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We analyze a manifestation of the partial ordering transition of adatoms on graphene in resistiv-
ity measurements. We find that Kekulé mosaic ordering of adatoms increases sheet resistance of
graphene, due to a gap opening in its spectrum, and that critical fluctuations of the order parameter
lead to a non-monotonic temperature dependence of resistivity, with a cusp-like minimum at T = Tc.

Impurities in metals experience a long-range RKKY
interaction due to polarization of the electron Fermi sea
(Friedel oscillations) [1]. For surface adsorbents such an
interaction may result in their structural ordering, re-
peating the pattern of the Friedel oscillations of electron
density [2]. In particular, a dilute ensemble of adatoms
on graphene may undergo a partial ordering transition
[3–6].

Unlike other materials, the RKKY interaction between
adatoms on graphene exists even at zero carrier density,
with a characteristic long-range 1/r3 dependence, and it
exhibits the Friedel oscillations which are commensurate
with the underlying honeycomb lattice. For adatoms re-
siding above the centers of the honeycombs, the interval-
ley scattering of the electrons by adatoms leads to Friedel
oscillations that resemble a

√
3×
√

3 charge-density wave
superlattice. Positions of each individual adatom rela-
tive to such superlattice can be characterized by one of
three vectors, u = (cos 2πm

3 , sin 2πm
3 ), with m = −1, 0, 1.

The transition of an ensemble of adatoms into a “Kekulé
mosaic” ordered state [3], characterized by the order pa-
rameter u, falls in the symmetry class of 3-state Potts
models [7].

In this paper we analyze how partial “Kekulé” order-
ing of adatoms on graphene affects its resistivity, ρ, in
the regime of low coverage nia

2 � 1 (ni is the con-
centration of adatoms, a is the lattice constant). The
behaviour of the temperature dependent resistivity cor-
rection δρ(T ) = ρ(T ) − ρ(∞) is sketched in Fig. 1. At
T � Tc (region I) the temperature dependence of the re-
sistivity is dominated by a non-vanishing order parameter
u causing the amplified intervalley mixing and opening
a gap ∆ ∝ u ∼ (Tc − T )β in the corners of the Bril-
louin zone. As the temperature increases from T = 0
to T = Tc the resistivity correction monotonically de-
creases as (Tc − T )2β . At T > Tc, critical fluctuations
of the order parameter, characterized by the correlation
length ξ ∝ |T − Tc|−ν , preceding formation of the or-
dered phase lead to a non-monotonic feature in δρ(T ).
At high temperature T & Tc (region III), the construc-
tive interference of electron waves, scattered by adatoms
within ordered clusters of size ξ, enhances resistivity. The
effect, which becomes stronger upon approaching Tc, is
similar to the critical opalescence [8] in materials under-
going structural phase transition or resistivity anomaly
in bulk metals with magnetic impurities undergoing fer-
romagnetic transition [9]. This enhancement saturates

FIG. 1: The predicted anomaly in the temperature-dependent
resistivity of graphene decorated with adatoms in the vicin-
ity of the Kekulé ordering transition. The inset illustrates
the Kekulé mosaic ordered state and the assignment of Potts
“spin” m = −1, 0, 1 to various hexagons in the

√
3 ×
√

3 su-
perlattice.

when ξ becomes comparable to the electron wavelength
λF , λF ≈ ξ. In the region II of temperatures T → Tc+0,
where ξ � λF , scattering of electrons is affected only by
the gradient of the fluctuating order parameter u. The
resistivity is thus reduced and a cusp-shape minimum at
T = Tc should be expected.

In the following we assume that the electron concen-
tration ne = 4π/λ2

F is not high, ne � ni, but the elec-
tron Fermi wavelength is shorter than its mean free path,
λF � l. This assumption also implies that in the ordered
phase kBT,∆� εF .

The electrons are described by a four-component
Dirac-like spinor Ψ = [ψK,A, ψK,B , ψK′,B , ψK′,A] with
the components corresponding to different valleys (K,
K ′) and sublattices (A, B) [10]. In the absence of
adatoms, quasiparticles are characterized by the linear
spectrum |εp| = ~vp and plane wave states (for εp > 0)

|Kp〉 =
eipr√

2S

 1
eiϕp

0
0

 , |K ′p〉 =
eipr√

2S

 0
0
1

−eiϕp

 .

Here S is the area of the graphene sheet and p =
(p cosϕp, p sinϕp) is the electron wave vector.
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The Hamiltonian describing graphene covered by
adatoms has the form [3, 11]

Ĥ = ~v(pΣ) + Û(r) + V̂ (r); (1)

Û =
∑
l

Îw(r− rl); V̂ = ~λva
∑
l

Σz(ulΛ)δ(r− rl).

We assume that the dimensionless impurity potential λ
is small (λ . 1) and will treat the electron-adatom in-
teraction perturbatively. We use the set [2, 11] of 4 × 4
”sublattice” and ”valley” matrices Σx,y,z and Λx,y,z

Σx = Πz ⊗ σx,Σy = Πz ⊗ σy,Σz = Π0 ⊗ σz,
Λx = Πx ⊗ σz,Λy = Πy ⊗ σz,Λz = Πz ⊗ σ0,

where σi and Πj are Pauli matrices in sublattice (AB)
and valley (KK ′) spaces.

The form of the electron-adatom interaction in Eq. (1)
is prescribed by the highly symmetric position of adatoms
at the centers of hexagons. The Û -term does not violate
the AB sublattice symmetry and scatters electrons with-
out changing their valley state. The V̂ -term [2–4] is re-
sponsible for the intervalley scattering of electrons. The
sensitivity of the scattering phase of an electron to the
position of the adatom in the

√
3×
√

3 superlattice man-
ifests itself by the Potts parameter u in the intervalley
term.

Each adatom creates Friedel oscillations of the elec-
tron density leading to the RKKY-type interaction be-
tween adatoms. The contribution of the Û -term, Eq. 1,
to such an interaction is a 1/r3 repulsion independent on
the Potts spins. At the same time the symmetry-breaking
coupling leads to 3-state Potts model with a long-range
interaction −uj · ul/r3

jl [3].
To minimize the interaction energy adatoms have to

take equivalent positions within the
√

3 ×
√

3 superlat-
tice unit cells. A Monte Carlo simulation of the corre-
sponding 1/r3 random-bond Potts model [3] has revealed
such an ordered phase below the transition temperature
Tc ≈ 0.6λ2(nia

2)3/2~v/a.
The effects of adatoms ordering on the electron trans-

port are encoded in the correlation function,

uα(r)uβ(r′)− uα(r) uβ(r′) = δαβg(|r− r′|),

for which the theory of critical phenomena predicts the
scaling form [12]

g(r) =
κ(r/ξ)

(
√
nir)η

, κ(y) = κ1(y) + y
1−α
ν κ2(y). (2)

Here, ξ ∼ n−1/2
i |(T −Tc)/Tc|−ν is the correlation length,

and α, η and ν are critical exponents. It has been shown
[7] that for the 3-state Potts model on a square lattice
η = 4/15, however, the value of η for random-bond Potts
models with a long-range interaction is still unknown
[13, 14]. In the critical region r � ξ, the correlation
function has essentially r−η behaviour, with a correc-
tion (second term) related to the specific heat anomaly

C ∼ |T−Tc|−α [7]. At large distances, r � ξ, g(r) decays
exponentially, according to the Ornstein-Zernike theory
[12, 16]. Overall, for T > Tc the scaling functions κ1,2(y)
have the following asymptotics:

κ1(y � 1) ≈ c1, κ2(y � 1) ≈ −c2 (c1, c2 ∼ 1);

κ1(y � 1) ∝ e−y

y1/2−η , κ2(y � 1) ∼ e−y, (3)

whereas for T < Tc,

κ1(y � 1) ≈ c1, κ2(y � 1) ≈ c2;

κ1(y � 1) ∝ e−y

y2−η , κ2(y � 1) ∼ e−y.

At T < Tc, the order parameter also acquires a ho-
mogenious average u ∝ (Tc − T )β . As long as ū exceeds
fluctuations of u (i.e. far enough from Tc), the elec-
tron states, which wavelength is larger than the distance

between adatoms n
−1/2
i , are described by the effective

mean-field Hamiltonian,

Ĥ = ~vpΣ + ni~λvaΣz(uΛ).

Accordingly the spectrum ε2
p = (~vp)2 + ∆2 acquires a

gap,

∆(T ) ≈ ni~λva(1− T/Tc)β , (4)

such that ∆(0) � Tc. The plane wave eigenstates of Ĥ
are mixed between the two valleys and take the form (for
εp > 0)

| ± 1,p〉 =
eipr√

4S



√
εp±∆
εp√

εp∓∆
εp

eiϕp

±
√

εp±∆
εp

eiθ

∓
√

εp∓∆
εp

ei(ϕp+θ)

 , ux + iuy = ueiθ.

Intravalley and intervalley scattering determined by
Û(r) and V̂ (r) in Eq. (1) respectively do not interfere
with each other. Hence, the total momentum relaxation
rate is the sum of the two electron scattering rates,

τ−1 = τ−1
0 + τ−1

i , (5)

where τ0 and τi stand for intravalley and interval-
ley momentum relaxation times. For the temperature-
dependent Drude resistivity of graphene sheet (recall that
kBT,∆� εF ) we thus have

ρ(T ) =
2

e2

1

v2
F τν

, (6)

where vF = ~v2pF /εF is the Fermi velocity, ν =
2εF /(π~2v2) is the density of states, and the Fermi en-
ergy and momentum are related to the electron density
as pF =

√
πne and εF =

√
π~2v2ne + ∆2.
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The temperature dependence ρ(T ) at T . Tc is domi-
nated by the effect of the order parameter ū on the chiral
plane wave functions and thus on the scattering rates, in
particular τ−1

0 . In the Born approximation

1

τ0
=
nip

2
F

~εF

2π∫
0

dϕ

2π
w̃2
(

2pF sin
ϕ

2

)
(1− cosϕ)r0(ϕ), (7)

r0(ϕ) = cos2 ϕ

2
+

∆2(T )

(~vpF )2
,

where w̃(k) =
∫
dr eikrw(r) and ϕ is the scattering angle.

The form-factor r0(ϕ) arises from the overlap integral
between plane wave states and reflects the absence of the
backscattering for ∆ = 0. Thus, for T . Tc, we find

δρ(T )

ρ(∞)
≈ 4∆2(T )

πne~2v2

∫ 2π

0
dϕ w̃2

(
2pF sin ϕ

2

)
sin2 ϕ

2∫ 2π

0
dϕ w̃2

(
2pF sin ϕ

2

)
sin2 ϕ

. (8)

The temperature dependence ρ(T ) at T > Tc is deter-
mined by the effect of the ordering of adatoms on the
intervalley scattering. Consider the scattering amplitude

〈K ′p′|V̂ |Kp〉 = ~λva
2iS sin

ϕp+ϕp′

2

∑
l e
iθl , (9)

θl = 2πml
3 + (p− p′)rl.

At temperatures far from Tc, T � Tc, adatom posi-
tions on the superlattice are random so that ml take
values −1, 0 and 1 with equal probabilities. As a re-
sult, the absolute value of scattering amplitude can be
estimated as |〈K ′p′|V̂ |Kp〉| ∼

√
niλ2

F . Upon approach-
ing Tc from above, clusters of ordered adatoms with a

characteristic size ξ � n
−1/2
i start appearing. In the

sum (9) such a cluster generates constructive interfer-
ence between terms with the same value of ml provided
that ξ . λF . This increases the scattering amplitude,

|〈K ′p′|V̂ |Kp〉| ∼ niξλF . A further increase of the corre-
lation length, ξ > λF , has an opposite effect on scatter-
ing: electrons get scattered only by the gradients in the
smoothly fluctuating field u.

The intervalley momentum relaxation rate (both at
T < Tc and T > Tc) [17] τ−1

i can be expressed in
terms of the Fourier transform of the correlation func-
tion, g̃(k) =

∫
dr eikrg(r),

1

τi
=

~v2p2
Fniλ

2a2

2εF

2π∫
0

dϕ

2π
(1− cosϕ)ri(ϕ), (10)

ri(ϕ) =
[
1 + nig̃

(
2pF sin

ϕ

2

)] [
2 sin2 ϕ

2
+

∆2(T )

(~vpF )2

]
.

At T > Tc (∆ = 0) temperature dependence ρ(T )
comes from the correlation function g̃(k) in Eq. (10). Far
from the phase transition, |T − Tc| ∼ Tc, where ξ < λF
(region III in Fig. 1), electrons are effectively scattered
by small clusters of ordered adatoms. In this region we

approximate g̃(k) ≈ g̃(0) ∝ (
√
niξ)

2−η and find that

δρ(T ) ≈ C ∆2(0)

e2v2~nη/2i

ξ2−η ∝ n
2−η/2
i

(T − Tc)(2−η)ν
, (11)

where C = (3π2/2)
∫ +∞

0
dy y1−ηκ(y) is a dimensionless

constant.
In the vicinity of the critical point, such that λF < ξ

(region II in Fig. 1), electrons experience multiple scat-
terings within one cluster with a small wave vector trans-
fer, ∼ ξ−1. This makes ρ(T ) sensitive to the critical be-
haviour of the correlation function at r < ξ. This region
is easier to analyze by performing the angular integration
in Eq. (10) and expressing τ−1

i in terms of the function
κ(y) defined in Eq. (2):

1

τi
=

∆2(0)

~2v

3pF
4ni

+
2ξ

(
√
niξ)η

+∞∫
0

dy
κ(y)

yη
f(pF ξy)

 .
(12)

Here, f can be expressed in terms of Bessel functions as

f(x) =
π

x
[x2J2

0 (x)− x2J2
1 (x) + J2

1 (x)− xJ0(x)J1(x)].

To evaluate the integral in Eq. (12) we divide the inte-
gration interval [0,∞] into two parts, [0, y0] and [y0,∞],
where 1� y0 � 1/pF ξ → 0. For the interval [y0,∞], we
use the fact that f(pF ξy) is a fast oscillating function,
f(x� 1) ≈ 2 sin(2x) + 3 cos(2x)/(2x), and that

+∞∫
y0

F (y) sin(Ay)dy =
F (y0) cos(Ay0)

A
+O

(
1

A2

)
,

for A � 1 and F (∞) = 0. For the interval [0, y0] in
the leading order in 1/pF ξ, the result is determined by
the values of κ1(0) and κ2(0) in Eq. (3). For this, we
expand κ1 and κ2 (which vary at the scale of y ∼ 1)
into Taylor series, evaluate the corresponding integrals
in the leading orders in y0 � 1, and combine with the
contribution from the interval [y0,∞]. As a result, the
term with κ1 in Eq. (12) produces a finite contribution
when pF ξ →∞, and we find that

ρ(Tc)− ρ(∞) =
c1π

3
2 ∆2(0)

e2v2~ni
B(η)

(
ni
πne

)1−η/2

, (13)

where B(x) = xΓ
(

3+x
2

)
Γ
(
1− x

2

)
/Γ
(
1 + x

2

)
Γ
(
2 + x

2

)
.

If (1−α)/ν < 1, the next term in the expansion κ1(y) =
κ1(0) + yκ′1(0) + . . . generates a contribution O(1/pF ξ),
which, for T → Tc, is less relevant than a more singular
(T −Tc)-dependent [14] contribution from the κ2 term in
Eq. (12). Following to same steps, we find that the latter
term gives rise to the cusp in the ρ(T ) dependence in the
region II near Tc in Fig. 1,

ρ(T )− ρ(Tc)

ρ(Tc)− ρ(∞)
= − c2B(η − 2γ)

c1B(η)(πneξ2)γ
∝ (T−Tc)1−α, (14)
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where γ = (1 − α)/2ν, which is assumed to be γ < 1/2
for Eq. (14) to be applicable. Otherwise (for γ > 1/2)
one should use

ρ(T )− ρ(Tc)

ρ(Tc)− ρ(∞)
= − κ′1(0)B(η − 1)

c1B(η)(πneξ2)1/2
∝ (T − Tc)ν . (15)

The sign of the result Eqs. (14, 15) is determined by the
sign of c2 (or κ′1(0) < 0) and values of critical exponents,
where c2 depends on the particular form of correlation
function g(r) and is known to be positive for the exact
solution of 2D Ising model on square lattice [12]. The
factor B(η− 2γ)/B(η) has the same sign as (η− 2γ) and
happens to be negative for three-state Potts model on a
square lattice. Notice that Eqs. (14, 15) are applicable
only in a very close vicinity of Tc (ξ � λF ) and do not
influence the overall tendency that resistance dips in the
region II.

The behaviour of δρ(T ) at T < Tc (region I in Fig. 1)
is determined by two contributions. One part, δρ1/ρ ∝
(Tc−T )min{1−α,ν}, is related to the specific heat anomaly
correction to the correlation function and can be ob-
tained the same way as Eq. (14). The other contribution,
δρ2/ρ ∝ (Tc − T )2β , is due to the formation of a non-
zero order parameter in the Kekulé-ordered phase. The
second correction dominates when 2β < min{1 − α, ν},
which is the case for the expected values of critical expo-

nents [14]. As a result, we attribute the rise of resistivity
at T < Tc near the cusp at T = Tc to the formation of a
spectral gap in graphene due to the Kekulé mosaic order-
ing. The qualitative behaviour of resistivity correction as
a function of temperature for all three regimes is plotted
in Fig. 1 for εF = 0.4v

√
ni, niλ

2a2 = 0.005 [14], where
we used the values c1 = 0.5, c2 = 0.15 (calculating the
exact values of these coefficients is outside the scope of
this paper).

In conclusion, we investigated electron transport in
graphene covered by a dilute ensemble of adatoms re-
siding over the centers of hexagons. We calculated the
temperature dependence of the resistivity ρ(T ), which
appears to be non-monotonic and has a non-analytic cusp
at T = Tc. Since the form of the cusp depends on the
critical indices α and β of the phase transition, experi-
mental observation of such anomaly may facilitate their
measurements. The form of ρ(T ) shown in Fig. 1 ap-
pears to be generic for partially ordered dilute ensembles
of adatoms with alternative positioning on the honey-
comb lattice, such as over carbon-carbon bonds [4], since
this also falls 3 value Potts model.
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