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A nonequilibrium Green’s function (NEGF) method for stationary carrier dynamics in open semi-
conductor nanodevices is presented that includes all relevant incoherent scattering mechanisms. A
consistent lead model is developed that ensures all observables to reflect intrinsic device properties.
By restricting the charge self-consistent calculations to vertical transport through heterostructures,
the Green’s functions and self-energies can be determined very accurately. This allows us to assess
many commonly used approximations, such as ballistic leads, decoupling of Dyson’s and Keldysh’
equations, truncated or momentum averaged self-energies, and local self-energies in the NEGF for-
malism in detail and to study limiting cases such as diffusive transport in resistors. The comparison
of exact and approximated NEGF calculations illustrates the physical implications and validity of
common approximations and suggests numerically efficient simplifications.

PACS numbers: 72.10.-d, 72.20.Dp, 72.20.Ht

I. INTRODUCTION

The realistic prediction of carrier dynamics in state
of the art semiconductor devices requires a scheme that
treats carrier interferences, coherent tunneling and quan-
tum confinement as well as energy and momentum relax-
ation on an equal footing. In addition to approaches
based on the Pauli master equation and the density ma-
trix formalism,1–4 the non-equilibrium Green’s function
(NEGF) method is among the most widely employed
methods to describe carrier dynamics in open quantum
systems.5,6 In fact, the NEGF method has been ap-
plied successfully to a great variety of systems rang-
ing from phonon transport,7,8 spin transport,9,10 elec-
tron11,12 dynamics in metals,13–16 organic molecules and
fullerenes,17–20 and semiconductor nanostructures.21–23

Unfortunately, the basic NEGF equations are complex,
mathematically cumbersome, and their numerical solu-
tion is extremely demanding. Therefore, a wide range of
different approximations for particular devices and situa-
tions have been developed and employed that make it dif-
ficult to judge their adequacy for other problems. In ad-
dition, suitable boundary conditions for current-carrying
nanometer devices that account for a finite current den-
sity in the leads have not been studied in detail in terms
of this method yet. As a consequence, the validity of
the NEGF method in some limiting cases such as simple
resistors is still debatable.

In this paper, a fully self-consistent implementation
of the NEGF method for open nanodevices is presented
and used to assess the most common approximations em-
ployed in this method’s implementation. These approx-
imations are up to now only discussed for very specific
device applications. In this paper, we attempt to provide
concrete and general guidelines for advisable simplifica-
tions.

The most common approximation in NEGF calcu-

lations is to set to zero all scattering processes alto-
gether. This is equivalent of solving the Schrödinger
or Lippmann-Schwinger equation with open boundary
conditions and describes ballistic transport. This ap-
proximation can be adequate for low temperatures and
high mobilities.24–27 Another very common and numeri-
cally efficient scheme is the Büttiker-probe model where
one replaces the individual physical scattering mecha-
nisms by a global energy and momentum absorbing self-
energy.28–32 Once incoherent scattering is taken into ac-
count, it has to be included in the total simulation do-
main, i.e. in the device and its surroundings, in order
to avoid artificial interferences at the device boundaries.
This has been shown for local scattering mechanisms
and we verify this finding also for non-local scattering
events.29,33 For quantum cascade structures that consist
of hundreds of quantum wells in an external electric field,
it is common to use periodic boundary conditions rather
than treating the system as a scattering problem with
attached asymptotic leads.34–36 This procedure simpli-
fies the NEGF calculations significantly as well, but is
adequate only for field-periodic device structures with
sufficient energy dissipation. Another common approxi-
mation is to solve only those parts of the NEGF equa-
tions that determine the resonance and bound state ener-
gies and side-step the calculation of the occupation num-
bers, i.e. the Keldysh equations.37 In some cases, this
approximation has been found to violate Pauli’s princi-
ple,37 but more detailed investigations of this interesting
ansatz have not been performed so far. Another numer-
ically time saving approximation that has been used for
superlattice calculations replaces the momentum depen-
dence of the phonon- and other scattering potentials by
suitable averages.34,38,39 Finally, important insight into
the NEGF method has been obtained by comparing the
results of NEGF calculations for Wannier-Stark-type lad-
der systems and quantum cascade structures with semi-
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classical Monte Carlo calculations.38,40,41 Whether these
results also apply to typical resistive devices n-i-n or
quantum well structures, will be one of the focuses of
the present paper.

While we analyze most of the before mentioned ap-
proximations in equilibrium, another very common ap-
proximation affects non-equilibrium situations with a fi-
nite current density in the device: It is very common to
assume the leads of open devices to remain in equilib-
rium irrespective of a finite device current. Nevertheless,
it is well known that such an approximation generates
electrostatic charges at the device/lead interfaces.27,42–44

Therefore, several models have been developed in order to
compensate these charges. In high resistive devices, it is
common to compensate transferred charges by adjusting
the chemical potentials of the Fermi distributions within
the leads. At higher device current densities, however, it
has been suggested to avoid equilibrium electron distri-
butions within the leads in order to account for current
conservation beyond the device boundaries.42,44–46 Most
of the later approaches implement a shifted Fermi distri-
bution for the lead electrons. Typically this shift is cal-
culated within a drift-diffusion model with a given lead
electron mobility.42,44,45,47,48 The nature of transport in
nanoscale devices is strongly depending on the device de-
tails and can vary from diffusive to ballistic. Therefore,
we extend in this paper the lead model of shifted lead
Fermi distributions so that a detailed knowledge of the
carrier mobility is no longer required. Instead, the shift
of the lead electron distribution is determined such that
surface charges at the device/lead boundaries are exactly
compensated. Thus, our lead model ensures that the
calculated physical observables and particularly the I-V
characteristics reflect intrinsic properties of the device.
It is finally shown that the NEGF method yields correct
results in the limiting case of diffusive transport by a
comparison with solutions of the Boltzmann equation.

In Sec. II A, we briefly introduce the governing equa-
tions. In Sec. II B, a lead model is introduced that spec-
ifies the boundary conditions for the electrostatic poten-
tial and the Green’s functions, respectively. The entire
Sec. III is devoted to a careful examination and assess-
ment of common approximations of the NEGF method.
The consequences of using ballistic leads are presented
in Sec. III A. The crucial property of current conserva-
tion is lost when self-energies are truncated, as shown
in Sec. III B. While in some cases, the decoupling of
the Dyson and Keldysh equations leads to unphysical re-
sults, we discuss situations in Sec. III C and III D where
this approximation can be justified. The consequences of
neglecting the nonlocal nature of the Green’s functions is
discussed in Sec. III E and their momentum dependence
is analyzed in Sec. III F. In Sec. III G, three different lead
models are discussed and compared to one another. The
capability of the NEGF method to reproduce results of
semiclassical calculations is demonstrated in Sec. III H.
Finally, we summarize our findings in Sec. IV.

II. METHOD

A. Fundamentals

In order to set up our notation and be able to as-
sess various approximations, we briefly summarize the
non-equilibrium Green’s function method (NEGF) in this
section. We focus on stationary vertical transport in lat-
erally homogeneous quantum well heterostructures and
consider such a device to be in contact with two charge
reservoirs at z = R and z = L, respectively. Thereby, we
consider charge transport as a scattering problem from
source to drain with the open device forming the scat-
tering center. The electronic structure is represented
in terms of a single-band effective mass model with an
effective mass that may depend on the growth coordi-
nate z as well as on the energy E in order to be able
to incorporate nonparabolicity effects. The single-band
conduction-electron Hamiltonian is given by

H0 =
−~

2

2

d

dz

1

m∗ (z, E)

d

dz
+

~
2k2

‖

2m∗ (z, E)
+ V (z) ,

V (z) = Ec (z) − eΦ (z) , (1)

where k‖ is the lateral electron momentum, Φ (z) the elec-
trostatic potential, and Ec (z) denotes the material and
position dependent conduction band edge, including the
band offsets. Within the NEGF formalism, stationary
transport in open quantum mechanical systems is char-
acterized by four coupled partial differential equations
for the electronic retarded and lesser Green’s functions
GR, G<, respectively.49 In operator form, they read

GR =
(

E − H0 − ΣR
)−1

,

G< = GRΣ<GR†,

Σ< = G<D<,

ΣR = GRDR + GRD< + G<DR. (2)

Here, D is the sum of all environmental Green’s func-
tions that incorporate phonons, impurities, and inter-
face roughness, and Σ denote the self-energies. The so-
lutions of Eqs. (2) in real space do not require one to
solve an eigenvalue problem. Therefore, an energy de-
pendent mass in the Hamiltonian H0 does not increase
the complexity of the solution. All Green’s functions
G
(

z, z′, k‖, E
)

and self-energies Σ
(

z, z′, k‖, E
)

are taken
as functions of two spatial coordinates z, z′, the lateral
momentum k‖ and the energy E. Once the Green’s func-
tions are known, the observables such as the spatially
resolved density n (z) and the current density j (z) can
be determined straightforwardly,

n (z)

=

∫

dEn (z, E)

=
2

(2π)3
Im

∫

dE

∫

d~k‖G
<
(

z, z, k‖, E
)

, (3)



3

j (z) = − ~e

(2π)3
lim

z′→z

∫

dE

∫

d~k‖
1

m∗ (z, E)

× Re

(

d

dz
− d

dz′

)

G<
(

z, z′, k‖, E
)

. (4)

If not explicitly stated otherwise, we take into account
inelastic acoustic and polar-optical phonon scattering,
scattering by charged impurities, rough interfaces, and
the electron-electron interaction in the Hartree approxi-
mation. The scattering self-energies are determined in
the self-consistent Born approximation including their
full nonlocal momentum and energy dependence.50 Tak-
ing into account scattering to infinite order is a pre-
requisite for obeying current conservation exactly.50 In
the real space basis employed in this work, we exem-
plify the general, nonlocal retarded and lesser scattering
self-energies for polar optical phonon (pop) and charged
impurity (imp) scattering, respectively,37

Σ<
pop

(

z, z′, k‖, E
)

=
γπ

(2π)
3

∫

d~l‖ Vpop

(

z, z′,
∣

∣

∣

~k‖ −~l‖

∣

∣

∣

)

×
[

n0G
<
(

z, z′, l‖, E − ~ω0

)

+ (1 + n0) G<
(

z, z′, l‖, E + ~ω0

)]

, (5)

ΣR
pop

(

z, z′, k‖, E
)

=
γπ

(2π)
3

∫

d~l‖ Vpop

(

z, z′,
∣

∣

∣

~k‖ −~l‖

∣

∣

∣

)

[(1 + n0)

× GR
(

z, z′, l‖, E − ~ω0

)

+ n0G
R
(

z, z′, l‖, E + ~ω0

)

+
1

2
G<

(

z, z′, l‖, E − ~ω0

)

− 1

2
G<

(

z, z′, l‖, E + ~ω0

)

+iP
∫

dE′

2π

(

G<
(

z, z′, l‖, E
′
)

E − E′ − ~ω0

− G<
(

z, z′, l‖, E
′
)

E − E′ + ~ω0

)]

,

Vpop

(

z, z′, k‖
)

=
e
−

q

k2

‖
+q2

D|z−z′|
√

k2
‖ + q2

D



1 − q2
D |z − z′|

2
√

k2
‖ + q2

D

− q2
D

2
(

k2
‖ + q2

D

)



 ,

(6)

Σimp

(

z, z′, k‖, E
)

=
e4

16π2ε2
0ε

2
r

×
∫

d~q‖ Vimp

(

z, z′,
∣

∣

∣

~k‖ − ~q‖

∣

∣

∣

)

G
(

z, z′, q‖, E
)

,

Vimp

(

z, z′, k‖
)

=

∫

dz′′ ND (z′′)
e
−

q

q2

D
+k2

‖(|z−z′′|+|z′−z′′|)

q2
D + k2

‖

. (7)

In these equations, qD denotes the inverse Debye screen-
ing length, ND (z) is the ionized impurity concentra-
tion, n0 denotes the equilibrium Bose phonon number
at the chosen temperature. We note that the contribu-
tion of the principle value integral in Eq. (6) is small in

laterally homogeneous heterostructures and can be ne-
glected.34,35 The expression for Σimp holds for both the
retarded and the lesser self-energy and contains the same
type of Green’s function, i.e. ΣR

imp ∝ GR, Σ<
imp ∝ G<.

The polar optical Fröhlich coupling constant γ is given
by

γ = e2 ~ω0

2ε0

(

1

ε∞
− 1

εr

)

, (8)

where ω0 is the constant optical phonon frequency, and
εr, ε∞ are (device averaged values of) the static and dy-
namic dielectric constant, respectively.51 These two scat-
tering self-energies reflect all important properties of self-
energies that we will discuss in the subsequent sections.

B. Lead model for open devices

Since we focus on open quantum systems, we need to
augment the system of equations Eqs. (2) for the Green’s
functions by suitable boundary conditions, i.e. by a con-
sistent treatment of the leads. Given the fact that full
NEGF calculations can only be performed for very small
nanoscale semiconductor structures at this time, different
treatments of the leads are major sources of discrepancy
between different models. We will therefore present our
lead model in some detail and discuss the effect of dif-
ferent models on observable device properties in the next
section.

We consider open, laterally homogeneous devices with
electrons in a single parabolic conduction band and at-
tach a semi-infinite lead to the left and to the right of
the structure, respectively. Our main goal in setting up
a lead model is to make sure the physics to be controlled
by the interior of the device rather than by the leads.
Physically, this is only possible if the charge density near
the device/lead interface is sufficiently high to screen the
electric fields within the device so that it is reasonable
to assume flat band boundary conditions. Given this
premise, we assume furthermore that the lead-device in-
terfaces are sufficiently smooth not to cause significant re-
flections or interference effects. We note that the present
lead model can be generalized to fully three-dimensional
devices with any number of leads, as we show in the Ap-
pendix.

In our model, each semi-infinite lead ℓ ∈ {L, R} is
characterized by a constant effective mass m∗

ℓ , position-
independent electron density nℓ corresponding to a chem-
ical potential µℓ, and a constant electrostatic potential
Φℓ. The bottom of the conduction band in each lead is
denoted by Ec,ℓ. In order to get reflectionless contacts,
i.e. smooth device/lead transitions, we extend the device
density of states adjacent to the leads continuously into
the leads.

For this purpose, the device Green’s functions are cal-
culated including the contact self-energies ΣR

con and Σ<
con.

This requires that we include scattering within the leads
to the extent that we solve the retarded surface Green’s
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function of the lead self-consistently with ΣR of the de-
vice, but assume a fixed electron distribution.52 This
scheme is analogous to the one proposed in Ref. 53, but
we maintain the full off-diagonal character of the self-
energies across the lead-device interface and replace the
scalar elements of the contact self-energy algorithm in
Ref. 53 by matrices. The size of these matrices is given
by the finite range of the scattering self-energies in the
device. The resulting set of nonlinear equations is then
solved iteratively.53

Within the device, we solve the Poisson equation

ε0

d

dz
εr (z)

dΦ (z)

dz
= e [n (z) − ND (z)] (9)

self-consistently with all Green’s functions in the device.
Note that global charge neutrality of the device requires
εr,LΦ′

L = εr,RΦ′
R or simply Φ′

L = Φ′
R for a single material

device, as follows from integration of Eq. (9). Since we
assume a high carrier density near the contacts, we use
the stronger conditions

(I)
dΦ (z)

dz

∣

∣

∣

∣

z=R

= 0

(II)
dΦ (z)

dz

∣

∣

∣

∣

z=L

= 0. (10)

In equilibrium, i.e. for zero applied bias, we assume
the electronic distribution within the leads to be given
by equilibrium Fermi distributions. Depending on the
device details, our electrostatic boundary conditions (I)
and (II) may result in a finite built-in potential across
the device,

Vbuilt−in = e [ΦL − ΦR]equilibrium . (11)

We assume the potential Vbuilt−in to remain the same in
nonequilibrium situations.

In a nonequilibrium situation, charge is transferred
from the source to the drain side of the device. With-
out any compensation, this charge transport results in a
dipole at the device boundaries: a positive charge at the
source and a negative charge at the drain sided boundary
of the device. It is well known that such a dipole pro-
hibits the applied bias to drop completely within the de-
vice.1,27,42,44,45 In order to compensate this charge dipole
at the device boundaries, we assume shifted Fermi distri-
butions within the leads.1,42,44,45 Accordingly, the elec-
tron distribution in lead ℓ reads

fℓ

(

k‖, kD,ℓ, E, µℓ

)

=
{

exp
[

β
(

Ẽℓ − µℓ

)]

+ 1
}−1

, (12)

with

Ẽℓ =
~

2

2m∗
ℓ

[

k2
‖ + (kz,ℓ (E) − kD,ℓ)

2
]

. (13)

Hereby, the sign of the variable kD,ℓ depends on the di-
rection of the electron flux through the contact. It shifts

the center of the lead’s Fermi sphere parallel to the av-
erage electron momentum in growth direction,

kz,ℓ (E) =
√

2m∗
ℓ (E − Ecℓ − eΦℓ) /~2 − k2

‖. (14)

With the current flowing from source to drain, kD,ℓ is
positive in the source and negative in the drain. The
shift of the Fermi spheres within the leads causes charge
dipoles at both lead boundaries: the source sided lead
faces a positive charge at the boundary to the (metal-
lic) reservoir and a negative charge at the boundary with
the device; The dipole of the drain sided lead has op-
posite configuration. In this way, the shift of the lead
Fermi spheres allows us to move the dipole charges to
the lead/reservoir interfaces and to guarantee a given
bias drop within the device. Therefore, we iteratively
determine the two shifts kD,ℓ of the Fermi distributions
in the two leads with the NEGF results within the device
until the two conditions hold

(III) Vapplied = e [ΦL − ΦR] − Vbuilt−in

= µL − µR,

(IV)

∣

∣

∣

∣

kD,L

kD,R

∣

∣

∣

∣

=
m∗

LnR

m∗
RnL

. (15)

Please note that these two conditions unambiguously de-
fine the two unknown variables kD,L and kD,R. Condition
(III) guarantees that only one global dipole persists, i.e.
the dipole between source and drain reservoir. Then, the
total applied bias Vapplied completely drops within the de-
vice. Condition (IV), on the other hand, mimics current
conservation from the leads into the device by assuming
that the current density within lead ℓ is proportional to
kD,ℓnℓ/m∗

ℓ .
44 Expression (IV) avoids the introduction of

a mobility and is plausible for both diffusive and ballistic
situations. In weakly doped and low resistive devices, the
shift kD,ℓ may grow to values larger than kz,ℓ for all en-
ergies E of occupied states which would lead to artificial
results. This limit is approximately reached when kD,ℓ

equals the Fermi vector. We therefore restrict its values
to the range |kD,ℓ| ≤ 3

√
3π2nℓ. An assessment of this lead

model is given in Sec. III G.

III. RESULTS AND ASSESSMENT OF

COMMON APPROXIMATIONS

In this section, we are going to assess several com-
mon approximations for the self-consistent solution of the
NEGF equations Eqs. (2). It turns out, the Green’s func-
tion approach is quite sensitive to some simplifications
but less sensitive to others, and in most cases these find-
ings are counter-intuitive. We hope that this discussion
illustrates the strengths and weaknesses of the NEGF ap-
paratus and eventually contributes to reduced numerical
effort, and more robust and reliable predictions based on
this method.
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FIG. 1: NEGF calculations of equilibrium electron density
in homogeneously n-doped GaAs device with n = 1017 cm−3

at 300 K. The dashed line shows results for leads with bal-
listic electrons. They generate interference effects and non-
homogeneous densities. A consistent NEGF implementation
(solid line) must include scattering within the leads.

A. Ballistic leads

An obvious approximation in any NEGF calculation
of open devices is to attach ballistic leads to the struc-
ture and include scattering only within the active de-
vice. This greatly simplifies the calculations since the
surface Green’s functions of ballistic leads are analyti-
cally known.54–58 Figure 1 shows the results of two dif-
ferent NEGF calculations of a piece of homogeneously n-
doped GaAs of 50 nm length with attached GaAs ”leads”
on both sides and in the absence of any applied bias.
Physically, this device simply represents homogeneous
bulk GaAs in equilibrium that we have artificially divided
into a ”device” and two semi-infinite ”leads”. The doping
concentration is n = 1017 cm−3, and the lattice tempera-
ture is set to 300 K. Correct calculations must obviously
yield a constant electron density throughout the device.
Indeed, Fig. 1 shows a constant electron density (solid
line) but only in the case where scattering has been in-
cluded within the leads self-consistently. By contrast, if
we attach ballistic GaAs leads to the piece of GaAs, the
mismatch in the electronic density of states within the
leads and within the device causes significant interfer-
ences to occur near the device/lead interfaces which re-
sults in an inhomogeneous electron density (dashed line).
This result is a consequence of the density of states to be
controlled by the retarded Green’s function which con-
tains the scattering self-energies. Therefore, a smooth,
reflectionless interface requires matching density of states
between the device and the leads. This, in turn, requires
a self-consistent calculation of surface Green’s functions.
Similar findings have been reported for slightly simplified
NEGF calculations with scattering self-energies limited
to local on-site scattering.29,33

B. Low order self-energies

In the absence of vertex corrections to the self-energy
that we have not included in the present implementation,
we will first show that current conservation can only be
guaranteed by implementing only self-energies that con-
tain only fully scattered Green’s functions. The most
common scheme to achieve this self-consistency is the
self-consistent Born approximation. We will show this
requirement by considering the following very simple mo-
mentum and energy conserving model self-energy,

Σ
Λ = αG

Λ, (16)

where α represents a scalar coupling constant that rep-
resents some type of perturbation and the index Λ labels
the three types of Green’s functions and self-energies, Λ ∈
{<, R, A}. The matrix notation for G and Σ applies to
the spatial coordinates (z, z′), whereas the momentum

and energy coordinates ~k‖, E remain unchanged for this
kind of coupling self-energy. The spatial derivative of the
current density is given by54

d

dz
j (z)

∣

∣

∣

∣

z0

= − e

h (2π)
2

∫

dE

∫

d2k‖I
(

z0, z0, k‖, E
)

,

(17)
where the integrand I reads in matrix form

I = Σ
<
G

A − G
<
Σ

A + Σ
R
G

< − G
R
Σ

<. (18)

When we truncate the perturbation series at the order n,
the integrand I reads

In = α[G<
n−1G

A
n − G

<
n G

A
n−1 + G

R
n−1G

<
n − G

R
n G

<
n−1].

(19)
The Green’s function of consecutive scattering orders
only agree in the limit n → ∞, i.e. in the self-consistent
Born approximation

lim
n→∞

G
Λ
n = lim

n→∞
G

Λ
n−1. (20)

Only in this limit, the integrand in Eq. (19) vanishes
and the current is exactly conserved. In any finite or-
der n, on the other hand, the integrand is nonzero and
can lead to substantial variations of the current density
along the device direction z.37 We note that additional
approximations may be applied for the Green’s functions
in some situations that can restore the current conserva-
tion in a truncated series expansion of the Green’s func-
tions.37,59 A violation of current conservation has some
researchers led to call the integral of Eq. (18) a scatter-
ing current jscatt and define a ”total” current to be the
sum of −jscatt(z) and the correct current density j (z)
of Eq. (4).60 While this quantity is spatially constant in-
deed, it bears no relation to the matrix element of the
quantum mechanical velocity operator and does not rep-
resent a converged result for the observable current den-
sity.61 We therefore believe that the NEGF formalism
provides no simple way to avoid an infinite summation
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over self-energies, i.e. the calculation of full Green’s func-
tions, particularly in situations where the current density
is a crucial quantity.62 Finally, there is a subtlety to con-
sider very close to the lead/device interface. While we
have applied the self-consistent Born approximation in
all calculations, the assumption of an analytic electron
distribution within the leads causes a violation of cur-
rent conservation very close to the lead/device interfaces
since the self-energies are nonlocal. As a consequence,
the current density cannot be exactly conserved in the
range of this nonlocality around the device/lead inter-
face. Fortunately, we find this violation of the current
conservation to be very small and we typically achieve a
relative current conservation of better than 10−4.

C. Decoupled retarded and lesser Green’s functions

One of the cumbersome as well as numerically most de-
manding features of the NEGF formalism is the coupled
system of Dyson and Keldysh equations. In particular,
any retarded self-energy ΣR associated with an inelastic
scattering mechanism involves the lesser Green’s func-
tion G<. This raises the question whether we can obtain
a reasonable approximation by leaving out all parts in
ΣR that contain G<. In this way, the system Eqs. (2)
would get reduced to two independent sets of equations
which grossly reduces the effort of solving them. Such
an approximation effectively implies an independent de-
termination of the resonant state energies and their oc-
cupancies. If all state occupancies are small, such an
approximation appears to be reasonable, but Lake et al.

have pointed that this approximation may violate Pauli
blocking.37 In this section, we will quantitatively analyze
the effect of this decoupling of the Dyson and Keldysh
equations in a concrete example.

We have performed an exact as well as a decoupled
NEGF calculation of the retarded and lesser functions in
a laterally homogeneous, nanometer sized heterostruc-
ture with attached GaAs-type leads. The total length
of the device is 50 nm with 16 nm intrinsic region em-
bedded in between two 17 nm n-doped regions with
n = 1018 cm−3 each. Within the intrinsic region, there
is a 12 nm In.14Ga.86As quantum well of 150 meV depth.
In order to illustrate the occupation of bound states, we
define a function f

(

z, k‖, E
)

f
(

z, k‖, E
)

≡ −iG<
(

z, z, k‖, E
)

/A
(

z, z, k‖, E
)

, (21)

with the spectral function

A
(

z, z′, k‖, E
)

= i
[

GR
(

z, z′, k‖, E
)

− GR†
(

z, z′, k‖, E
)]

.
(22)

In equilibrium, the function f
(

z, k‖, E
)

can be shown to

be equal to the Fermi distribution f (E, µ).49 Note that
this function does not reflect the density of states but
only the energy and position dependent occupation func-
tion. It turns out that the imaginary part of f

(

z, k‖, E
)

vanishes and its real part is independent of k‖. Clearly,
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FIG. 2: Equilibrium electron distribution within a 12 nm wide
GaAs/In.14Ga.86As quantum well embedded in n-doped GaAs
at 300 K calculated with fully self-consistent NEGF (solid
line) and with decoupled retarded and lesser Green’s func-
tions (dashed), respectively. The zero in energy marks the
chemical potential µ. The full NEGF result faithfully yields
the Fermi distribution (gray dots), in contrast to the decou-
pled model that violates the Pauli principle. The inset shows
the conduction band edge along the device with a bound state
E1 and a resonance state E2.

one expects the function f
(

z, k‖, E
)

to be independent
of position z. Indeed, this is the case if the coupling be-
tween lesser and retarded functions is fully accounted for
but not so in the decoupled case.

Figure 2 shows the Fermi distribution (gray dots) and
the real part of the function f

(

z, k‖, E
)

in the exact
(solid line) and the approximated (dashed line) calcu-
lation in the middle of the In.14Ga.86As quantum well.
The zero in energy marks the chemical potential of the
device. If we include the full coupling of GR with G<, the
calculation perfectly reproduces the Fermi distribution.
By contrast, the decoupling of the Dyson and Keldysh
equations yields a dramatic deviation from the Fermi dis-
tribution as soon as any occupancy exceeds a value of 0.3.
The function f even exceeds its physical (Pauli blocking)
limit of 1 for low-lying energies that are highly occupied.
Since we assume a Fermi distribution in the leads, this
triggers an artificial spatial inhomogeneity of f

(

z, k‖, E
)

when ΣR is approximated to be independent of G<.

D. Effect of decoupling on Fermi’s Golden Rule

In order to further illustrate the physical implication
of the decoupling approximation of GR with G<, we will
compare the polar optical phonon scattering rate in bulk
GaAs as obtained from a full and decoupled NEGF cal-
culation with Fermi’s Golden Rule. The polar optical
phonon (LO-phonon) scattering self-energies are given in
Eqs. (5) and (6). We consider homogeneously n-doped,
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unbiased GaAs with n = 2× 1018 cm−3 and set the zero
in energy equal to the chemical potential. At zero and
room temperature, this implies the band edge to lie at
−86.42 meV and at −79.06 meV, respectively. Even for
this bulk system, we stick to the present coordinate sys-
tem that is adapted to two-dimensional systems but we
have checked that our calculations are able to reproduce
the known analytical formulas for the Green’s functions
in bulk systems.63 In homogeneous devices, the Green’s
functions and self-energies depend only on the difference
of the propagation coordinates (ζ = z − z′). This al-
lows us to Fourier transform the imaginary part of the
retarded self-energy with respect to ζ and obtain the scat-
tering rate Γ (see e.g. Ref. 64)

Γ
(

k‖, kz, E
)

= −2

~
Im

∫

dζ exp (ikzζ) ΣR
(

ζ, k‖, E
)

.

(23)
In particular, we will analyze the on-shell scattering rate
Γ that is obtained by evaluating Γ at the vertical electron
momentum

kz =
√

2m∗E/~2 − Ec − eΦ − k2
‖. (24)

This yields the on-shell scattering rate of electrons with

kinetic energy ~
2
(

k2
‖ + k2

z

)

/2m∗.

First, we consider temperature T = 0 so that only the
emission of LO-phonons is possible. Electrons at ener-
gies higher than the LO-phonon energy E > ~ω0 as well
as holes within the conduction band at energies lower
than E < −~ω0 are able to emit polar optical phonons
(see Fig. 3 (a)). By contrast, electrons and holes for
intermediate energies −~ω0 < E < ~ω0 cannot emit
phonons, because their respective final states are fully
occupied.65 Consequently, scattering with LO-phonons
for electronic states in the interval [−~ω0, ~ω0] is for-
bidden at T = 0. At room temperature, on the other
hand, the electron distribution is significantly washed out
and LO-phonons can both be emitted and absorbed, so
that the suppression of scattering within the energy in-
terval of [−~ω0, ~ω0] is less pronounced. The black solid
line in Fig. 3 (b) shows the polar optical phonon scat-
tering rate Γ of Eqs. (23) and (6) that results from a
fully self-consistent NEGF calculation of this heavily n-
doped GaAs. For comparison, the grey dots show the
scattering rate that results from Fermi’s Golden rule.51

For the latter, we have explicitly summed over the emis-
sion and absorption of LO-phonons by electrons as well
as the emission and absorption of LO-phonons by holes
within the conduction band. As one can deduce from this
figure, Fermi’s Golden rule closely follows the NEGF re-
sult. This implies that higher order scattering that is
included in the NEGF self-energy, plays only a minor
role in equilibrium and bulk GaAs due to the small po-
lar optical coupling constant. The situation is radically
different for the decoupled case. If all terms in the re-
tarded self-energy Eq. (6) that contain G< are neglected,
the scattering of holes in the conduction band as well
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FIG. 3: (Color online) Calculated polar optical phonon
scattering in homogeneously n-doped GaAs with n = 2 ×

1018 cm−3 at zero bias. The zero in energy marks the chemi-
cal potential. (a) Schematic picture of allowed and forbidden
scattering events at T = 0. Holes (open circles) and electrons
(full circles) can only scatter within the indicated energy win-
dows, set by the optical phonon energy ~ω0. (b) Total on-shell
optical phonon scattering rate at 300 K. The exact NEGF
calculation (solid line) agrees well with Fermi’s Golden rule,
i.e. first order perturbation theory (large grey dots). The
dashed line results from NEGF calculations with decoupled
retarded and lesser Green’s functions. The small black dots
depict NEGF calculations where the nonlocality of the self-
energy in real space with a spatial resolution of 1 nm has been
neglected.

as the suppression of scattering in the energy interval
[−~ω0, ~ω0] is completely absent and the scattering rate
is grossly incorrect (see dashed line in Fig. 3 (b)).

In conclusion, we find that the decoupling of inelastic
retarded self-energies from G< is only applicable in situa-
tions where the occupation of all relevant electronic states
is smaller than approximately 0.3. Otherwise, many par-
ticle effects such as hole-like scattering within the con-
duction band and Pauli blocking become relevant. Even
when the state occupancy lies beneath this value, the
retarded Green’s functions and accordingly the retarded
self-energies are influenced by the lesser Green’s function
via the Poisson potential. This dependence can safely
be ignored only in very low doped devices such as THz
quantum cascade lasers.66
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FIG. 4: (Color online) Imaginary part of the lesser self-energy
for electronic scattering with polar optical phonons in homo-
geneously n-doped GaAs with n = 2×1018 cm−3 and at room
temperature. The self-energy is integrated over the in-plane
momentum k‖ and shown for various energies relative to the
chemical potential as functions of the difference of the two
propagation coordinates ζ = z − z′. The spatial resolution is
1 nm, but the lines are drawn continuously. The dependence
of Σ< as a function of energy E follows the energy resolved
density that is shown in the inset (see Eq. 3).

E. Local on-site self-energies

In the present real space basis, all self-energies are non-
local objects that depend on the two spatial coordinates z
and z′ independently (see Sec. II A).37,50,63 This increases
the complexity of NEGF calculations significantly67 and
hampers recursive algorithms for the calculation of the
Green’s functions.37,53 We therefore investigate here the
consequences of limiting self-energies to onsite scatter-
ing.55,56,68 The black dotted line in Figure 3 (b) shows
results for the polar optical phonon scattering rate of
Eq. (23) where only on-site elements Σ(z, z, k‖, E), i.e.
elements with ζ = 0 have been taken into account. The
comparison with the exact NEGF result also shown in
this figure shows that nonlocal scattering effects shift the
total scattering rate quantitatively, whereas the qualita-
tive trends remain intact, at least in this case. This result
is consistent with previous findings for resonant tunnel-
ing diodes.67

In order to quantify the nonlocal contributions, Fig. 4
illustrates the imaginary part of the k‖-integrated lesser
LO-phonon self-energy Σ< in homogeneously n-doped
bulk GaAs for various energies as a function of the dis-
tance ζ between the two propagation coordinates z and
z′ (cf. Fig. 3). This self-energy is maximal close to the
Fermi energy and decreases for energies above and below
it. The dependence of Σ< on the energy E is basically
given by the energy resolved density n (E) (see Eq. (3))
shown in the inset of Fig. 4. Irrespective of the energy,
the nonlocal spread of the self-energy in the difference

coordinate ζ extends to approximately three times the
device screening length (which amounts to 3 nm for the
chosen doping concentration). We find very similar re-
sults for the retarded Green’s function and for scattering
by charged impurities. In devices where the carriers are
confined by high barriers such as quantum cascade de-
vices, on the other hand, the nonlocality is essentially
limited to the width of the resonant states, i.e. quantum
well widths. This is in agreement with previous find-
ings.69

F. Momentum averaged self-energies

Since the integrals over the in-plane momentum l‖ in
Eqs. (5), (6) and (7) are numerically very demanding,
it is an obvious and frequently implemented approxima-
tion to replace the dependence of the coupling matrix
elements Vimp

(

z, z′, k‖
)

and Vpop

(

z, z′, k‖
)

on the mo-

mentum transfer k‖ by an average value ∆qtyp.34,38 To
give an example, the retarded self-energy for the interac-
tion with charged impurities simplifies to

ΣR
imp

(

z, z′, k‖, E
)

= Vimp (z, z′, ∆qtyp)

∫

dl‖l‖G
R
(

z, z′, l‖, E
)

. (25)

While this approximation saves a lot of computer time,
the energy dependence of different scattering self-energies
is no longer specific to the physics of the scattering mech-
anism.37 In fact, the remaining energy dependence in the
self-energies resembles that for acoustic phonon scatter-
ing and tends to underestimate scattering of low energy
electrons and overestimate it for electrons with high ki-
netic energies. To further analyze this approximation, we
consider the scattering potentials for LO-phonon Eq. (6)
and charged impurity scattering Eq. (7) in homogeneous
GaAs, respectively. As shown in Fig. 5, the potentials
vary significantly with k‖. Obviously, the replacement
by a constant ∆qtyp is not advisable and even a redeter-
mination of this value for each voltage for a given device
is impractical.36

G. Lead electron distribution

We now discuss the impact of employing different lead
models in NEGF calculations for open quantum systems.
In particular, let us consider flat band boundary condi-
tions for the potential at the contacts and compare our
present lead model that invokes a shifted Fermi distribu-
tion (model SF) with a model that employs an unshifted
Fermi distribution (model UF).

Concretely, we study an 80 nm wide laterally homoge-
neous n++ − i − n+ GaAs resistor at a temperature of
50 K. From left to right, we take a 32 nm wide n-doped
region with n = 2 × 1018 cm−3, followed by a 10.7 nm
intrinsic GaAs layer and, finally, a 37.3 nm wide n-doped
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ties (solid) and polar optical phonons (dashed) at an in-plane
momentum l‖ = 0.51 nm−1 as functions of the in-plane mo-

mentum k‖. The screening length q−1

D
is set to 5 nm.

region with n = 1 × 1018 cm−3 (see Fig. 6 (a)). The
asymmetry of this structure yields a build-in potential
of Vbuilt−in = −34.2 meV. By applying a bias voltage of
+34.2 mV, both lead conduction band edges should be
exactly equal if the applied voltage drops entirely within
the device. For each of the two models, Figs. 6 (a) and
(b) depict the self-consistently calculated electron densi-
ties and conduction band profiles, respectively.

The results for model UF are shown by dotted lines.
Figure 6 (b) reveals that the difference of the source and
drain conduction band edges in this model is far from zero
and does not correctly reflect the applied bias. Indeed,
it is known that the assumption of equilibrium electron
distributions within the leads causes a charge dipole at
the device boundaries and an incomplete bias drop across
the device.42,45

In contrast, the black solid lines depict results for case
SF which is the presently employed lead model, described
in the Sec. II B. In this case, the potential drop within
the device matches exactly the applied bias voltage. An-
other important consequence of choosing a shifted Fermi
distribution within the leads is shown in Fig. 7. This
figure shows the calculated current density for the two
lead models UF (dotted line) and SF (solid line), respec-
tively. Since the shifted lead Fermi distributions increase
the average electron velocity of the carriers in the device,
the current density is larger than in the case of unshifted
Fermi distributions. In fact, the low field mobility µ is al-
most twice as large in the currently employed lead model
(SF) (µ˜2286 cm2V−1s−1) as in model UF with unshifted
Fermi distributions (µ˜1330 cm2V−1s−1). Part of the
reason for this finding lies in the incomplete potential
drop within the device.27,43 In addition, the vanishing
average momentum of lead electrons in case UF repre-
sents an additional serial resistance that also reduces the
current density.

Interestingly, we find the self-consistently determined
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FIG. 6: (Color online) NEGF results for (a) the electron den-
sity and (b) self-consistently determined conduction band pro-
file for two different lead models. The doping has been chosen
so that the built-in potential exactly compensates the applied
bias. The conduction band edges in (b) should therefore lie
at zero energy at the device boundaries. The dotted lines
correspond to a lead model with equilibrium lead electron
distributions and vanishing electric fields at the boundaries
(model UF), as described in the main text. The black solid
lines show results of the presently proposed lead model SF
that includes shifted lead electron distributions.

momentum shifts kD,ℓ of the Fermi distribution in the
leads to be almost linearly related to the current density.
Figure 8 shows kD,L of the present n++ − i − n+ struc-
ture as a function of the current density. The almost
linear relation between the momentum kD,L and current
density is consistent with previous lead models and may
simplify the determination of a suitable shift of the Fermi
distribution.44

Finally, we show results that one obtains by not enforc-
ing flat band boundary conditions for the potentials at
the contacts and invoking unshifted contact Fermi distri-
butions. For the device we are considering in this section,
charge neutrality only dictates the electric field to be the
same at both contacts,

dΦ (z)

dz

∣

∣

∣

∣

z=R

=
dΦ (z)

dz

∣

∣

∣

∣

z=L

.
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as a function of current density.

We may determine the magnitude of this electric field
by requiring the applied potential to drop entirely within
the device, i.e. by condition III in Eq. (15). The re-
sulting charge density and conduction band energy as a
function of position within the device is depicted in Fig-
ure 9. This figure reveals an artificial pinch-of near the
left device boundary and a charge accumulation near the
right boundary which are clearly artifacts of the chosen
lead model. This result is a consequence of the lower
average velocity of the carriers within the contacts as
compared to the situation within the device where they
get accelerated by the electric field. This clearly demon-
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FIG. 9: NEGF results for (a) the electron density and (b) self-
consistently determined conduction band profile for a lead
model with unshifted equilibrium electrons within the con-
tacts but with nonvanishing electric fields at the boundaries.
This model leads to unphysical charge depletions and accu-
mulations as discussed in the main text.

strates the importance of a consistent global treatment
of the electron distribution both inside the contacts and
within the active device region.

H. Semiclassical limit

The stationary current characteristics of our simple
n++ − i − n+ resistor is well described by semiclassical
transport, particularly since it is larger than 10 nm in
size and does not contain any bound states.27,31,32 Conse-
quently, a self-consistent NEGF calculation should yield
results in close agreement with the solution of the Boltz-
mann equation, provided we employ the same type of
scattering mechanisms and matrix elements. Given the
fact that a NEGF calculation is far from being physically
transparent, such a comparison is of utmost relevance for
judging and understanding the robustness and reliability
of the NEGF method. Figure 10 shows the electron den-
sity of the present n++ − i − n+ resistor that results
from the NEGF method (circles) and from the solution
of the semiclassical Boltzmann equation (solid line), re-
spectively. The excellent agreement of both results con-
firms that the NEGF method correctly yields the limiting
case of quasiclassical systems. Previous work on station-
ary electron transport in superlattices and quantum cas-
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GaAs resistor of Fig. 6 for zero bias. The result of the NEGF
calculation is depicted by open circles and agrees excellently
with the solution of the semiclassical Boltzmann equation
(solid line).

cade lasers has shown that semiclassical transport mod-
els may even agree with NEGF calculations in systems
with confined states, when the transport is dominated by
incoherent scattering.38,40,41 In passing we would like to
point out that all results in this paper have been obtained
within the NEGF approach. A semiclassical calculation
has only been performed for the comparison in Fig. 10.

IV. CONCLUSION

In this work, we have implemented and assessed the
NEGF method for stationary electron transport in open
semiconductor nanodevices by including incoherent scat-
tering on LO- and acoustic phonons and charged impu-
rities. All Green’s functions are dressed by incorporat-
ing scattering to infinite order and their nonlocal nature
as well as their full energy and momentum dependence
is taken into account. It has been demonstrated that
the electron distribution within the leads must be self-
consistently adjusted to the current density in the device
in order to obtain physically meaningful results. Our cal-
culations indicate that the density of states within the
leads must be matched to that in the device to obtain re-
sults that reflect the intrinsic physics of the device. This
typically requires the numerical solution of the lead’s sur-
face Green’s functions. Many frequently implemented
approximations have been assessed in some detail. The
present study suggests that the coupling between the
retarded and lesser Green’s function may be neglected
when Pauli blocking plays no role, i.e. the state occu-
pancy is less than 30 % for all device states. In addition,
we have found that the nonlocality of the self-energies in
a position basis can be limited to approximately three
times the screening length or to the typical extension of

confined states in devices with high barriers. Unfortu-
nately, the calculations also showed that the energy and
momentum dependence of scattering self-energies is diffi-
cult to neglect or approximate. In summary, the present
work sheds new light on strengths and weaknesses of the
nonequilibrium Green’s functions method that may help
in its future applications.

Acknowledgments

This work has been supported by the Austrian Scien-
tific Fund FWF (SFB-IRON), the Deutsche Forschungs-
gemeinschaft (SFB 631 and SPP 1285), the Excellence
Cluster Nanosystems Initiative Munich, and the National
Science Foundation NSF (Grant Nos. OCI-0749140,
EEC-0228390, and ECCS-0701612). Computational re-
sources of nanoHUB.org are gratefully acknowledged.

Appendix: Generalized lead model

In the following, we generalize the lead model pre-
sented in Sec. II B to general device dimensions and ar-
bitrary number of leads. We separate our system into
a device of volume Ω and its surroundings. We denote
the device boundary by δΩ and its surface normal with
~η. Charge carriers can enter or leave the device through
N reservoirs that are coupled to the device via N leads.
We use the term contact δΩc,ℓ for the intersection of lead
ℓ ∈ {1 . . .N} and the device and define

δΩc =
N
⋃

ℓ=1

δΩc,ℓ. (A.1)

The remaining device surface, i.e.

δΩc = δΩ \ δΩc (A.2)

acts as a barrier of infinite height. We solve the Poisson
equation in the device under the condition of vanishing
electric fields perpendicular to the device surface

(I)
[

~∇Φ (~x)
]

· ~η (~x)
∣

∣

∣

δΩ
= 0. (A.3)

This condition automatically implies global charge neu-
trality of the device,

∫

δΩ

ε (~x)
[

~∇Φ (~x)
]

· ~η (~x) d~x = 0. (A.4)

In order to guarantee charge neutral leads, the doping
density close to δΩ is assumed to be sufficiently high so
that all electric fields of the device interior that are par-
allel to ~η (~x) are screened within the device. Please note
that the electrostatic fields parallel to the device surface

may still be finite. In equilibrium, we assume the elec-
trons in each lead to be distributed according to a single
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Fermi function. Still, we allow the self-consistent solution
of the electron density and the Poisson equation to result
in a finite built-in potential Vbuilt−in (~x) at ~x ∈ δΩ. In
nonequilibrium, we assign individual chemical potentials
µℓ to each lead,

µℓ (~x)|δΩc,ℓ
= µℓ, (A.5)

and use the following shifted distribution of electrons in
lead ℓ (analogous to Sec. II B),

fℓ

(

~k, E
)

=

{

exp

[

β

(

~
2

2m∗
ℓ (E)

∣

∣

∣

~k − ~kD,ℓ

∣

∣

∣

2

− µℓ

)]

+ 1

}−1

.

(A.6)

Hereby, we assume a homogeneous energy dependent ef-

fective mass m∗
ℓ (E) in the lead ℓ. The vector ~kD,ℓ lies

perpendicular to the contact,

~kD,ℓ = kD,ℓ~ηℓ. (A.7)

The shifts of the lead distributions are determined im-
plicitly from the condition that the bias drops completely
within the device

(II) e

∫

δΩc,ℓ

[Φ (~x) + Vbuilt−in (~x)] d~x − µℓ

= κ, (ℓ = 1, 2, ..., N) (A.8)

In order to determine the variable κ, we assume the cur-
rent density in the lead ℓ to be proportional to a product
of the shift kD,ℓ, the inverse energy averaged effective

mass 〈m∗
ℓ 〉

−1
and the electron density n (~x) integrated

along the contact area δΩc,ℓ. Since the total amount of
current density that flows into the device has to flow out
of it again, the variable κ has to be determined such that
the global current is conserved. This leads to the condi-
tion

(III)

N
∑

ℓ=1

kD,ℓ 〈m∗
ℓ 〉

−1

∫

δΩc,ℓ

n (~x) d~x = 0. (A.9)
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