole transition
(pa) from a core state (labeled s here with the oxygen K-
edge in mind) with energy ¢, to a conduction band state
|ck), and wq corresponds to the x-ray emission photon en-
ergy, resulting when a valence electron from a band state
|vk) (with the same wavevector) dipole-recombines with
the core hole. The polarizations of the x-rays are labeled
by a and (3, respectively. The sum is over the full Bril-
louin zone (BZ) and we used units in which = 1. The
above equation is obtained in the long-wave length ap-
proximation, neglecting the photon wave vectors as will
be discussed at the end of this section.

The (full width at half max) lifetime broadening factor
of the core hole is given by I';,, where m refers to a specific
intermediate state corresponding to the core hole and an
electron excited to a conduction band €. The core hole
lifetime of order fs'* (T',, ~ 0.1 eV) ensures that for
a given x-ray absorption energy only band states in a
narrow energy range will contribute strongly when the
energy denominator is resonant.

The energy conservation delta function indicates that
the difference in energy between the absorbed and emit-
ted photons must equal a vertical interband transition
(constant wave vector). In other words, the x-ray absorp-
tion energy makes a horizontal slice (constant energy)
through the band structure energies and we then obtain
contributions from the vertical interband transitions for
those k-points and bands for which the matrix elements
are non-zero by the selection rules. So, the required cal-
culation is essentially like that of an interband optical

dielectric function except that now the matrix elements
involve the resonant factor which contains a product of
two momentum matrix elements coupling both the con-
duction and valence band states to the same core state.
Furthermore, we plot it not directly as function of the in-
terband energy but as function of wo, the x-ray emission
energy.

In practice, it is difficult to calculate the absolute en-
ergy of the core level with sufficient precision because
of the so-called relaxation energy. This term refers to
the fact that the orbitals adjust in the presence of the
core hole. One could attempt this with so-called ASCF
calculations, i.e. calculating the total energy difference
between the system without and with a localized hole us-
ing an impurity type calculation. However, we can avoid
this problem by allowing ourselves to use an empirical
alignment of the calculated and experimental spectra as
already mentioned above. In that case, all we need in the
calculation is the spectrum relative to the highest XES
energy, which corresponds to the VBM. Thus we write
w1 = eypM —€s+Aw1, where eypy is the energy of the va-
lence band maximum (VBM). The x-ray emission energy
is simimarly written as ws = eypm — €5 + Aws. Note that
in the RXES spectrum Awsy < 0 and is measured relative
to the VBM. Returning to Eq. (1), the resonant factor
can therefore be written as (€. — evpm — Awy —il'/2) 71,
and the delta-function as 6[Aw; — Aws — (€ck — €k )] In
the results below, the XAS energy refers to Aw; and the
XES energy refers to Aws.

The optical matrix elements between core states and
band states are readily calculated in an all-electron
method based on a muffin-tin type augmentation method
such as the linearized augmented plane wave (LAPW) or
linearized muffin-tin orbital (LMTO) method. We here
use a full-potential FP-LMTO method.'%!” The con-
tribution from each eigenstate to partial waves in the
muffin-tin sphere are readily obtained from the eigenvec-
tors of the band structure problem and the augmenta-
tion properties of the basis functions to radial solutions
inside each sphere. They contain so-called ¢ (the radial
wavefunction at the linearization energy) and its energy
derivative, ¢ parts and in our particular implementation
may also contain so-called local orbital contributions!'®
for semi-core states. The integration over the Brillouin
zone is similar to that used in the calculation of the op-
tical joint density of states; in this case the integration is
performed by a simple sampling method with the delta
function broadened by a Gaussian of about 0.2 eV.

A key approximation in our current implementation of
CRXES is that the two band states involved occur at
the same k-point. This assumes the wavevector of the x-
ray is negligible compared to the size of the BZ. Strictly
speaking there is a crystal momentum conservation delta
function 6k, 4q;—k,—q., Where k; is the k-point of the
conduction band state involved in the x-ray absorption,
q: is the wavevector of the absorbed x-ray, ks is the k-
point of the valence band in the x-ray emission part of
the process, and qq is the wavevector of the emitted x-



ray. So, it is the difference between emitted and absorbed
x-ray wavectors we assume to be negligible.'® The overall
crystal momentum conservation used here assumes that
the intermediate states with the core hole do not break
the crystal periodicity.

B. Band structure calculation

The above methodology can be applied with differ-
ent underlying approximations to the potential for the
band structure problem, the most commonly used of
which is the local density approximation for exchange
and correlation.???! Here we use the quasiparticle self-
consistent GW approach.?? In this approach, a non-local
exchange-correlation potential

VAW = =3 ) BB (em) + Bonn(en) i, (2)

is used, constructed from the GW self-energy operator,
whose matrix element X,,,(€) is written in the basis of
the eigenstates of the independent particle Hamiltonian
with this exchange correlation potential. The latter is
chosen such that the Kohn-Sham eigenvalues converge
to the quasiparticle excitation energies in the GW ap-
proximation. In the GW approximation, the self-energy
is schematically written as iG° x W with G° the one-
electron Green’s function corresponding to the Kohn-
Sham Hamiltonian and W the screened Coulomb inter-
action. The latter is given by W = e~ 1v = (1 — IIv) ~tv
with v the bare Coulomb interaction and IT the indepen-
dent particle polarizability II = —iG° x G°, € being the
dielectric function. Starting from the LDA Hamiltonian,
one constructs a GW self-energy, ¥°, from which a new
Vze is obtained through Eq. (2), from which a new GW
self-energy is obtained, and so on, until self-consistency
is reached.

Strictly speaking the matrix elements in the Kramers-
Heisenberg formalism should be velocity matrix elements
and involve the commutator [r, H] which is not purely the
momentum operator if a non-local potential is included.?3
We ignore this complication for now, which corresponds
to making the usual long-wavelength approximation and
is consistent with our assumption of neglecting the mo-
mentum of the photon. The (QS)-GW is implemented in
terms of a mixed basis set for expanding any two-particle
operator (v, W, II, ¥). This mixed basis includes plane
waves projected on the interstitial space and product ba-
sis functions of LMTOs in the spheres.?* The (QS)-GW
approach in this all-electron implementation has been
shown to give excellent and very systematic results for
a wide variety of systems. It slightly overestimates most
semiconductor band gaps, which can be traced to the
use of the random phase approximation (RPA) of the
polarizability. One finds in practice that a mixture of
0.8V,25GW 1.0.2V.EPA gives almost exact agreement with
the experimental band gaps. We obtain a band gap of
3.48 eV (c.f. the experimental value of 3.4 eV?°) for ZnO

in this way, not including spin-orbit coupling, nor zero-
point motion corrections or exciton binding energy cor-
rections.

The reader might wonder if expensive GW calculations
are necessary for describing RXES. As mentioned, the
theory involves interband transitions, so some correction
to the gap is necessary. However, to see the changes
from k-point to k-point what matters most is the disper-
sion of the bands in the valence and conduction bands
separately. So, one could probably obtain similar results
by just adding a constant gap shift to the LDA calcu-
lations. Nonetheless, the QS-GW approximation is also
expected to improve band widths and dispersions com-
pared to LDA.?* Not all conduction band shift by the
same amount between GW and LDA. Details about the
present GW calculations for ZnQO, including the position
of the Zn3d bands can be found in Kotani et al.?2.

The (QS)-GW exchange-correlation potential can be
re-expanded from the eigenstates on a relatively coarse
k-mesh to the LMTO basis set in real space via an in-
verse Bloch transformation and then evaluated for a fine
k-point mesh. This capability is important here because
we need a fine k-point mesh to properly calculate the
joint density of states like interband transitions spectral
function in CRXES. If the k-point mesh is too coarse,
the resonant factor is not effective in picking out the res-
onant contributions. Symmetrization of the matrix ele-
ments |(s|pa|ck)|? and |{s|pa|vk)|? is performed over all
point group elements, so the integration can still be done
over the irreducible part of the Brillouin zone. We cal-
culate the full 3 x 3 matrix of cross-sections for different
incoming and outgoing x-ray polarizations.

C. Angular dependence and experimental
geometry

From Eq. (1) we can see that dipole selection rules may
lead to an angular dependence of the RXES cross-section,
which from here on we will write as M,g. More specifi-
cally, if we restrict ourselves to K-edge spectra, the s-like
core hole implies that only matrix-elements to p-orbital
contributions to the conduction band and valence band
states enter the two dipole moment matrix elements. The
indices «, 8 in Eq. (1) are the Cartesian components of
the momentum operators of the XAS and XES parts of
the process respectively, which are determined by the po-
larizations e;, e, of the incoming and outgoing beam.
Depending on the crystal symmetry, several indepen-
dent cross-sections exist. Let us call the matrix elements
of the XAS and XES momentum operators p~4° and
pXF3 respectively, which are both vectors. The angular
dependence of the cross-sections is then determined by
le; - pX4°12|pXF9 . e,|2. For example, for a hexagonal
crystal such as wurtzite ZnO, there are 4 independent
components, My1, M3z, M3 and Ms;, where 3 refers to
the c-axis of the crystal and 1 to a direction perpendic-
ular to the c-axis. Note however that the matrix M is
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FIG. 1. (Color on-line) The X1B experimental geometry. The
lab coordinates x’,y’, 2" (black) and the sample coordinates
x,y,z (red) are shown. Photons (black arrows) are incident
along 2’ and emitted photons are collected along z’. The
angle between the sample normal and the incident beam, 6,
is freely changed during the experiment.

not symmetric because the first index refers to XAS and
the second to the XES parts of the process, which are
different. In general, we may have up to 9 independent
components.

While from a theory point of view, it is natural to
describe the polarization directions relative to the crys-
talline symmetry axes, from an experimental point of
view, the polarization directions are determined by the
experimental geometry. Thus, different fractions of the
independent components of the cross-section matrix M
enter the experimentally measured cross-section. Essen-
tially, we just need to know the projections of the incom-
ing and outgoing polarization unitvectors on the relevant
crystal axes. If eX45 is a unit vector along the XAS mo-
mentum matrix element and eX®° a unit vector along
the XES momentum matrix element, then we generally
have that

Mo = |e; - X252 M, gle, - egESF, (3)

[e3%

where summation over repeated indices is understood.

The experimental conditions can be changed in a num-
ber of ways: the polarization of the photons can be al-
tered; the position of the spectrometer can be changed;
the sample can be rotated; and different cleavage planes
of the same sample can be chosen. It is convenient here
to consider three sets of coordinates, the lab frame co-
ordinates (z/,y’, z), the coordinates fixed to the sample
with a specific cleavage plane (z,y, z), and the coordi-
nates corresponding to the natural symmetry axis of the
crystal (1,2, 3).

As an example, we consider the setup at beamline X1B,
which is sketched in Fig. 1. The undulator at X1B pro-
vides light (incident along z’) polarized linearly along z’.
The emission spectrometer is mounted perpendicular to
the incoming photon in the z’ direction, but does not it-
self resolve polarization. Finally, the sample is mounted
on a manipulator that allows us to rotate the sample
about g’. On the other hand, the z axis is defined to be
normal to the cleavage plane of the sample, the x axis is
the intersection of the cleavage plane with the incident
plane, i.e. the plane spanned by the normal to the sam-
ple, and the incoming as well as the outgoing beam, and

y = ¢'. In other words, we here always use so-called p-
polarized incoming x-rays. The orientation of the sample
is determined by 6, the angle between the incoming beam
and the normal to the sample, i.e. between 2z’ and z. We
thus have

e -eX A9 = eXA%050 + X9 5ing, 4)
eo-eXES:efESsinecoqu—eyXESsinqS (5)
+e§ES cos 6 cos ¢,

and we need to average over all possible emitted photon
polarization angles in the z’'y’ plane, ¢. Since each polar-
ization factor enters modulo squared for input and out-
put, integrating over the cos? ¢ and sin? ¢ factors simply
gives a constant factor, 1/2, and we obtain for the total
CRXES cross-section

1
M= 3 [sin? 0 cos? (M, + M) + sin® M., ®)
+ cos* OM,,, + sin® OM., + cos? O My,

However, here z,y,z are not yet referred to the crys-
talline symmetry axes but merely to the sample posi-
tion in the lab. For a general cleavage plane with Miller
indices (hkl), the surface normal is Gpi/|Grii|, which
can be expressed in terms of the crystal symmetry axes,
1,2,3. Let & = 3, aidi, § = 3., bidi, and 2 = 3, i@y
We can then construct a matrix,

lai|? Jaz|* |as|?
b1]* b2 [bs]* ], (7)
lea]? Je2]? fes]?

R =

which allows us to transform from xyz sample coordi-
nates to the crystal axes coordinates,

M;j = RiaMosRj;. (8)

Combining these steps we write that the measured cross
section is given by

sin? @
M o (cos6,0,sin” ) RMR" 1 . (9
cos? 0

In the specific case of a hexagonal crystal cleaved along
the c-plane the R matrix is just a unit matrix thus, taking
into account the symmetries M11 = Moy = M1y = Moy,
we immediately obtain

M o My cos? 0(sin? @ + 1) + M3 cos* 0

10
+ M3 sin? H(Sin2 0+ 1)+ Mss sin? 6 cos? . (10)

For the M-plane (1100) cleave, with [0001] oriented along
z, we obtain

M o< My1(1 + cos? ) sin® 6 + M3 sin 0
+ M1 (1 + cos? ) cos® 6 + Mz sin® 0 cos® 6,



while for the M-plane with [1120] oriented along z, we
obtain

M x My + Mis. (11)

The angular dependence of the components is quite strik-
ing. As 6 is increased from zero, at normal incidence, to
grazing incidence the components that contribute to the
measured RXES vary significantly. For the c-plane, there
are strong initial contributions from both M;; and M.
Note that one cannot simply separate p1 = {pg, Dy}
(Mjy) from p, (M;3) emmitted components for near nor-
mal incidence. This is because the XES is not polariza-
tion filtered. In the mid-range all components contribute,
while at large angles the contribution from M3; domi-
nates. For the M-plane, the angular behaviour depends
also on the in-plane sample orientation. When the c-axis
[0001] is oriented toward the emission spectrometer the
situation is obviously a continuation of the c-plane geom-
etry (i.e. 0 = 6+m/2). However, when [1120] is oriented
along x there is no angular dependence at all.

The above derivations allow us to simulate any mea-
sured spectra directly in terms of the calculated cross-
sections. On the other hand, it is clear that if we con-
sider n independent choices of measurement angle and
cleavage plane, we obtain n equations from which we
can extract the n(< 9) unique cross-sections experimen-
tally and from there can predict those for other angles or
cleavage planes. This is of use in cases where the band
structure cannot (yet) be calculated to high accuracy i.e.
strongly correlated systems.

IV. RESULTS

A. Band structure

The band structure, weighted by p; and p,, is shown
in Fig. 2. The bands and weightings agree well with
previously published results.'® In particular, the lowest
conduction band has low effective mass and strong p,
character along M-T-K (the p, orbitals lie in the M-T'-K
plane), p, character along I'-A (p. orbitals point in the
I'-A direction) and mixed character along trajectories to-
ward L and H. The top 6 eV of the valence band is com-
prised of O p-like states. Along I'-A, the top two weakly
dispersing bands have p; character, while the third and
fourth bands are p,-like and disperse to a lower energy
near A. The flat bands at about —7 eV are Zn 3d de-
rived, but the weightings show that there is significant
p-like character to them.

B. CRXES measurement and calculation

Fig. 3 shows the CRXES for c-plane wurtzite ZnO
at near normal (NN, ¢ = 20°) and near grazing (NG
6 = 70°) incidence. Both measured and calculated spec-
tra are shown; the calculated cross-sections have been

properly weighted for experimental geometry. The cal-
culations show more detailed peak structure and stronger
anisotropy and dispersion effects than the experiments.
At least in part, this is related to the difficulties in ex-
tracting the coherent fraction CRXES from the total
XES which contains a significant incoherent fraction (see
above). Further, the measured RXES are broadened by
the emission spectrometer resolution of 0.37 eV.19

For the most part, however, good agreement is ob-
tained between theory and experiment. Indeed quali-
tative trends in the spectra can be directly related to the
band structure dispersion as discussed in Ref. 10. For NN
measurements, the incident photons will couple predomi-
nantly to the p, orbitals and thus any coherent emission
must come from the M-T'-K part of the Brillouin zone,
at least for low photon energy. For NG incidence, the
incident photons will couple to the p, orbitals and thus
the T'-A part of the Brillouin zone. At higher photon en-
ergies the conduction bands become less dispersive and
larger parts of the Brillouin zone start to contribute to
the CRXES. Above about 6 ¢V both NN and NG spectra
will see contributions from L-A-H, and at larger energies
still, above about 10 eV, it is very difficult, without ab
initio techniques, to isolate specific contributions to the
measured spectra.

For NG incidence, only the p; dominated bands will
contribute significantly to the emission because both the
s-polarized and p-polarized contributions are perpendic-
ular to the c-axis of the crystal. Thus, to a first approx-
imation, the p, conduction bands and p, valence bands
from Fig. 2 can be used to consider NG CRXES (this
is the same as saying that Ms; dominates). However
for NN incidence, both the p; and p, weighted valence
bands will contribute to the emission because we did not
resolve the polarization of the emitted x-rays (both M,
and M3 contribute).

We now describe the trends in the figure, starting with
the NG spectra. The experimental spectra consist of a
strong peak between 0 and —3 eV which at high inci-
dent energies develops a high binding energy tail down
to about —5 eV. These are the so-called O 2p bands. The
weak peak near about —8 eV is due to emission from O
2p states hybridized with the Zn 3d semi-core states.

According to the band plots and our analysis of the an-
gular effects, the upper peak should initially derive from
the upper two valence bands along I'-A, which approach
each other as we move toward A. However by the third
and fourth measured spectra the incident energy is al-
ready large enough to be moving upward along A-H and
A-L in the conduction bands. Along these directions,
the upper valence bands of p; character disperse signif-
icantly downward and this explains the basic downward
dispersion of the upper peak in the CRXES. We start
picking up the bands near —5 eV by the time we are at
incident energies of 7.9 eV (4th measured spectrum from
the bottom). This is because near L and H the valence
bands near —5 eV have a significant p, character. Near
10-11 eV incident energy, the region near I' starts con-
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FIG. 2. (Color on-line) Intensity map of the calculated band structure. The intensity of each band is proportional to the pgy
(left) and p. (right) character of the band at that point in the Brillouin zone.
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FIG. 3. (Color on-line) Calculated (dashed red lines) and measured (solid black circles) ZnO (0001) CRXES at (a) near normal
(20°), and (b) near grazing (70°) incidence. Each spectrum is labelled with its excitation energy; photon energy on the right,

and energy relative to the VBM on the left.

tributing because the third conduction band here has p,
character. This leads to a valence band contribution at
low binding energy which broadens the upper peak and
shifts it to lower binding energy. Near 13 eV incident en-
ergy conduction bands near M acquire a p, contribution
and the corresponding valence bands contribute, leading
overall to broader and more complex upper peak. The d-
like bands also show a broader and stronger contribution
at this XAS energy.

As mentioned above, the situation is a little more com-
plicated for NN spectra as we must consider both the p
and p, valence bands. The p, contribution means we

can right away see a contribution from the lower valence
bands near —5 eV which disperse upward with increas-
ing energy, while the main peak from the VBM disperses
downward. At an incident energy of 9.0 eV the contribu-
tion is from M and largely from K, where the highest va-
lence band lies at about —3 eV. This explains the strong
downward shift in the main peak. At 10 eV and above
the bands are less dispersive and more regions of the BZ
contribute to the CRXES leading to more features in the
spectra, but there is clearly no contribution from T', as
was seen for the NG case.

While the spectra for the two geometries were not
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FIG. 4. The four unique CRXES cross-sections, calculated
for excitation energies of 3.8 (solid lines) and 11.9 eV (dashed
lines).

taken at exactly the same excitation energies?®, it is clear
(from the calculation) that the XES shows rather smooth
and continuous changes with XAS excitation energy. The
good agreement between theory and experiment is fur-
ther evidence that the changes observed are truly due to
the anisotropy and not to the small changes in excitation
energy between the two different geometries.

C. Extracting band structure information from
CRXES

One somewhat overlooked feature of CRXES is the
ability to resolve conduction bands in both energy and
k-space. The canonical example is to determine nature
of the band-gap of a semiconductor via dispersion close
to the CBM. If ZnO is a direct-gap semiconductor the
CRXES will disperse to higher binding energy with in-
creasing photon energy, while the opposite will happen
for an indirect-gap semiconductor.? The former is clearly
seen in the four lowest excitation energies of both the NN
and NG CRXES in Fig 3.

It is also possible to extract information about higher
conduction bands. Note that for an incident photon en-
ergy of 539.2 ¢V (11.9 eV above the VBM) a spectral
shift to lower binding energy is clearly resolved in the
NG CRXES of Fig. 3. This must be due to a contri-
bution from the VBM, given the similarity to the lowest
excitation energy spectrum. The VBM is at I' and for NG
CRXES the incoming photons couple largely to bands of
p. character, therefore we can deduce that there is a flat
conduction band 11.9 eV above the VBM located at T’
with p, character.

We have made these deductions independently of the
calculated band structure or complementary experimen-

tal techniques, like x-ray absorption spectroscopy (XAS).
This method for locating conduction bands has advan-
tages over XAS. In coherent emission, the core hole is
assumed not to alter the valence and conduction band
states at the time scale of the combined processes of ab-
sorption and emission (see Ref. 28). If this were not the
case, the k-conservation rule would be broken. In con-
trast, in XAS the usual final state rule implies that the
conduction band states are relaxed in the presence of
the core hole localized at some particular location in the
crystal, and hence are more representative of the local
density of states around a Z + 1 impurity than of the
unperturbed material. So it is much more accurate to
locate the unperturbed conduction bands relative to the
valence bands in CRXES.

Figure 4 shows the four components of the calculated
CRXES for excitation energies of 3.8 and 11.9 eV. For
both excitation energies there is a strong peak due to the
VBM at 0 eV. This peak is seen in all four components
of the 3.8 eV spectrum, but only in the M3; component
of the 11.9 eV spectrum. This is fully consistent with the
conclusions from the experiment above.

We turn now to the Zn 3d-derived part of the spec-
tra, located below —6 eV in Fig. 4. At 3.8 eV excita-
tion energy the Mi3 and M3z spectra have a double-peak
structure. This can be traced to the crystal field split-
ting of the 3d bands at I". Similar dispersion has been
observed in ARPES measurements of the ZnO valence
band.??. We note here that the final states of CRXES
and ARPES measurements are quite different, and that
CRXES measures what is effectively emission from O 2p
states hybridized with Zn 3d states, as opposed to di-
rectly interrogating the 3d electrons, providing a com-
plementary method for investigating these bands.

V. CONCLUSION

We presented a general framework for calculating the
K-edge CRXES of crystalline systems, including matrix
elements connecting the valence and conduction band
states to the core wave function, and full consideration of
experimental geometry and polarization effects. Explicit
calculations of the CRXES of wurtzite ZnO were com-
pared to measurements. Good agreement was obtained
with experimental data. The analysis of the angular ef-
fects in our RXES set up was revisited and shows that
because at present the emitted x-ray is not polarization
filtered the possibility to filter valence bands according
to the orbital weights is somewhat restricted. However,
the XAS polarization filtering and use of NN or NG in-
cidence still allows to focus on different portions of the
BZ. The entirely parameter free (QS)-GW results overall
provide an excellent account of the spectral features.
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