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We investigate novel phases that emerge from the interplay of electron correlations and strong
spin orbit interactions. We focus on describing the topological semi-metal, a three dimensional
phase of a magnetic solid, and argue that it may be realized in a class of pyrochlore iridates (such as
Y2Ir2O7) based on calculations using the LDA+U method. This state is a three dimensional analog
of graphene with linearly dispersing excitations, and provides a condensed matter realization of
Weyl fermions, that obey a two component Dirac equation. It also exhibits remarkable topological
properties manifested by surface states in the form of Fermi arcs, which are impossible to realize in
purely two dimensional band structures. For intermediate correlation strengths, we find this to be
the ground state of the pyrochlore iridates, coexisting with non-colinear magnetic order. A narrow
window of magnetic ‘axion’ insulator may also be present. An applied magnetic field is found to
induce a metallic ground state.

PACS numbers:

Previously, some of the most striking phenomena
in solids, such as high temperature superconductivity1

and colossal magnetoresistance2 were found in transition
metal systems involving 3d orbitals, with strong electron
correlations. Now it has been realized that in 4d and
5d systems, whose orbitals are spatially more extended,
a regime of intermediate correlation appears. More-
over, they display significant spin-orbit coupling, which
modifies their electronic structure as recently verified in
Sr2IrO4

3. This is a largely unexplored domain, but al-
ready tantalizing new phenomena have been glimpsed.
For example, in the 5d Iridium based magnetic insula-
tor, Na4Ir3O8

4, a disordered ground state persists down
to the lowest measured temperatures, making it a prime
candidate for a quantum spin liquid5.

It is known that strong spin-orbit interactions can lead
to a novel phase of matter, the topological insulator6.
However, the bismuth based experimental realizations
uncovered so far have weak electron correlations. Re-
cently, it was pointed out that the Iridium oxides (iri-
dates) are promising candidates to realize topologi-
cal insulators7, and that Iridium based pyrochlores in
particular8, provide a unique opportunity to study the in-
terplay of Coulomb interactions, spin-orbit coupling and
the band topology of solids.

The main focus of our work is the pyrochlore iridates,
which have the general formula A2Ir2O7, where A = Yt-
trium, or a Lanthanide element. Experiments on these
materials indicate magnetic order12,13. Thus, the possi-
ble phases have not been treated in the theory of topolog-
ical insulators, which assumes time-reversal symmetry.
A rather different, but also unusual phase, the topolog-
ical semi-metal is predicted by our LSDA+U+SO cal-
culations in a range of parameters appropriate to the
iridates. This phase has linearly dispersing excitations
at the chemical potential, analogous to graphene14, but

occurs inside a fully three dimensional magnetic solid.
The small density of states leads to a vanishing conduc-
tivity at low temperatures. Each mode in this metal is
described by a two-component wave-function (described
by the “Weyl equation”, the two-component analogue of
the Dirac equation), describing a point where two bands
touch. The Weyl equation is used in particle physics to
describe the chiral and massless behavior of neutrinos (in
limits where their small mass can be neglected). Hence
we will also call it the “Weyl Semi-Metal”.

Weyl fermions can be assigned a chirality, that is
they are either left or right handed. These modes can-
not be gapped unless they mix with a fermion of op-
posite handedness, which is located at a different point
in the Brillouin zone. This, if momentum is conserved,
Weyl Fermions are unique because their gaplessness is
absolute15–it does not require any fine-tuning or sym-
metry. These modes are most robust in systems with
magnetic order. They do not exist at all if both time-
reversal and inversion-symmetry are present, for exam-
ple in Bismuth. There, in contrast, Dirac fermions with
four component wavefunctions appear, which are typi-
cally gapped.

A key property of the Weyl semi-metal phase uncov-
ered in this work, is its unusual surface states, reminis-
cent of topological insulators. Since the bulk fermi sur-
face only consists of a set of momentum points, surface
states can be defined for nearly every surface momentum
and take the shape of ‘Fermi arcs’ in the surface Brillouin
zone, that stretch between Weyl points.

The “Axion Insulator” phase can emerge when the
Weyl points annihilate in pairs, as the correlations are
reduced. This phase shows a topological magnetoelec-
tric effect16, captured by the magneto-electric parameter
θ = π, whose value is protected by the inversion symme-
try, which is respected in our system. The name “axion
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insulator” refers to the analogy with the axion vacuum
in particle physics17.

In the pyrochlore iridates both the A and Ir atoms are
located on a network of corner sharing tetrahedra9,10. Pi-
oneering experiments11 revealed an evolution of ground
state properties with increasing radius of the A ion, which
is believed to tune electron correlations. While A =Pr
is metallic, A =Y is an insulator as low temperatures.
Subsequently, it was shown that the insulating ground
states evolve from a high temperature metallic phase, via
a magnetic transition12,13. The magnetism was shown to
arise from the Ir sites, since it also occurs in A =Y, Lu,
where the A sites are non-magnetic. While its precise na-
ture remains unknown, ferromagnetic ordering is consid-
ered unlikely, since magnetic hysteresis is not observed.

We show that electronic structure calculations can nat-
urally account for this evolution and point to a novel
ground state. First, we find that magnetic moments or-
der on the Ir sites in a non-colinear pattern with moment
on a tetrahedron pointing all-in or all-out from the cen-
ter. This structure retains inversion symmetry, a fact
that greatly aids the electronic structure analysis. While
the magnetic pattern remains fixed, the electronic prop-
erties evolve with correlation strength. For weak corre-
lations, or in the absence of magnetic order, a metal is
obtained, in contrast to the interesting topological insu-
lator scenario of Ref.8. With strong correlations we find a
Mott insulator, with all-in/all-out magnetic order. How-
ever, for the case of intermediate correlations, relevant
to Y2Ir2O7, the electronic ground state is found to be
a Weyl semi-metal, with linearly dispersing Dirac nodes
at the chemical potential, and other properties described
above. Such a three dimensional electronic structure has,
to our knowledge, not been discussed before.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs,
as the correlations are reduced, we call it the θ = π Axion
insulator. Although our LSDA+U+SO calculations find
that a metallic phase intervenes before this possibility
is realized, we note that LDA systematically underesti-
mates gaps, so this scenario could well occur in reality.
Finally, we mention that modest magnetic fields could
induce a reorientation of the magnetic moments, lead-
ing to a metallic phase. Previous studies include Ref.18,
an ab-initio study which considered ferromagnetism. In
Ref.19, the tight binding model of Ref.8 was extended to
include tetragonal crystal fields, but in the absence of
magnetism. The topological Dirac metal and axion insu-
lator discussed here do not appear in those works, largely
due to the difference of magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning
to our LSDA+U calculations of magnetic and electronic
structure of the pyrochlore iridates. We then discuss the
special surface states that arise in the Weyl semi-metal
phase, and close with a comparison to existing experi-
ments and conclusions. Our results are summarized in
the phase diagram Figure 1.

FIG. 1: Sketch of the predicted phase diagram for pyrochlore
iridiates: Horizontal axis corresponds to the increasing inter-
action among Ir 5d electrons while the vertical axis corre-
sponds to external magnetic field which can trigger a tran-
sition out of the non-collinear “all-in/all-out” ground state,
which has several electronic phases.

I. WEYL SEMIMETALS AND
INVERSION-SYMMETRIC INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl
point k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1+
3∑
i=1

vi · qσi, (1)

Energy is measured from the chemical potential, q =
k − k0 and (1, σi) are the identity matrix and three
Pauli matrices respectively. This Hamiltonian is obtained
by expanding the full Hamiltonian to linear order. No
assumptions are required, beyond the requirement that
the two eigenvalues become degenerate at k0. The ve-
locity vectors vi are generically non-vanishing and lin-
early independent. The energy dispersion is cone-like,

∆E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a chi-
rality (or chiral charge) c = ±1 to the fermions defined
as c = sign(v1 · v2 × v3). Note, since the 2 × 2 Pauli
matrices appear, our Weyl particles are two component
fermions. In contrast to regular four component Dirac
fermions, it is not possible to introduce a mass gap.The
only way for these modes to disappear is if they meet with
another 2 component Weyl fermion in the Brillouin Zone,
but with opposite chiral charge. Thus they are topologi-
cal objects. By inversion symmetry, the band touchings
come in pairs, at k0 and −k0, and these have opposite
chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generi-
cally) in a system without magnetic order. In mate-
rials such as Bismuth with both time-reversal and in-
version symmetry, Dirac fermions always contain both
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left and right-handed components and are thus typically
gapped.34

When the compound has stoichiometric composition,
the Fermi energy can generically line up with the energy
of the touching points. Under these circumstances, the
density of states is equal to zero and the behavior of the
Weyl Fermions controls the low temperature physics of
the solid. For example, the AC conductivity should have
a particular frequency dependence, and novel types of
surface states should occur, as discussed below. When
the Weyl points are all symmetric copies of one another,
their energies E0 must coincide. Then, the Fermi en-
ergy is fixed at the touching points because of the Kohn-
Luttinger theorem, which can be argued as follows. At
stoichiometry, there are an integer number of electrons
per unit cell. Hence, the Kohn-Luttinger theorem implies
that the volume of particle-like minus hole-like Fermi sur-
faces must be a multiple of the volume of the Brillouin
zone. If the Fermi surface were slightly above (below) E0,
then the Fermi surfaces would all be particle (hole) like,
and the Kohn-Luttinger theorem would not be satisfied.

Inversion symmetry provides useful information about
the materials we study. Inversion about the origin is
given by r → −r; this is a symmetry of many crystals,
and in particular of the ones we focus on here. Inversion
strongly constrains many physical properties - in particu-
lar, it leads to a quantized magnetoelectric susceptibility
(see Sec. III) and can help pin the Fermi energy exactly
at Weyl points. Because of inversion symmetry, a few
states in the band structure determine many basic prop-
erties of a solid. The symmetry relates crystal momenta
±k. At special momenta, called TRIMs (Time Reversal
Invariant Momenta), that are invariant under inversion,
the states can be labelled by parity eigenvalues ξ = ±1.
These eigenvalues can be used to identify phase tran-
sition as parameters of the system are changed. When-
ever the set of eigenvalues associated with occupied states
changes, there must be a phase transition. The highest
energy level at a TRIM in the valence band can cross
through the lowest energy level in the conduction band
if their parities are different, and this changes the set of
ξ’s at that TRIM. Hence the gap passes through 0. In
fact, more is true: the compound cannot be insulating on
both sides of the transition28. A pair (or an odd number
of pairs) of Weyl points emerge from or are absorbed into
the TRIM after the parities change (see the appendix for
a derivation in the context of the iridates).

We now turn to results for a particular family of mate-
rials, the pyrochlore iridates, where we argue that these
general ideas are realized.

II. LDA CALCULATION AND MAGNETIC
ORDER

The strength of the spin orbit (SO) coupling is large
for Ir 5d electrons, and leads to insulating behavior in
Sr2IrO4

3, we will need to take it into account in order to

FIG. 2: Illustration of surface states arising from bulk Weyl
points. (a) The bulk states as a function of (kx, ky) (and ar-
bitrary kz) fill the inside of a cone. A cylinder whose base
defines a 1D circular Brillouin zone is also drawn. (b) The
cylinder unrolled onto a plane gives the spectrum of the 2D
subsystem H(λ, kz) with a boundary. On top of the bulk
spectrum, a chiral state appears due to the non-zero Chern
number. (c) Meaning of the surface states back in the 3D sys-
tem: the chiral state appears as a surface connecting the orig-
inal Dirac cone to a second one, and the intersection between
this plane and the Fermi level gives a Fermi arc connecting
the Weyl points.

understand the magnetic and electronic properties.
The system contains four iridium atoms inside each

unit cell forming a tetrahedral network as shown in Fig.
3. We perform our electronic structure calculations based
on local spin density approximation (LSDA) to density
functional theory (DFT) with the full–potential, all–
electron, linear–muffin–tin–orbital (LMTO) method22.
We use LSDA+U scheme23 to take into account the
electron–electron interaction between Ir 5d electrons and
vary parameter U between 0 and 3 eV for Ir 5d electrons
to see what effects the on site Coulomb repulsion would
bring to the electronic structure of Iridates. In general,
we expect that U can be somewhere between 1 and 2 eV
for the extended 5d states. We use a 24×24×24 k–mesh
to perform Brillouin zone integration, and switch off sym-
metry operations in order to minimize possible numerical
errors in studies of various (non–)collinear configurations.
We use experimental lattice parameters12 in all set ups.

With only the Heisenberg interaction (and no spin or-
bit coupling), spins in the pyrochlore configuration would
be geometrically frustrated, so we search for the proper
magnetic configuration by starting from a large number
(twelve) of different states. The collinear ones were (i)
ferromagnetic, with moment along (100), (111), (110) or
(120) directions (ii) antiferromagnetic with two moments
in a tetrahedron along and the other two pointed oppo-
sitely to the directions above; non-collinear structures
were (iii) the “all–in/out” pattern (all moments point to
or away from the centers of the tetrahedron) (iv) “2–
in/2–out” (two moments in a tetrahedron point to the
center of this tetrahedron, while the other two moments
point away from the center, i.e. the spin–ice24 configu-
ration), and (v) “3–in/1–out” magnetic structures. We
show several magnetic configuration in Fig. 3.

We find that the “all–in/out” configuration is the
ground state. In contrast to other magnetic configura-
tions, during the self–consistent iterations the spins in the



4

TABLE I: The spin 〈S〉 and orbital 〈O〉 moment (in µB) and
the total energy Etot per unit cell (in meV) for several se-
lected magnetic configurations of Y2Ir2O7 as calculated using
LSDA+U+SO method with U=1.5 eV. (Etot is defined rela-
tive to the ground state.) The IDM is a coplanar configuration
predicted for one sign of D-M interactions in Ref.25

Configuration: (001) (111) 2–in/2–out IDM all–in/out
〈S〉 0.08 0.10 0.09 0.06 0.13
〈O〉 0.09 0.10 0.07 0.06 0.12

Etot(meV) 5.47 1.30 3.02 2.90 0.00

“all–in/out” state retain their initial input direction; in-
dicating a local energy minimum. This state is consistent
with the absence of magnetic hysteresis in experiments12.
Since all states considered were translationally invariant
q = 0 states, the possibility of complex larger q states
cannot be ruled out.

This particular order is in fact consistent with the pre-
dictions of25 for half-integer spins with spin-orbit cou-
pling on a pyrochlore lattice, the strongly insulating limit
of the present problem. The Dzyaloshinsky-Moriya inter-
action (generated by the spin-orbit coupling) removes the
frustration of the Heisenberg antiferromagnet.

Symmetry dictates the form of Dzyaloshinsky-Moriya
interactions except for the sign, which leads to two
cases, direct and indirect Dzyaloshinsky-Moriya. The
all-in/all-out state is the unique ground state for the
former while the indirect Dzyaloshinsky-Moriya ground
state is a coplanar state with the four spins being ei-
ther antiparallel or orthogonal25. In our case, the in-
direct Dzyaloshinsky-Moriya pattern also has higher en-
ergy than the all-in/all-out state. This correspondence
with the magnetic structure in the strong correlation
limit, points to the simplest magnetic phase diagram of
one magnetic structure spanning a range of correlation
strengths.

The next lowest energy configuration is the ferromag-
netic state. Interestingly, the rotation of magnetization
does not cost much energy despite strong SO interac-
tions. The (111) direction is found to be lowest ferro-
magnetic state, but the energy difference between this
and the highest energy (001) state is just about 4.17 meV
per unit cell. Also, all of them produce a considerable net
magnetic moment in contrast to the experiment11,12. Our
findings are summarized in Table I for a typical value of
U=1.5 eV, and similar results are found for other values
of U in the range from 0 to 3 eV. Since the energy dif-
ference between the ground state and the other magnetic
orderings is small, modest magnetic fields may induce a
transition into the ferromagnetic state.

Similarly, we note that the honeycomb lattice Ir com-
pound - Na2IrO3 - initially proposed as a two dimensional
quantum spin Hall insulator7, was predicted by LDA+U
to be a magnetically ordered Mott phase20, for which
some recent experimental support has emerged21.

FIG. 3: The pyrochlore crystal structure showing the Ir corner
sharing tetrahedral network and the magnetic configuration.
(a) Ferromagnetic configuration with moment along (111) di-
rection. (b) ”2–in/2–out” configuration. (c) ”all–in/all–out”
configuration. (d) Ferromagnetic configuration with moment
along (001) direction.

III. ELECTRONIC PHASES

We now discuss electronic properties of iridates that
emerge from our LSDA+U+SO calculations. A variety
of phases ranging from normal metal at small U to Weyl
semi-metallic at intermediate U ∼ 1.5 eV and Mott in-
sulating phase at U above 2 eV with non–collinear mag-
netic ”all-in/out” ordering are predicted. Since pressure
or chemical substitution may alter the screening and the
electronic bandwidth resulting in changes in U we ex-
pect that these phases can be observed experimentally in
iridates.

The basic features of the electronic structure can be
understood by noting that each Ir4+ is coordinated by
six O2− forming approximately an octahedron. The Ir
5d orbitals split into an eg doublet and t2g triplet. Due
to the extended nature of the Ir 5d orbital, the crystal–
field splitting between t2g and eg is large with the eg
band to be 2 eV higher than the Fermi level. The bands
near the Fermi level are mainly contributed by Ir t2g with
some mixing with O 2p states. Spin -Orbit coupling has
a considerable effect on these t2g states: it lifts their
degeneracy and produces a quadruplet with Jeff = 3/2
and a higher energy Kramers doublet with Jeff = 1/23.
The five d electrons of Ir4+ fill the quadruplet, and half
fill the remaining Jeff = 1/2 orbital. The latter can also
be viewed as a Γ7 doublet, from the strong spin-orbit
limit. Thus, given the four Ir atoms in the unit cell, we
expect eight energy bands near the Fermi energy, which
are at half filling.

The precise behavior of these electronic states depends
on the magnetic configuration. Our band structure calcu-
lations for collinear alignments of moments show metal-
lic bands, a result that disagrees with the insulating be-
havior found experimentally. Increasing U cannot solve
this problem, and even a quite large U (=5 eV) cannot
open a band gap for the collinear configuration.On the
other hand, we find that the electronic states for the non–
collinear ”all-in/out” magnetic state depend strongly on
the actual value of U used in the calculation. In par-
ticular, we predict that when U is less than 1 eV, the
ground state is a normal metal while if U is about 1.8
eV or larger, we find the band structure to be insulating



5

FIG. 4: Evolution of electronic band structure of Y2Ir2O7

shown along high symmetry directions, calculated using
LSDA+U+SO method with three different values of U equal
(a) 0 (metallic), (b) 1.5 eV, and (c) 2 eV (insulator with small
gap). The Weyl point that is present in case (b), is not visible
along high symmetry lines.

with an energy gap whose value depends on U .
Weak Correlations: An interesting recent study pro-

posed a tight–binding model for the non-magnetic phase
of the iridates, which was a topological insulator8, a natu-
ral phase on the pyrochlore lattice8,27. Our LDA studies
of the realistic electronic structures contradict this; in-
stead we find a metallic phase (see Fig. 4a). One can
understand the discrepancy by analyzing the structure
of energy levels at the Γ point (Brillouin Zone center) for
the low energy 8–band complex, composed of the four
Jeff = 1/2 states. In8, these appear with degeneracies
4,2,2 (in order of increasing energy) which after filling
with 4 electrons results in an insulating band structure.
Our study of the non–magnetic state using LDA+SO
method (with no U) results, on the other hand, in the se-
quence 2,4,2 of degeneracies, which is necessarily metallic
assuming 4 levels are filled. A similar sequence of degen-
eracies was found in Ref19, where the simplified tight
binding model of Ref.8 was extended to account for the
non-octahedral oxygen environment. It was shown that
changing the geometry tunes one between the two degen-
eracy sequences. This effect is automatically built into
our LDA calculations since the microscopic structure is
used. According to Ref.19, the non-insulating 2,4,2 se-
quence could ultimately lead to a topological insulator
via a symmetry breaking structural transition or uniax-
ial pressure.

Strong Correlations and the Mott Limit: When U >
1.8eV, an insulating band structure is obtained with the
all-in/all-out magnetic configuration, as shown in Fig.
4c. Indeed, the band structure remains qualitatively sim-
ilar on increasing U to large values, where a site local-

FIG. 5: Semimetallic nature of the state at U=1.5 eV ac-
cording to the LSDA+U+SO method. (a) Calculated energy
bands in the plane Kz = 0 with band parities shown; (b) En-
ergy bands in the plane kz = 0.6π/a where a Weyl point is
predicted to exist. The shaded plane is at the Fermi level (c)
Locations of the Weyl points in the three-dimensional Bril-
louin zone26(nine are shown, indicated by the circled + or −
signs).

ized moment is expected as in a Mott insulator. This can
be further verified by calculating the parity eigenvalues.
Note that all the magnetic structures considered above
preserve inversion (or parity) symmetry. In the Brillouin
zone (see Fig. 5c) of the FCC lattice the TRIMs corre-
spond to the Γ = (0, 0, 0), and X, Y, Z [=2π/a(1, 0, 0)
and permutations] points and four L points [π/a(1, 1, 1)
and equivalent points]. The TRIM parities of the top
four occupied bands, in order of increasing energy, are
shown in Table 2. Note, although by symmetry all L
points are equivalent, the choice of inversion center at an
Iridium site singles out one of them, L′. With that choice
the parities at L′ and the other three L points are the
opposite of one another. The parities of the all-in/out
state remains unchanged above U > Uc ∼ 1.8 eV, and is
shown in the top row under U = 2 eV. This pattern of
parities helps to understand the nature of the phase– the
parities are the same as for a site-localized picture of this
phase, where each site has an electron with a fixed mo-
ment along the ordering direction. Due to the possibility
of such a local description of this magnetic insulator, we
term it the Mott phase.
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TABLE II: Calculated parities of states at Time Reversal In-
variant Momenta (TRIMs) for several electronic phases of the
iridates. Only the top four filled levels are shown in order of
increasing energy.

Phase Γ X, Y, Z L′ L (×3)
U=2.0, all-in (Mott) + + + + + - - + + - - - - + + +
U=1.5, all-in (Dirac) + + + + + - - + + - - + - + + -

Intermediate Correlations: For the same all-in/out
magnetic configuration, at smaller U = 1.5 eV, the band
structure along high symmetry lines (see Fig. 4b) also
appears insulating, and at first sight one may conclude
that this is an extension of the Mott insulator. How-
ever, a closer look using the parities reveals that a phase
transition has occurred. At the L points, an occupied
level and an unoccupied level with opposite parities have
switched places. It can readily be argued that only one
of the two phases adjacent to the U where this cross-
ing happens can be insulating (see the appendix). Since
the large U phase is found to be smoothly connected to a
gapped Mott phase, it is reasonable to assume the smaller
U phase is the non–insulating one. This is also borne out
by the LSDA+U+SO band structure. A detailed anal-
ysis perturbing about this transition point (also in the
k · p subsection) allows us to show that this phase is ex-
pected to be a Weyl semi-metal with 24 Weyl nodes in
all.

Indeed, in the LSDA+U+SO band structure at U =
1.5 eV, we find a 3 dimensional Dirac crossing located
within the Γ −X − L plane of the Brillouin zone. This
is illustrated in Fig.5 and corresponds to the k–vector
(0.52, 0.52, 0.3)2π/a. There also are five additional Weyl
points in the proximity of the point L related by sym-
metry (three are just inside each of the two opposite
hexagonal faces of the Brillouin zone, which are iden-
tified with one another) When U increases, these points
move toward each other and annihilate all together at
the L point close to U = 1.8 eV. This is how the Mott
phase is born from the Weyl phase. Since we expect that
for Ir 5d states the actual value of the Coulomb repulsion
should be somewhere within the range 1eV < U < 2eV
we thus conclude that the ground state of the Y2Ir2O7 is
most likely the semi-metallic state with the Fermi surface
characterized by a set of Weyl points but in proximity to
a Mott insulating state. Both phases can be switched to
a normal metal if Ir moments are collinearly ordered by
a magnetic field.

Possible Axion Insulator Phase At lower values of U a
second gapped phase with special properties may appear.
This phase can be characterized in terms of its magneto-
electric response. Recall that in the presence of time re-
versal symmetry, topological insulators are non-magnetic
band insulators with protected surface states6. When
the surface states are eliminated by adding, for exam-
ple, magnetic moments only on the surface, a quantized
magneto-electric response is obtained16: a magnetic field
induces a polarization: P = θ e2

2πhB, with the coefficient

θ only defined modulo 2π. The values of θ are limited by
time reversal, which transforms θ → −θ. Apart from the
trivial solution θ = 0, the ambiguity in the definition of
θ allows also for θ = π, and this occurs in topological in-
sulators θ = π. In magnetic insulators, θ is in general no
longer quantized29. However, when inversion symmetry
is retained, θ is quantized again. An insulator with the
value θ = π may be termed an axion insulator.

Which is the appropriate description of the pyrochlore
iridates? As described elsewhere28, the condition for
θ = π insulators with only inversion symmetry, when
deduced from the parities, turns out to be the same
as the Fu-Kane formula, for time reversal symmetric
insulators30,31, i.e. if the total number of filled states
of negative parity at all TRIMs taken together is twice
an odd integer, then θ = π. Otherwise θ = 0.

For the Mott insulator, at large U , the charge physics
must be trivial and so we must have θ = 0. Next, since
the Weyl semimetal phase is gapless in the bulk, θ is
ill defined. As U is lowered further, the Weyl points
shift, with nodes of opposite chirality approaching one
another. If at lower values of U the Weyl points meet
and annihilate again, the resulting phase will have θ = π.
The parities will be the same as in the Weyl semi-metal,
since the Weyl points would have annihilated away from
TRIMs. From Table II we can see that indeed this corre-
sponds to θ = π, since there are 14 negative parity filled
states, while the Mott insulator corresponds to θ = 0,
having 12 negative parity filled states. Indeed, the pres-
ence of the intervening Weyl phase can be deduced from
the requirement that θ has to change between these two
quantized values. Similarly, when time reversal symme-
try is present but inversion absent, a gapless phase must
intervene when a change in topology occurs32.

Unfortunately, within our LSDA+U+SO calculation,
a metallic phase intervenes on lowering U ≤ 1.0eV, be-
fore the Weyl points annihilate to give the axion insu-
lator. We point out this possibility nevertheless, since
LDA systematically underestimates the stability of such
gapped phases. Moreover it provides an interesting ex-
ample of a pair of insulators, a Mott insulator and a
smaller U ‘Slater’ insulator, with the same magnetic or-
der, but which are nevertheless different phases, which
cannot be smoothly connected to one another. Inversion
symmetry is critical in preserving this distinction.

Topological Weyl semi-metal
In the semimetal phase, there are 24 Weyl points. Near

each L point there are three Weyl points related by the
three fold rotation, which have the same chiral charge, as
well as the inverse images with opposite chirality. Thus,
there are 24 Weyl points, where the valence and conduc-
tion band line up, in the whole Brillouin zone. Since all
are at the same energy by symmetry, the chemical poten-
tial must pass through them. The Fermi velocities at the
Weyl point are found to be typically an order of mag-
nitude smaller than in graphene. We briefly note that
this Weyl semimetal is a gapless state with power law
forms for various properties, which will be described in
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more detail elsewhere. For example, the density of states
N(E) ∝ E2. The small density of states makes it an insu-
lator at zero temperature and frequency (as seen experi-
mentally for Y2Ir2O7). The a.c. conductivity for a single
node with isotropic velocity v in the free particle limit of
the clean system is σ(Ω) = e2

12h
|Ω|
v . Furthermore, novel

magneto-conductance phenomena are expected in Weyl
semi-metals, as a consequence of the Adler-Bell-Jackiw
anomaly of Weyl fermions33, which will be discussed in
future work. Additionally, a Weyl metal must automati-
cally have surface states, as explained in the next section.

IV. SURFACE STATES

The Weyl points behave like ’magnetic’ monopoles in
momentum space whose charge is given by the chiral-
ity; they are actually a source of “Berry flux” rather
than magnetic flux. The Berry connection, a vector
potential in momentum space, is defined by A(k) =∑N
n=1 i〈unk|∇k|unk〉 where N is the number of occupied

bands. As usual, the Berry flux is defined as F = ∇k×A.
To show that there are arcs connecting pairs of Weyl
points, we will argue that there is an arc on the surface
Brillouin zone emanating from the projection (k0x, k0y)
of each Weyl point.

The argument is based on the band topology around
the Weyl points. Consider a curve in the surface Brillouin
zone encircling the projection of the bulk Weyl point,
which is traversed counterclockwise as we vary the pa-
rameter λ : 0 → 2π; kλ = (kx(λ), ky(λ)) (see Fig. 2a).
We show that the energy ελ of a surface state at momen-
tum kλ crosses E = 0. Consider H(λ, kz) = H(kλ, kz),
which can be interpreted as the gapped Hamiltonian of
a two dimensional system (with λ and kz as the two mo-
menta). The two periodic parameters λ, kz define the
surface of a torus in momentum space. The Chern num-
ber of this two dimensional band structure is given by
the Berry curvature integration: 1

2π

∫
Fdkzdλ which, by

Stokes theorem, simply corresponds to the net monopole
density enclosed within the torus. This is obtained by
summing the chiralities of the enclosed Weyl nodes. Con-
sider the case when the net chirality is unity, correspond-
ing to a single enclosed Dirac node. Then, the two dimen-
sional subsystem is a quantum Hall insulator with unit
Chern number. When defined on the half space z < 0,
this corresponds to putting the quantum Hall state on
a cylinder, and hence we expect a chiral edge state. Its
energy ελ spans the band gap of the subsystem, as λ
is varied (see Fig. 2b). Hence, this surface state crosses
zero energy somewhere on the surface Brillouin zone kλ0 .
Such a state can be obtained for every curve enclosing the
Weyl point. Thus, at zero energy, there is a Fermi line in
the surface Brillouin zone, that terminates at the Weyl
point momenta (see Fig. 2c). An arc beginning on a Weyl
point of chirality c has to terminate on a Weyl point of
the opposite chirality. Clearly, the net chirality of the
Weyl points within the (λ, kz) torus was a key input in

FIG. 6: Surface states. Shows the calculated surface energy
bands corresponding to (110) surface of the pyrochlore iri-
date Y2Ir2O7. A tight binding approximation has been used
to simulate the bulk band structure with 3D Weyl points
as found by our LSDA+U+SO calculation. The plot cor-
responds to diagonalizing 128 atoms slab with two surfaces.
The upper inset shows a sketch of the deduced Fermi arcs
connecting projected bulk Weyl points of opposite chirality.
The inset below sketches the theoretically expected surface
states on the (111) surface, at the Fermi energy (surface band
structure not shown for this case).

determining the number of these states. If Weyl points
of opposite chirality line up along the kz direction, then
there is a cancelation and no surface states are expected.

In the calculations for Y2Ir2O7, at U = 1.5 eV, a
Dirac (or Weyl) node is found to occur at the momentum
(0.52, 0.52, 0.30)2π/a (in the coordinate system aligned
with the cubic lattice of the crystal) and equivalent
points (see Fig. 5). They can be thought of as occur-
ing on the edges of a cube, with a pair of Dirac nodes
of opposite chirality occupying each edge, as, e.g., the
points (0.52, 0.52, 0.30)2π/a and (0.52, 0.52,−0.30)2π/a.
For the case of U = 1.5 eV, the sides of this cube have
the length 0.52(4π/a). Thus, the (111) and (110) sur-
faces would have surface states connecting the projected
Weyl points (see Fig. 6 for the (110) surface states, and
the theoretical expectation for the (111) surface). If, on
the other hand we consider the surface orthogonal to
the (001) direction, the Weyl points of opposite chiral-
ity are projected to the same surface momentum, along
the edges of the cube. Thus, no protected states are ex-
pected for this surface.

To verify these theoretical considerations, we have con-



8

structed a tight binding model which has features seen
in our electronic structure calculations for Y2Ir2O7. The
calculated (110) surface band structure for the slab of 128
atoms together with the sketch of the obtained Fermi arcs
is shown in Fig. 6. This figure shows Fermi arcs from
both the front and back face of the slab, so there are twice
as many arcs coming out of each Weyl point as predicted
for a single surface.

The tight-binding model considers only t2g orbitals of
Ir atoms in the global coordinate system. Since Ir atoms
form a tetrahedral network (see Fig. 3), each pair of
nearest neighboring atoms forms a corresponding σ−like
bond whose hopping integral is denoted as t and another
two π−like bonds whose hopping integrals are denoted
as t′. To simulate the appearance of the Weyl point it
is essential to include next–nearest neighbor interactions
between t2g orbitals which are denoted as t′′. With the
parameters t = 0.2, t′ = 0.5t, t′′ = −0.2t, the value of the
on–site spin–orbit coupling equal to 2.5t and the applied
on–site “Zeeman” splitting of 0.1t between states paral-
lel and antiparallel to the local quantization axis of the
’all–in/out’ configuration we can roughly model the bulk
Weyl semi-metal state; when this model is solved on a
lattice with a boundary, the surface states shown in the
figure appear.

V. DISCUSSION

We now discuss how the present theoretical description
compares with experimental facts. We propose that the
low temperature state of Y2Ir2O7 (and also possibly of
A = Eu, Sm and Nd iridates) is a Weyl semi-metal, with
all-in/all-out magnetic order. This is broadly consistent
with the interconnection between insulating behavior and
magnetism observed experimentally12,13. It is also con-
sistent with being proximate to a metallic phase on low-
ering the correlation strength, such as A =Pr11. In the
clean limit, a three dimensional Weyl semi-metal is an
electrical insulator, and can potentially account for the
observed electrical resistivity. The noncollinear magnetic
order proposed has Ising symmetry and could undergo a
continuous ordering transition. The observed ’spin-glass’
like magnetic signature could perhaps arise from defects
like magnetic domain walls. A direct probe of magnetism
is currently lacking and would shed light on this key ques-
tion. At lower values of U , the system may realize an
“axion insulator” phase with a magnetoelectric response
θ = π, although within our calculations (which are known
to underestimate stability of such gapped phases) a Fermi
surface appears before this happens.

In summary, a theoretical phase diagram for the phys-
ical system is shown in Figure 1 as a function of U and
applied magnetic field, which leads to a metallic state
beyond a critical field. The precise nature of these phase
transformations are not addressed in the present study.
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Appendix A: Effective k·p Theory and Intervening
Weyl Semi-Metal Phase

We have been using inversion symmetry which allows
us to track wavefunction parities of occupied states at
TRIMs. Near electronic phase transitions where these
parities change, a low energy k · p theory helps to un-
derstand qualitative features of the neighboring phases.
Consider a pair of states at the L point which have oppo-
site parity, and cross each other as we tune U . We want
to understand what happens to the band structure.

The L point has three symmetries which do not change
its crystal momentum. First of course is inversion, and we
can label states by the eigenvalues P = ±1. The second is
120o rotations about a line joining L−Γ. There are three
possible eigenvalues which we call s = −1/2, 1/2, 3/2.
So, any state at this point can be labeled by {P, s}. The
third symmetry will be described below. Now consider
writing the effective 2 × 2 Hamiltonians for the pair of
states just above and below the Fermi energy:

1. At the L point: Since we have inversion symme-
try and the two states have distinct eigenvalues
P = ±1, they cannot mix. Hence the effective
Hamiltonian is

H(L) = ∆σz

where the coefficient ∆ changes sign when the lev-
els pass through each other. (Parity is represented
by σz.) For the system in question, ∆ changes from
positive to negative as U increases (below the tran-
sition, the occupied state is odd according to Table
I). Note, the s quantum number of the two levels
is irrelevant here.

2. Along the Γ−L Direction: We still have the quan-
tum number s, but not P , since inversion changes
the momentum. Denoting by qz the deviation of
the momentum along this line from the L point, we
have two cases. If the s quantum number of the two
levels is different, they still cannot mix, so the effec-
tive Hamiltonian is H = (∆ + q2z

2m1
)σz. Now, when

m1∆ < 0 there are two solutions qz = ±
√
−2m1∆,
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where there are nodes along this Γ−L line. One can
see such crossings between other pairs of modes,
which must have different spins, in the data (Figs.
4b and c).
However, if the states have the same s quantum
number they can mix, once you move away from L.
Now the effective Hamiltonian could be:

H(Γ− L) = (∆ +
q2
z

2m1
)σz + βqzσy

Now, the spectrum is E =
√

(q2
z − |∆|)2 + q2

z , for
∆ < 0, so despite a level crossing there is no node
along the Γ− L line for any value of ∆.

3. General Point in BZ: In the latter case, does this
mean there are no Dirac points? No - we just need
to move off the Γ−L line. Let the deviation be q⊥,
a 2 vector. The fact that the 2 levels have opposite
parity means we need an odd function of q⊥ to in-
duce a matrix element between the levels. And also
the rotation transforms q⊥ as a vector but does not
affect σx and σy (the 2-component wave function is
not an ordinary spinor since both components have
the same “spin” s). Consequently only the combi-
nations q3

⊥ cos 3θ and q3
⊥ sin 3θ which are invariant

under the rotation can appear in the Hamiltonian.
Here, θ is the angle between q⊥ and the plane con-
taining Γ− L−K (see Fig. 5) - thus the rotation-
ally symmetric allowed form for the q⊥ coupling
is ∆H = c1q

3
⊥ cos 3θσy + c2q

3
⊥ sin 3θσx. (Note, the

coupling of the cos and sin to σy and σx respectively
is dictated by a third symmetry: namely, reflection
in the Γ − L −K plane followed by time reversal.
We adjust the phases so that both states have an
eigenvalue of +1 for this antiunitary transforma-
tion.)
Putting this all together with an additional effec-
tive mass term q2⊥

2m2
σz we have the effective Dirac

Hamiltonian near the L point:

H(q) = (∆ +
q2
z

2m1
+

q2
⊥

2m2
)σz + (βqz + c1q

3
⊥ cos 3θ)σy

+c2q3
⊥ sin 3θσx

Note, this has the form A(q)σz +B(q)σy +C(q)σx.
For a node, A = B = C = 0. According to the elec-
tronic structure calculations for Y2Ir2O7, m2 < 0
and m1 > 0. The Dirac nodes then are determined
by: (i) C = 0 → θ = pπ/3 and (ii) using this,
B = 0 → qz = ±c1q3

⊥/β depending on whether we
look at p =odd or p = even. Finally, using these
relations we have for the A = 0 equation:

∆ + c21
q6
⊥

2β2m1
− q2

⊥
2|m2|

= 0.

For small ∆ there is a small solution, thus q2
⊥ ≈

2|m2|∆. Note, this has a solution only for ∆ > 0,

i.e. before the gap gets inverted at the L point
on increasing U . Thus, in this scenario, there is a
Weyl point only in the small U phase. These Weyl
points are arranged as in Fig. 5. If m2 is positive,
there is a transition from the θ = π magnetic axion
insulator to the Weyl semi-metal on increasing U ,
contradicting its evolution into a Mott insulator.
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