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Abstract

We employ atomic-scale simulation methods to investigate bulk and surface properties of an

analytic Tersoff-Abell type potential for describing interatomic interactions in GaAs. The potential

is a modified form of that proposed by Albe and colleagues1, in which the cut-off parameters for the

As-As interaction have been shortened. With this modification, many bulk properties predicted by

the potential for solid GaAs are the same as those in the original potential, but properties of the

GaAs(001) surface better match results from first-principles calculations with density-functional

theory (DFT). We tested the ability of the potential to reproduce the phonon dispersion and

heat capacity of bulk solid GaAs by comparing it to experiment and the overall agreement is

good. In the modified potential, the GaAs(001) β2(2 × 4) reconstruction is favored under As-rich

growth conditions in agreement with DFT calculations. Additionally, the binding energies and

diffusion barriers for a Ga adatom on the β2(2 × 4) reconstruction generally match results from

DFT calculations. These studies indicate that the potential is suitable for investigating aspects of

GaAs(001) homoepitaxy.
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I. INTRODUCTION

GaAs thin films are widely used for a variety of applications involving electronic devices,

such as metal-semiconductor field-effect transistors (MESFETs)2–4, optoelectronic devices,

including lasers, light-emitting diodes, and solar cells5–11, and spintronic devices12,13. The

successful fabrication of these devices depends sensitively on the structure of the GaAs sur-

face. GaAs thin films are often grown by molecular beam epitaxy (MBE), in which elemental

sources of gallium and arsenic are heated so that they evaporate to provide Ga atoms and As

dimers and tetramers that subsequently deposit onto a substrate. In principle, this allows for

precise control of the composition and thickness of the growing surface. However, the lack

of quantitative knowledge regarding the relationship between MBE growth conditions and

the atomic-scale processes that determine film structure has hampered progress in achieving

such precise control.

As an example, we consider GaAs(001) homoepitaxy. The GaAs(001) surface figures

prominently in a number of GaAs thin-film applications and has been the subject of many

studies, as is discussed in some recent reviews14–16. In typical MBE growth settings for ho-

moepitaxy, the GaAs(001) substrate exhibits the As-rich β2(2×4) surface reconstruction15,16.

Although the structure of the β2(2×4) unit cell has been well established experimentally17–24

and theoretically25–29, Pashley and colleagues have pointed out that the two-fold structural

degeneracy of the β2(2× 4) unit cell can lead to β2(2× 4) surfaces that have a long-range

disorder associated with occupancy of out-of-phase unit cells24,30. Their work indicates that

the disordered surface is the real template on which growth occurs and that effects asso-

ciated with surface disorder may play a significant role in governing growth kinetics30. To

date, there is no quantitative growth model that includes such effects.

In terms of modeling growth, first-principles calculations can indicate energetically fa-

vored surface structures, as well as the energy barriers associated with kinetic events. How-

ever, these calculations are computationally expensive and limited to fairly small systems.

A suitable semi-empirical potential would allow for molecular-dynamics (MD) or accelerated

MD31–33 simulations, as well as for extensive studies of surface structures and kinetic events,

that could enable long-time kinetic Monte Carlo34 simulations of growth. In this paper, we

provide a brief review of currently existing semi-empirical potentials for GaAs and discuss

their suitability for accurately modeling key surfaces in GaAs(001) homoepitaxy. We show
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that with a slight modification of its parameters, the Tersoff potential proposed by Albe et

al.1 can stabilize the GaAs(001) β2(2× 4) reconstruction under appropriate As-rich growth

conditions, while retaining a good description of many bulk properties of GaAs. We discuss

the suitability of this potential for describing the binding and diffusion of a gallium atom

on the GaAs(001) β2(2× 4) reconstruction.

II. SEMI-EMPIRICAL POTENTIALS FOR GAAS

A versatile semi-empirical potential for GaAs should be able to describe pure gallium and

pure arsenic, which have semi-metallic behavior with mixed covalent and metallic bonding,

as well as the compound semiconductor, whose bonds are largely covalent. To describe the

complex and varied surface reconstructions of GaAs, charge redistribution among the surface

bonds must be taken into account to satisfy electron counting requirements35–37. Accurately

describing these different features is a challenge. Two-body potentials cannot capture the

open structure of bulk compound semiconductors and three-body or higher-order terms are

needed. Perhaps the first semi-empirical potential with three-body terms was that by Choi et

al.38, who combined a two-body Mie potential with a three-body Axilrod-Teller potential38 to

describe properties of bulk GaAs, as well as GaAs clusters. Murdick et al. later determined

that this potential does not provide mechanical stability for the zinc blende structure of

the bulk GaAs crystal39. Subsequent to these efforts, a number of different potentials have

been developed, and major efforts can be broadly be classified as Tersoff-Abell type40–42,

Stillinger-Weber type43, and bond-order type44–47. Here, we classify bond-order potentials

as those which have been formally derived within the tight-binding model45.

Significant efforts have been directed at developing semi-empirical potentials with similar

forms to those suggested by Abell40 and Tersoff41,42, who take the approach of describing

covalent interactions with pair potentials that are moderated by the local bonding envi-

ronment via a three-body bond-order term. Khor and Das Sarma developed a Tersoff-like

potential48 and Ito, Khor, and Das Sarma parameterized this for GaAs49. Their potential

is not smoothly continuous as the coordination changes, making it difficult to use in MD

simulations. The earliest Tersoff potential for GaAs was developed by Smith50. Smith’s

parameters were fit to geometries and cohesive energies for small As, Ga and GaAs clusters,

as well as to bulk cohesive energies. Sayed et al. modified Smith’s form to improve the an-
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gular dependence of the potential energy51; however, this parametrization does not correctly

predict the lowest energy zinc blende phase of solid GaAs52. Conrad and Scheerschmidt53

proposed a potential with the Tersoff form in which the bond-order term is based on the

tight binding second-moment approximation. This potential gives an incorrect sign for the

heat of formation of the GaAs zinc blende structure1,39.

Albe et al.1 parameterized a Tersoff potential by fitting to several structural parameters

of bulk Ga, As and GaAs, including elastic moduli and bond lengths, as well as cohesive

energies. This potential captures the correct ground-state structures of pure As and Ga, as

well as the trends in the formation energies of point defects as compared to first principles

calculations based on density-functional theory (DFT)1. In a review of the suitability of

various potentials to describe GaAs(001) homoepitaxy, Murdick et al. concluded that Albe’s

version of the Tersoff potential is among the most promising39. Recently, Albe’s potential

has been used to study GaAs sputtering54 and diffusion on the GaAs(001) surface55. Powell

et al.56 parameterized a Tersoff potential to accurately reproduce the elastic properties of

bulk GaAs with a focus on matching Kleinman’s internal displacement parameter. Unlike

other parameterizations of the Tersoff potential1,50,51,69, Powell’s potential focuses only on

Ga-As interactions, limiting its use to homogeneous bulk environments.

Stillinger-Weber43 (SW) potentials, which contain both two- and three-body terms, have

been developed for GaAs by two different research groups57–59. In a recent assessment of

various potentials for MD simulation of GaAs(001) homoepitaxy, Murdick et al. concluded

that the SW potential developed by Wang and Stroud57 should not be used, and that the

potential developed by Angelo and Mills58 and Grein et al.59 would work well only for Ga-

As interactions, not elemental interactions39. This potential has been employed in MD

simulation studies by Murdick, Zhou, and Wadley, who investigated atomic-scale processes

relevant to the low-temperature growth of highly doped GaAs crystalline films60.

One of the more recent descriptions for GaAs is a bond-order potential based on a tight-

binding description of covalent bonding61. This potential contains 56 parameters that were

set (or fitted) to match structural properties of Ga, As, and GaAs. Murdick and colleagues

recently used this potential in MD simulations to study growth, as well as the adsorption,

surface diffusion, and desorption of As2 on GaAs(001) (1× 2) and (2× 1) surfaces62.

A significant challenge for all semi-empirical GaAs potentials developed to date is de-

scribing its wide array of complex surface reconstructions that depend on the temperature,
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pressure, and composition of the gas phase in equilibrium with the surface. Murdick and

colleagues emphasized this point in their recent work39,61,63, where they evaluated the capa-

bility of two different SW potentials57,59, the Tersoff potential parameterized by Albe et al.1,

and their bond-order potential61 to reproduce various GaAs(001) surface reconstructions

that are predicted by DFT64. While DFT studies predict a progression from the ζ(4 × 2)

to the α2(2× 4) to the β2(2× 4) to the c(4× 4) reconstruction as the surface environment

moves from Ga-rich to As-rich conditions64, all of the potentials tested predict that the

most stable surfaces are the (1× 2) reconstruction under Ga-rich conditions and the (2× 1)

reconstruction under As-rich conditions39,61,63. As was discussed by Farrell35 and Pashley36,

the reconstructions of GaAs surfaces can be understood in terms of an electron counting

model in which the lowest energy structure is obtained with filled (low energy) As dangling

bonds and empty (high energy) Ga dangling bonds. The electron redistribution among

surface-atom bonds and dangling bonds that is necessary to minimize the surface energy is

naturally incorporated in DFT calculations. The semi-empirical potentials, however, do not

include this feature.

To account for electron redistribution between dangling bonds and surface-atom bonds

at GaAs surfaces, Zhou and co-workers developed an electron counting potential37. This

potential provides an additional term – the “electron counting term” – to existing potentials

and it is nonzero only for atoms at the surface, so that the bulk properties predicted by these

potentials are unaffected. When the electron counting potential is applied in conjunction

with SW57,59, Tersoff1, and bond-order61 potentials, their agreement with DFT improves

substantially and they are able to predict that α and β reconstructions, similar to those

predicted in DFT studies64, are energetically preferred in the approximate range of chemical

potentials where DFT predicts them to be preferred47. In the case of the bond-order po-

tential, the additional electron counting potential even stabilizes the c(4× 4) reconstruction

under the most As-rich conditions47,61, in agreement with DFT64.

The large number of interatomic potentials developed for GaAs1,38,49–51,53,56–59,61,65–69,

which exceeds the number reviewed above, attests to the difficulty of accurately describing

a wide range of physical properties within a single potential. As discussed above, this diffi-

culty seems especially prevalent at surfaces. In this paper, we present a Tersoff potential that

is a modified version of Albe’s form1 to provide a suitable means for studying GaAs(001)

homoepitaxy on the β2(2× 4) reconstruction. We note that some of us69 recently parame-
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terized a Tersoff potential for GaAs and InAs, with a focus on surface properties. However,

due to the reported problems in the parametrization of this potential70, the potential of

Albe et al. provides a generally better agreement with DFT results for surface energies of

the reconstructions of the (001) surface, which is the subject of this work. We demonstrate

that this potential can provide a reasonable description of many bulk properties, in addition

to rendering the GaAs(001)β2(2× 4) reconstruction stable under As-rich growth conditions

and providing a good description of Ga adatom binding and surface diffusion compared to

DFT calculations.

III. POTENTIAL MODEL

In the Tersoff potential, a solid containing N atoms with a configuration given by R =

{r1, r2, . . . , rN} has a potential energy V (R) that is given by

V (R) =
1

2

∑

i,j 6=i

f c
ij (rij) ·

[

V R
ij (rij)− Bij (rij) · V A

ij (rij)
]

. (1)

Here, the sum runs over all atom pairs i and j, separated by a distance rij . The Tersoff

potential consists of pair repulsive (V R
ij ) and attractive (V A

ij ) terms, as well as a three-body

term (Bij), which moderates the attractive term, playing the role of the bond order. The

bond-order term is used to capture the effect that as the number of neighbors an atom has

increases, the strength of the bonds to the neighbors decreases41. The form of the bond-order

term was chosen such that the energy per bond is a monotonically decreasing function of

coordination41. A short-ranged cutoff f c
ij is used so that the forces smoothly go to zero at

the first neighbor shell of the structure of interest. The repulsive and attractive terms are

given by Morse potentials, with the form

V R
ij (rij) =

Dij

Sij − 1
· exp

[

−βij

√

2Sij

(

rij − R0
ij

)

]

, (2)

and

V A
ij (rij) =

SijDij

Sij − 1
· exp

[

−βij

√

2

Sij

(

rij −R0
ij

)

]

. (3)

The bond-order term is given by

Bij (rij) = [1 + (γij · χij (rij))]
− 1

2 , (4)
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where

χij (rij) =
∑

k 6=i,j

f c
ik (rik) · gik (θijk) · exp [(αik (rij − rik))] , (5)

and

gik (θijk) = δik

(

1 +
c2ik
d2ik

− c2ik
d2ik + (hik − cos θijk)

2

)

. (6)

The cutoff function has the form,

f c
ij (rij) =



















1 rij − Rc
ij ≤ −Dc

ij

1
2

[

1− sin
(

π
rij−Rc

ij

2Dc
ij

)]

∣

∣rij − Rc
ij

∣

∣ < Dc
ij

0 rij − Rc
ij ≥ Dc

ij

. (7)

Most of the parameters for this potential have been published previously1 and are shown in

Table I for completeness.

For this work, we modify the As-As interaction by changing the two adjustable parameters

in Eq. (7): We decrease Rc
ij from Albe’s original value of 3.4 Å to 3.1 Å and we similarly

decrease Dc
ij from 0.2 Å to 0.1 Å. Decreasing the cutoff shortens the As dimer length to

3.01 Å, which is closer to the DFT value of 2.5 Å than Albe’s original value of 3.21 Å. As

we will discuss below, the shorter cut-off parameters stabilize important GaAs(001) surface

reconstructions without seriously compromising properties of bulk GaAs. This is because

bulk properties, such as the GaAs bulk modulus and elastic constants depend only on the Ga-

As potential: In a perfect, zinc-blende, bulk GaAs crystal, Ga-Ga and As-As bond lengths

fall outside the cut-off distances listed in Table I and for Albe’s original potential1. Thus,

this modification of the potential retains the excellent agreement between Albe’s original

potential, first-principles calculations, and experiment for many bulk properties1.

IV. BULK PROPERTIES

As discussed above, Albe’s potential provides an excellent description of many bulk prop-

erties of GaAs1 and the modified form should retain many of these properties. Below, we

present tests of the potential for several additional bulk properties of solid GaAs.
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TABLE I. Modified parameters from Albe et al.1

Ga-Ga As-As Ga-As

δij 0.007874 0.455 0.0166

Sij 1.11 1.86 1.1417

βij (Å−1) 1.08 1.435 1.5228

Dij (eV) 1.40 3.96 2.10

Ro
ij (Å) 2.3235 2.10 2.35

cij 1.918 0.1186 1.29

dij 0.75 0.1612 0.56

hij = cos(θijk) 0.3013 0.07748 0.237

αij (Å−1) 1.846 3.161 0.0

Rc
ij (Å) 2.95 3.1 3.1

Dc
ij (Å) 0.15 0.1 0.2

γij 1.0 1.0 1.0

A. Phonons

The vibrational properties predicted by the potential are characterized by the normal-

mode frequencies and the phonon dispersion. We obtain the normal-mode frequencies from

the dynamical matrix D with elements given by71

Diαjβ =
1

√
mimj

∂2V

∂riα∂rjβ
, (8)

where V is the potential energy, mi(j) is the mass of atom i(j), and α and β represent the x,

y, and z directions. For N atoms, D has dimensions of (3N × 3N) and the 3N − 6 nonzero

eigenvalues {λi} of D yield the normal-mode frequencies {ωi} through ωi = λ
1/2
i . To obtain

the dynamical matrix, we first relaxed the unit cell in a bulk crystal. This yielded a lattice

constant of 5.653 Å, which closely matches the experimental value of 5.654 Å72. We then

calculated elements of D for a bulk crystal consisting of 128 atoms with this lattice constant

using finite (central) differences with atom displacements of ±0.01 Å.

By solving the eigenvalue equation D(k) · u = λ2u, we obtain the phonon dispersion.
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Here, the elements of D(k) for a wave-vector k are given by71

Diα,jβ (k) =
∑

n

exp (−ik ·Rn)
1

√
mimj

∂2V

∂rniα∂r0jβ
. (9)

In this equation, Rn are the Bravais lattice vectors of the Np primitive unit cells comprising

the crystal and the additional index on the terms comprising the dynamical matrix compared

to Eq. (8) denotes unit cell n(0). For our system, D(k) is a (6×6) matrix with six eigenvalues

for all k in the first Brillouin zone. We used the PHON code73, version 1.2, to calculate the

phonon dispersion. Input to PHON consists of the forces on all the atoms in the supercell

for two off-symmetry displacements suggested by PHON, one each for Ga and As. These

are then used to generate the full force field. The resulting phonon dispersion is shown in

Fig. 1.

Using inelastic neutron scattering at 12 K, Strauch and Dorner obtained experimental

phonon dispersion curves for GaAs74. Giannozzi et al. used DFT calculations within the

local density approximation (LDA) to determine these and their results match those of

Strauch and Dorner almost exactly75. The experimental results are shown along with ours

in Fig. 1. Here, we see that the potential captures the general shape and magnitude of

the acoustic frequencies. The agreement between the potential and experiment is very good

for the acoustic frequencies around Γ, as is expected76, since the potential provides a good

description of the elastic constants1. The potential best captures the LA frequencies on

the line between Γ and X – although it predicts higher frequencies than experiment for all

the acoustic modes between Γ −K −X. A similar trend is seen in a study of the phonon

dispersion of GaAs by Powell and colleagues77, who compared the phonon dispersions from

a Tersoff potential with the parameters of Sayed et al.51 to those from two different Tersoff

potentials: one with parameters fit to reproduce elastic constants and one fit to the phonon

dispersion. Powell et al. noted that it is difficult to find a parameter set that captures both

the phonon frequencies and the elastic constants, as there is a trade off in accuracy between

them77. The largest discrepancy between the potential and experiments for the acoustic

frequencies is for the TA modes, which are overestimated by the potential.

The potential predicts higher frequencies for the optical modes compared to the experimental74

data and there is no splitting of the optical frequencies at Γ. The latter is a well-known

consequence of the fact that the Tersoff-Abell potential does not include long-range electro-

static interactions of the cations and anions. Generally, the potential predicts higher phonon
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frequencies than experiment. As we will see below, this will lead to an underestimation of

the heat capacity79.
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FIG. 1. Phonon dispersion for bulk GaAs. The lines are the phonon modes computed with the

Tersoff potential in this work. Experimental results74 are shown with squares.

We now turn to the thermal properties of bulk GaAs. In classical MD simulations,

quantum effects are omitted that can become important at low temperatures. To include

a correction for the zero-point energy in the MD simulations, we followed the procedure

of Wang, Chan, and Ho80,81. In this method, the kinetic energy of the classical MD sys-

tem is equated to the vibrational and zero-point energy of a quantum system to provide a

temperature re-scaling given by

3 (N − 1) kBTMD =
1

2

∑

i

~ωi +
∑

i

~ωi
[

exp
(

~ωi

kBTreal

)]

− 1
, (10)

where N is the number of atoms in the system, kB is Boltzmann’s constant, ~ is Planck’s

constant h divided by 2π, ωi are the normal-mode frequencies, TMD is the temperature

used in the MD simulation, and Treal is the corrected temperature for zero-point vibration.

As discussed above, we found the normal-mode frequencies from the eigenvalues of the

dynamical matrix D, whose elements are given by Eq. (8). Using Eq. (10), we found a

relationship between Treal and TMD. The resulting curve is plotted in Fig. 2. We note that
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the curve in Fig. 2 can be fit by a polynomial of the form

TMD = 156.73− (0.050504)Treal + (0.0033433)T 2
real − (5.2643× 10−6)T 3

real

+ (3.9471× 10−9)T 4
real − (1.1214× 10−12)T 5

real .
(11)

Equation (11) implies that the zero-point temperature of the MD system is ∼157 K: In a

classical MD simulation with a temperature of 157 K, the actual temperature is 0 K. At

450 K, the real and MD temperatures are within 5% of one another and we reach the classical

limit, where the temperature of the MD system is approximately equal to the temperature

of the quantum system.
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FIG. 2. The real temperature corrected for zero-point vibration (symbols), along with the polyno-

mial fit in Eq. (11), as a function of the MD simulation temperature. The dashed line shows the

classical result, in which Treal = TMD.

B. Heat Capacity

We calculated the constant-volume heat capacity Cv, which is defined as

Cv =

(

∂U

∂T

)

V

, (12)

where U is the total energy. To obtain Cv, we used canonical-ensemble (NVT) MD, in

which the number of particles N , box volume V , and temperature T are held constant. To
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probe a range of densities relevant to experiment, we ran simulations with 1000 Ga and

As atoms initially in the zinc-blende structure at two different densities (lattice constants):

the density implied by the zero-temperature lattice constant predicted by the potential

(a = 5.65Å) and the liquid density (a = 5.52Å). The Berendsen thermostat82 was used to

control the temperature because of its ease of use. Although the Berendesn thermostat does

not guarantee the canonical ensemble, the errors are small for a sufficiently large system. For

each temperature at a fixed density, we equilibrated the system for 250 ps. Ten subsequent

production runs, each for 250 ps, were used to obtain the average energy U . We fitted the

average energy as a function of the real temperature [i.e., Treal given in Eq. (11)] using cubic

spline interpolation in Mathematica83 and took the derivative in Eq. (12) to obtain Cv. We

can also obtain Cv using the harmonic approximation, which gives

Cv,h(T ) = kB
∑

i

(~ωi/kBT )
2 exp(~ωi/kBT )

[exp(~ωi/kBT )− 1]2
. (13)

In the high-temperature limit, Eq. (13) reaches the constant Dulong-Petit value, in which

Cv is equal to 3kB per species in the primitive unit cell84.

The results from the MD simulations and Eq. (13) are shown in Fig. 3 along with

two sets of experimental results. In experiment, the constant-pressure heat capacity Cp

is measured – although we expect Cp and Cv to be close for solid GaAs. The first set of

experimental values for Cp were compiled by Adachi85, who used data from the work of Cetas

et al.86, Piesbergen87, Lichter and Sommelet88, and Blakemore89. More recently, Glazov and

Pashinkin90 reevaluated the high-temperature data (T & 700 K) of Lichter and Sommelet88

and concluded that the data of Itagaki and Yamaguchi92 is likely to be more accurate. They

measured new values of Cp for T between 350 and 710 K and they fit their values of Cp, as

well as selected literature values, to the Mayer-Kelly form for the temperature range between

200 and 1514 K90. Selected points from this fit are also shown in Fig. 3.

In Fig. 3, we see that there is overall good qualitative agreement between MD results and

experiment. It should be noted that the temperature re-scaling in Eq. (10) is necessary to

achieve even qualitative agreement between simulation and experiment at low temperatures.

In quantitative terms, the MD simulations predict lower values of Cv than experiment for

most temperatures. Over the low-temperature range (T < 200 K), the MD values of Cv

agree well with the harmonic approximation in Eq. (13). Here, both MD and Eq. (13)

predict values lower than experiment due to the tendency of the potential to predict the
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FIG. 3. Heat capacities as a function of temperature. Experimental results are taken from Adachi85

(Expt. I) and Glazov and Pashinkin90 (Expt. II).

phonon frequencies that are high compared to experiment (cf., Fig. 1). There is near-perfect

agreement between MD simulations and experiment for temperatures between 400-800 K

and the agreement worsens again higher temperatures. As the temperature approaches 1200

K, Eq. (13) approaches the Dulong-Petit limit. Deviations from Dulong-Petit behavior can

be attributed to anharmonic effects, which are present in both the MD simulations and

experiment, as well as to defects in the bulk crystals in the experiments84. Interestingly, the

values of Cv from MD simulations at both lattice constants are in nearly perfect agreement

at low and intermediate temperatures. At the highest temperatures, around 1200 K, the

deviation between the two values of Cv is the greatest (∼ 2%) and the values of the heat

capacity associated with the smaller (liquid) lattice constant are in better agreement with

experiment.

V. SURFACE PROPERTIES

A. GaAs(001) Surface Energies

To determine the suitability of this potential to describe the surfaces important for

GaAs(001) homoepitaxy, we calculated a phase diagram of surface free energies for vari-
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ous GaAs(001) reconstructions. The surface free energy γ of a symmetric slab with two

identical free surfaces is given by

γ =
1

2A

[

U tot
slab −NGaE

bulk
GaAs − (NAs −NGa)µAs

]

, (14)

where U tot
slab is the total energy of the slab, A is the surface area, Ebulk

GaAs is the bulk cohesive

energy per GaAs pair of zinc blende GaAs, Ni is the number of atoms of species i, and

µAs is the chemical potential of As. The factor of two is needed to take into account the

double-sided slab used to obtain U tot
slab. From the potential, Ebulk

GaAs = −6.71 eV/GaAs pair

for a relaxed bulk crystal at 0 K1. The As chemical potential is a variable in Eq. (14) and it

must be large enough to ensure that As would not evaporate from the surface to leave pure

Ga behind and small enough to prevent crystalline As from forming on the surface. These

considerations provide the bounds

∆Hf < µAs − µbulk
As < 0 , (15)

where ∆Hf = Ebulk
GaAs −Ebulk

Ga −Ebulk
As is the heat of formation of GaAs. We obtained ∆Hf =

−0.912 eV/GaAs pair from the potential and Ebulk
As = µbulk

As = -2.965 eV/GaAs pair for

the lowest-energy phase of As (αAs) at 0 K. The lowest-energy phase was obtained from

conjugate gradient minimizations, such that the force on any given atom was below 1 meV/Å.

We note that this is the same value given by Albe1 for the original potential, but it is

different than the value of µbulk
As that Murdick et al. found using Albe’s potential63 for αAs.

We computed U tot
slab for the various surface reconstructions indicated in Figs. 4 and 5. In

these calculations, two surfaces are separated by 15 layers of bulk GaAs. A full layer consists

of 64 atoms. Beginning with atoms in configurations similar to those predicted by DFT with

the generalized-gradient approximation (GGA) PBE exchange-correlation functional64, we

used the conjugate gradient method to minimize the surface energy. The surface energies

as a function of µAs − µbulk
As are shown in Fig. 5(a). Lee, Moritz, and Scheffler used DFT

with the GGA-PBE functional to study these reconstructions64 and their results are shown

in Fig. 5(b). DFT within the LDA gives a very similar energetic hierarchy of surface

reconstructions, but the absolute values of surface energies in LDA are generally larger (cf.,

Ref 26), and thus closer to the values obtained with our potential.

The surface energies in Fig. 5 have also been probed by Murdick and colleagues39,61,63

for various semi-empirical potentials1,57,59,61. They found that all of the potentials tested
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FIG. 4. (Color online) Top down view of the As-rich surfaces used in the surface free-energy

calculations. As atoms are shown in red (dark) and Ga atoms are shown in white.

predict the most stable surfaces to be the (1 × 2) reconstruction under Ga-rich conditions

and the (2 × 1) reconstruction under As-rich conditions39,61,63. Similar to Murdick and

colleagues, we find the Ga-rich (1× 2) reconstruction to be the most favored surface at low

As chemical potentials. However, we find that the β(2×4) and the β2(2×4) reconstructions

are favored under As-rich conditions. These reconstructions are shown in Fig. 4(c) and (d).

The β2(2× 4) reconstruction consists of rows of As-dimer pairs separated by trenches with

lone As dimers, whereas the β(2 × 4) reconstruction has rows that are three As dimers in

width separated by trenches without As dimers. In our calculations, the β reconstruction

is energetically favored over the β2 by less than 2 meV/ Å2. DFT calculations64,91 have

shown that the β is several meV/ Å2 higher in energy than the β2 due to electrostatic

interactions not captured by the potential. Between the (1 × 2) reconstruction at low µAs

and the β/β2(2× 4) reconstructions at high µAs, there is an intermediate region where we

predict that the β(4× 2) and the β2(4× 2) reconstructions are preferred.

Interestingly, we find that the As-rich (2 × 1) reconstruction [cf., Fig. 4(e)], which was

found to be energetically preferred under As-rich conditions by Murdick and colleagues

for other empirical potentials39,61,63, has a high energy that is off the scale in Fig. 5(a).

Although there is an energetic gain from the formation of As dimers on the (2× 1) surface,

these dimers (with their short separation compared to that in Albe’s original potential1) pull
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FIG. 5. Surface free-energy diagram for various possible reconstructions of the GaAs(001) surface

for (a) the potential and; (b) DFT with the GGA-PBE exchange-correlation functional64. The

dashed vertical lines represent the bounds in Eq. (15). Reconstructions with energies less than

3 meV/ Å2 apart have been shown with one line.

the second-layer Ga atoms away from the third-layer As atoms, straining the Ga-As bonds.

For each As dimer formed in the (2×1) reconstruction, four Ga-As bonds are stretched ∼0.1

Å away from their preferred bulk distance. In the β/β2(2×4) reconstructions, this strain is

relieved for second-layer Ga-atom pairs that border the trenches. Thus, the bonds formed
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by these second-layer Ga atoms and their third-layer As neighbors are closer to the preferred

bulk distance. It is worth mentioning that we performed preliminary MD simulations of the

β2(2×4) reconstruction over temperatures ranging from 300 - 900 K and over times covering

several ns. We found this reconstruction to be stable in all of these simulations.

Comparing the surface energies in Fig. 5(a) to results from DFT GGA-PBE calculations64

in Fig. 5(b), we see that the potential is still far from matching DFT in the Ga-rich

region. As seen in Fig. 5(b), DFT calculations predict that the ζ(4 × 2) and the α2(2 ×
4) reconstructions are favored under Ga-rich conditions64, instead of the Ga-rich (1 × 2)

reconstruction that we see here. Although the DFT study predicts that the β2(2 × 4)

reconstruction is favored under As-rich conditions (as we find), this study also predicts that

the c(4×4) reconstruction is favored under the most As-rich conditions, in contrast to what

we see here. Nevertheless, it is significant that the modified Tersoff potential predicts that the

GaAs(001)β2(2× 4) reconstruction is stable under As-rich conditions. This reconstruction

occupies a large portion of the phase diagram established by Däweritz and Hey93 for the

GaAs(001) surface and it exists at the temperatures and As overpressures commonly found

in GaAs homoepitaxial growth by MBE. Thus, in terms of its surface energy, the potential

seems suitable for investigating atomic-scale processes in GaAs(001) homoepitaxy.

B. Ga Adatom Binding Sites on GaAs(001)β2(2 × 4)

To assess the location and depth of binding sites for Ga adatoms, we calculated the

minimum-potential-energy surface (MPES) for a Ga adatom on the β2(2×4) reconstruction.

The MPES is a map of the minimum binding energy of a Ga adatom in a grid spanning the

β2(2× 4) unit cell. The binding energy Eb is given by

Eb = Es+a −Es , (16)

where Es+a is the energy of a relaxed slab containing a Ga adatom and Es is the energy of

a bare, relaxed slab. We initially probed slabs ranging in thickness from seven to 12 layers

and found that the differences in the binding energies for slabs thicker than seven layers

were negligible. We chose to use a slab nine layers thick, consisting of 15 surface β2(2×4)

unit cells, for a total of 990 atoms. The bottom three layers of atoms were fixed to the bulk

coordinates and the rest of the layers were allowed to relax.
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The starting positions for the adatom in the minimization were set by a grid in the surface

plane with a 0.2 Å spacing in both the x and y ([110] and [1̄10]) directions. At each point on

the grid, a Ga adatom was placed above the surface beyond the potential cut-off distance,

such that there was no interaction between the adatom and the surface. The adatom was

then lowered in 0.1 Å increments in the z -direction until it was within the potential cut-off

and we noted a change in the total energy. From this starting point, the adatom was further

lowered closer to the surface. Three sets of maps were created by using initial positions 0.5,

1.0, and 1.5 Å closer than the cut-off distance. Conjugate-gradient minimization was used

to relax the surface atoms, as well as the z coordinate of the adatom, until the maximum

force on any single moving atom was below 0.001 eV/Å. The lowest-energy minima from

all of the runs described above were used to create the total MPES map shown in Fig. 6.

Table II summarizes the binding energies from our calculations, and compares them to

results obtained with a similar methodology by Salmi et al.96, who used a Tersoff potential

with Sayed’s parameters51. Many of the minima in Fig. 6 have also been seen in various

DFT studies. Both LDA and GGA data with the PBE exchange-correlation functional

for selected configurations have been published by Kratzer, Morgan, and Scheffler95. In

order to complete this data set, we performed additional, hitherto unpublished GGA-PBE

calculations on a coarse grid to map out the MPES. The results obtained with the same

technical settings as described in Ref. 95 are given in Table II. Moreover, we compare to the

DFT study of Kley, Ruggerone, and Scheffler94, who calculated the MPES using the GGA

with the PW-II exchange-correlation functional.

We first note that the only minimum in Table II that is seen in all the studies is the

long-bridge site between two As trench dimers (E3), whose energy is taken as a reference to

allow comparisons between the various results. Relative to E3, our calculations, DFT LDA

calculations, and those of Salmi et al. predict the deepest minimum to be adjacent to an

As trench dimer (E1a), while the deepest minimum in both DFT GGA calculations is one

that breaks an As trench dimer (E1). E1 is the second-deepest minimum for us, as well as

for the DFT LDA study, while the DFT GGA-PBE study puts E1a as second deepest. E1a

is not seen in the DFT GGA PW-II study. Next in the energy ranking in our study and in

the DFT studies is E2, for which we find good agreement with DFT GGA-PBE and LDA

values. E2 is not seen in the study by Salmi et al.96, who find that the binding site with

next-lowest energy is E2a. The E2a site is similar to E1a, in that it flanks the short-bridge
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FIG. 6. (Color online) MPES of a gallium atom on the β2(2×4) reconstruction. Key binding sites

(energy minima) are labeled as E and transition states are indicated with † and labeled with T.

Ga atoms are shown as black circles and As atoms are shown as white circles.

E2 site in the dimer row. This site is not seen (or mentioned) in the DFT studies. We

found stable binding sites at both E2 and E2a, which have approximately equal energies.

A related minimum that flanks the As-row dimers in the center of the row is E2b, which

has the same binding energy in our study and in the DFT GGA-PBE study, but is not seen

(or mentioned) in the other studies. There is good agreement among all studies that the

long-bridge site between As dimers in the row (E4) is among the weakest minima.

Our potential predicts that the short-bridge binding sites between two As dimer atoms

have similar energies, regardless of the location of the dimer, i.e. in the trench (E1) or in

the row (E2). The energies of the long-bridge sites between two As dimers (E3 and E4) are

also close, with a difference of 0.1 eV. This trend is seen in the LDA and the GGA-PBE

results – although it differs from the DFT GGA PW-II calculations, which give one deep

minimum between two As atoms in the trench (E1) and three similar minima elsewhere.

In addition to the minima discussed above, we find five other minima with comparable,

but generally weaker energies. Two of these (E5 and E6) are also seen in the DFT GGA-PBE
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TABLE II. Relative binding energies (in eV) for minima in Ga binding on the β2(2×4) reconstruc-

tion indicated in Fig. 6. Results are shown for the potential used in this work, as well as for DFT

studies with the GGA PW-II (Ref. 94), the GGA PBE (Ref. 95 plus unpublished work), and the

LDA (Ref. 95). Additionally, we show results from Ref. 96 with a Tersoff potential parameterized

with Sayed’s parameters51, denoted by P2. All binding energies [Eb from Eq. (16)] are given

relative to the energy at the long-bridge site in the trench (E3), which is set to zero. The symbol

∅ signifies that the minimum is absent, while the entries marked — are unavailable.

site this work GGA PW-II GGA PBE LDA P2

E1 −0.5 −0.7 −0.6 −0.4 ∅

E1a −0.8 ∅ −0.4 −0.6 −0.9

E2 −0.4 −0.1 −0.4 −0.3 ∅

E2a −0.4 ∅ ∅ — −0.8

E2b 0.0 ∅ 0.0 — ∅

E3 0.0 0.0 0.0 0.0 0.0

E4 0.1 0.3 0.1 — 0.0

E5 −0.2 ∅ 0.1 — ∅

E6 −0.3 ∅ 0.0 — ∅

E7 −0.2 ∅ ∅ — ∅

E8 −0.1 ∅ ∅ — ∅

E9 −0.2 ∅ ∅ — ∅

study, although we predict somewhat stronger binding than DFT. We note that E7 in our

study is similar to E5 in its position relative to the As trench dimer, but its position relative

to the row dimers is different. Nevertheless, we find that the difference in binding energies

between E5 and E7 is less than 0.1 eV so these two sites might be taken as equivalent.

The remaining minima that we find flank the long-bridge sites between As-row dimers (E8

and E9). These minima are not seen in the other studies and, while they may arise due

to conceptual shortcomings of the potential, we note that the resolution of our MPES is

finer than that in the DFT studies (0.2 Å vs. 1.0 Å) so it is possible that some of these

minima would occur in a DFT study with finer resolution. It is also important to point
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TABLE III. Transition-state energies (in eV) on the β2(2×4) reconstruction. Transition-state

energies are obtained from Eq. (16) and are given relative to the energy at the long-bridge site in

the trench (E3), which is set to zero.

Transition State T1 T2 T3 T4 T4’ T5 T6 T6’ T7 T7’ T8 T9

This Work 1.0 0.8 — — −0.2 0.2 0.9 0.1 0.5 0.4 0.3 0.3

GGA PW-II94 0.8 0.7 0.9 0.5 — 1.0 1.0 — 0.6 — — —

P296 — — 0.6 0.8 — — — 1.2 — — — —

out that the relative Ga atom binding energies in these minima are significantly less than

those of the deepest minima, so that they will be occupied infrequently at temperatures of

interest. Overall, we find good agreement between the potential and DFT – especially LDA

and GGA-PBE results – in the binding energies for a Ga adatom.

C. Ga Adatom Diffusion on GaAs(001) β2(2× 4)

Another test of the potential to describe aspects of GaAs(001) homoepitaxy is to assess

the energy barriers for a Ga atom to diffuse via hopping on the β2(2 × 4) reconstruction.

Diffusion-energy barriers are given by the energy difference between a transition state and

an initial binding site. Transition states are first-order saddle points on the MPES and

some relevant transition states can be found in Fig. 6. In analogous DFT GGA PW-II

calculations94, Kley, Ruggerone, and Scheffler identified seven different transition states.

The potential reproduces most of these in similar locations to those in the DFT study and

a comparison between the potential and DFT is shown in Table III. In Table III, we also

include transition states found by Salmi et al., who used a Tersoff potential parameterized

with Sayed’s parameters51,96.

In Table III we see that most of our transition-state energies are in good agreement

with DFT values and that we achieve better agreement with DFT than Salmi et al.96. One

discrepancy occurs for T3: We find that a minimum (E2b) occurs at the location of T3 in

the DFT GGA PW-II study. We note that the DFT GGA-PBE study also finds a minimum

at E2b (T3)95, so there is controversy at this location. In the DFT study, T3 (E2b) is

co-linear and adjacent to T594. Although we find a transition state in the vicinity of the
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DFT T5, our agreement with DFT is poor. This may reflect inaccuracies of the potential

at describing As dimer breaking, as this is required to proceed from E2 to the middle of the

row. A similar issue occurs for T4 and T4’. In the DFT GGA PW-II study, T4 is located

next to an unbroken As dimer94, while we find that T4’ corresponds to a broken dimer. We

see that the energy of T4’ is low, reflecting its location in the deep energy well surrounding

the As trench dimer.

As for the binding sites, we find transition states that are not mentioned in the DFT

GGA PW-II study. Two of these, T6’ and T7’ lie close to the DFT locations for T6 and T7.

Actually, T6 in the DFT study lies near the minimum E2a in our study and is, thus, between

T6 and T6’ in our study. Similar to T4’ and T5, T6’ lies on the path from a broken to an

unbroken As dimer and its energy is low. T6 in our study is associated with a transition

between unbroken dimers and its value is reasonably close to the DFT value. A relatively

minor issue arises with T7 and T7’: In the DFT study, these two locations apparently have

the same energy values, while we find a small difference of 0.1 eV, which might be expected

due to the slightly different environments of these two locations. The other two transition

states indicated in Fig. 6 and Table III are associated with transitions between E5 and E6

(T8) and E6 and E7 (T9). These transition states (and their associated minima) were not

mentioned in the DFT GGA PW-II study, although the minima are seen in DFT GGA-PBE

calculations (cf., Table II).

VI. CONCLUSIONS

In summary, we examined several bulk and surface properties of a Tersoff-Abell potential

for GaAs that is a slightly modified form of Albe’s potential1. We quantified the phonon

dispersion and found that the modified potential captures the general shape of the exper-

imentally observed acoustic-mode frequencies and describes some of them quantitatively,

although overall it tends to predict higher frequencies than experiment for both the acoustic

and optical modes. Using the phonon frequencies, we calculated a correction for classical

MD simulation temperatures to account for the zero-point energy and we found that this was

necessary to achieve good agreement between experimental and simulated heat capacities

with classical MD.

Interestingly, the shorter As-As cut-off parameters in the modified potential greatly affect
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the various reconstructions it predicts for the GaAs(001) surface. It is significant that the

β2(2 × 4) reconstruction is favored under As-rich growth conditions. This reconstruction

exists at the temperatures and As overpressures commonly found in GaAs homoepitaxial

growth by MBE. Additionally, we constructed a MPES for a Ga adatom on the β2(2×4) re-

construction. Generally, we observe good agreement between the potential and DFT results

regarding the locations of binding sites and transition states – although the potential predicts

lower energies than DFT for transition states associated with dimer breaking/unbreaking

moves. Nevertheless, our calculations indicate that energies and energy differences are sim-

ilar between the potential and DFT, so that the potential provides a reasonable description

of Ga adatom diffusion. Thus, our studies indicate that the potential is suitable for investi-

gating aspects of GaAs(001) homoepitaxy.
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